Электромагнитная подвеска автомобиля | AUTOMOTOLIFE.com
История создания электромагнитной подвески
Одним из примеров применения энергии электромагнитного поля является электромагнитная подвеска, которая является одним из видов подвесок автомобиля и нашла активное применение в наши дни.
Мало кто знает, но первые научные труды, объясняющие принцип действия магнитного поля, пришли к нам еще раньше, чем был применен двигатель внутреннего сгорания. Первое упоминания о диковинном приспособлении использующее физические законы, ранее неподвластные человек, принадлежат теоретическим трудам английского физика и изобретателя Майкла Фарадея. Этот легендарный ученный еще в 1862 году первый объяснил и заложил будущий фундамент для размышлений многих умов по всему земному шару.
Вторым прародителем создания электромагнитной теории является еще один британский ученный Джеймс Клерк Максвелл. Хотя основной его пласт лишь косвенно объяснил принцип воздействия электромагнитного поля в природе, его работы во многом предопределят развитие этого течения, а также всей физики в частности. Однако первых практических успехов в конструировании автомобилестроения на основе электромагнитного воздействия удалось добиться лишь в 1982 году. Тогда был построен первый прототип поезда, использующий магнитную подушку. Магнитоплан M-Bahn был поистине уникальным отображением идей великих умов, однако применение его в широкой области было невозможным из-за несовершенности.
Немецкий поезд на магнитной подушке — магнитоплан M-Bahn
Обратив внимание общественности на реализм подобного изобретения, многие инженеры, осознав, что полноценный «парящий» транспорт пока лишь остается мечтой, сконцентрировались на создании менее значимых, но практичных автомобильных конструкций. Как результат, в 1980-ых годах, компания Bose первая произвела электромагнитную подвеску автомобиля, применив необходимые расчёты и вычисления.
В отличие от стандартной механической подвески, электромагнитная подвеска не может применяться отдельно на разные мосты, а работает в слаженной системе одновременно на двух.
Как работает электромагнитная подвеска
Электромагнитная подвеска – это устройство, функциональным значением которого является преобразование упругого элемента в демпфирующий за счет силы электромагнитного поля в соответствии с заданными командами микроконтроллера. В основе используется электродвигатель линейного строения, который по функциям выполняет схожую работу амортизатора в стандартном типе подвески.
Основным преимуществом подобного устройства является возможность адаптивного переключение потребляемой энергии с электро- на механическую (при обесточивании, электромагнитная подвеска используя сложную конструкцию из электромагнитов, перейдет на стандартный режим работы, схожий с многими рычажными типами подвески). Кроме того, электроэнергия, необходимая для работы подвески вырабатывается в результате езды, за счёт действия неактивных электромагнитов. В совокупности, это позволяет здорово экономить и получать постоянный бесперебойный результат работы подвески.
Читайте также:
Что такое койловеры? Плюсы и минусы регулируемой винтовой подвески?
При работе от вырабатываемой электроэнергии, бортовой компьютер измеряя уровень колебаний и характер проходимого дорожного участка, определяет с помощью упругих элементов (электромагнитов вместо стандартных рессоры и пружин) степень воздействия кинетики на колеса и непосредственно сам кузов автомобиля. Анализируя множество показателей, компьютер подает сигналы на контроллер управляющий подвеской.
На изображении детальный разбор конструкции электромагнитной подвески, с пояснение каждой из применяемой детали (подвеска Bose).
Виды электромагнитных подвесок
Среди представленных ныне на рынке вариантов действительно работающих типов электромагнитных подвесок основными можно выделить следующую группу:
Электромагнитная подвеска Bose
– исторически первая электромагнитная подвеска в мире удерживает пальму первенства. За основу успеха в компании взята самая упрощенная идея с электродвигателем, выполняющим сразу два элементных образа, однако работу линейной установки довели до предельного совершенства. Быстродействие достигается благодаря использованию в конструкции штока, к которому прикреплены магниты различной силы и действия. Кроме того, сменное выполнение возвратно-поступательной активности магнитов позволяет использовать определенное колеса под определенный вираж, что значительно повышает маневренность.
Подвеска шведской компании SKF – казалось бы куда уж проще может быть конструкция в сравнении с подвеской Боуза. Однако шведы, из конструкторной компании SKF решились на эксперимент: они создали устройство, которое представляет из себя капсулу, заполненную двумя электромагнитами. В отличии от предыдущего варианта, SKF подвеска использует пружину в роли элемента опоры. По сути, это механическая подвеска, которая может выполнять свои функции и на электромагнитной основе, в отличии от Bose подвески, где это роли взаимообратные. Такое исполнение позволяет эффективно использовать подвеску даже после истощения заряда батареи электродвигателя, что не позволяет проседать подвеске даже после длительного простоя.
Магнитная подвеска Delphi – в этой конструкции использует элемент амортизатора, в виде трубы, заполненной электромагнитом и жидкостью с магнитными частицами. Частицы небольшого размера (от 5 до 10 микрон), не сливаются благодаря нанесению спец.покрытия. В такой подвеске управление системой на себя берет головка поршня. Частицы реагируют на действия быстрее аналогов, а потому и отклик подвески намного быстрее остальных. Кроме того, несомненным плюсом такой подвески является использование гидравлики, в случае поломок электромагнитной системы управления частицами. Это возможно, благодаря наличии в конструкции стандартного амортизатора.
Автомобиль на электромагнитной подвеске «защищен» от проседаний, клинов и кренов во время совершения маневра поворота.
Автомобили с электромагнитной подвеской
Несмотря на то, что разработку системы ведут еще с незапамятных времен (в следующем году, первому прототипу исполнится более 35 лет), на серийном уровне такой тип подвески не прижился. Все дело в том, что оснащение современных серийных автомобилей подобной технологией не целесообразно по высокой себестоимости подобного оборудования. Кроме того, автопроизводители прекрасно понимают, что обслуживания подобной установки потребует, как минимум специального оборудования, а также знаний по профессиональному ремонту электромагнитных систем. Проблема состоит в том, что подобных салонов, которые имеют такие возможности во всем мире найдется только десяток.
Другой стороной медали является факт большой массы используемого оборудования. Для примера, электромагнитная подвеска типа Боуза весит в более полтора раза больше чем аналог в виде подвески McPherson’a. В современном мире, где производители тщательно подходят к экономии массы автомобиля путем добавления соединений на основе карбона и магния, решение по обустройству спортивного автомобиля такой подвеской кажется слишком фантастичным. Другое дело представительские дорогостоящие седаны топ-класса, которые могли бы заиметь первые прототипы в обозримом будущем.
В процессе создания инженеры многих компаний пытались оснастить автомобили подобными системами. Например, для демонстрации возможностей очередной версии электромагнитной подвески инженеры из Bose переоборудовали седан 1999 года Lexus LS.
Будущее электромагнитной подвески
С каждым днём, инженеры из представленных выше компаний дорабатывают свои продукты, доводя их качество выполнения до серийного/совершенного уровня. Проводятся активные работы по обеспечению и оптимизации программного кода, с помощью которого осуществляется процесс управления электромагнитами. Пытаются работать с конструкцией установки, активно применяя новые материалы и производя прототипы намного легче предыдущих вариантов.
Некоторые эксперты подозревают активные работы по созданию рабочих прототипов в закрытых установках. Не исключено, что продвигать электромагнитную подвеску в скором времени будут и сами крупные производители автомобилей в лице Volkswagen, General Motors, Hyundai и других. Полезность и преимущества использования подобной системы видна невооруженным глазом, а потому осознанно никто не будет отказываться от подобной системы.
Электромагнитная подвеска Bose — устройство и принцип работы
Видео, недавно опубликованное на страничке Carakoom в ВК вызвало у многих неподдельный интерес и к моему счастью, никто так и не смог привести достаточно информации, чтобы утолить голод знаний у страждующих умов. Так что лавры и звёздочки рассказичка заберу я. Итак, для тех, кто не знаком с электромагнитной подвеской вообще, рекомендую ознакомиться с ней в этом видео:
Доктор Amar Bose – крупный специалист и новатор, и работает не только над совершенствованием аудио-систем. Его профессиональный интерес уже давно (с четверть века назад) привлекла автомобильная техника – в первую очередь ходовая. Со свойственным ему нестандартным подходом он бросил на устройство подвески, как говорится, свежий взгляд – и увидел, как надо делать.
Упаковка
Слишком много в подвеске современной легковушки разнообразных деталей. Не говоря уже о направляющем аппарате (рычаги и шарниры), – упругие элементы, амортизаторы, поперечные стабилизаторы… На взгляд д-ра Bose, пришло время собрать все в единый узел, – что он и сделал.
В основе принципиально новой подвески – линейный электродвигатель. Ведь э-моторы делают не только на вращательное движение, но и на поступательное – для обрабатывающих станков с ЧПУ, для перспективных ж/д поездов на э-магнитной «подушке». В общем, ничего особенного; прикол в приложении линейного э-двигателя (ЛЭ) к автомобильному шасси. И получилось неслабо.
Мощный ЛЭ удачно вписывается на место телескопического амортизатора и заменяет собой и его, и пружину, и поперечный стабилизатор. Под контролем ЦПУ на э-двигатель подается напряжение, и на его штоке возникает выталкивающее усилие. Скажем, 375 кг; на 4-х штоках – 1500 кг; то есть, вес легковушки «гольф»-класса с нормальной нагрузкой [Без так называемых неподрессоренных частей подвески, которые для «гольф»-класса всяко тянут на 150 кг.]. Понятно, что ЛЭ поддерживают заданную высоту шасси – независимо от нагрузки. Как с нормальной (гидро)пневматической подвеской; так называемая статическая компенсация.
Кроме того, быстродействующие ЛЭ берут на себя и динамическую компенсацию: ограничивают боковой крен автомобиля [Поперечные стабилизаторы отпадают – за ненадобностью.], а также устраняют продольные «клевки» при разгоне и торможении. Они способны срабатывать хоть 100 раз в секунду – только подавай напряжение на обмотки статора. А ЦПУ контролирует каждый из 4-х ЛЭ индивидуально, и тут открываются удивительные возможности. Например, игра угловой жесткостью передней и задней подвески – по раздельности. Скажем, при входе в вираж ЛЭ запитываются так, что машина опирается по преимуществу на внешнее заднее колесо – и приобретает легкую избыточную поворачиваемость. Охотно заруливаем в поворот, и упор мягко переносится на внешнее переднее колесо. Выходим из виража с чуть-чуть недостаточной поворачиваемостью. Или еще как-то; вопрос настройки «софта».
Демпфер
Особенно ценно, что ЛЭ не только берут на себя функции упругих элементов подвески, но и гасят, демпфируют колебания [Забавно: здесь как бы возврат в прошлое, когда многолистовые рессоры выполняли роль упругих элементов подвески – и демпфировали ее колебания (как фрикционные амортизаторы). Как бы возврат, – но на насколько ином уровне техники!]. То есть, работают (под контролем того же ЦПУ) как амортизаторы – только электрические. При ходе колеса на неровностях ЛЭ действует уже не как э-двигатель, а в роли линейного альтернатора: поглощает кинетическую энергию, преобразует ее в электрическую – и закачивает бортовую э-сеть.
Совсем иной принцип гашения колебаний: вместо рассеивания их энергии в атмосфере через сильно греющиеся гидроамортизаторы – рекуперирование ее и запасание (в аккумуляторах). Причем ЦПУ может молниеносно изменять характеристики э-амортизаторов – каждого по отдельности и всех 4-х вместе. Достигается фантастическая плавность хода на покрытиях самого разного качества – при великолепном держании дороги и управляемости автомобиля. Тут на передний план выступает программное обеспечение ЦПУ: степеней свободы множество, возможности необозримы, но чтобы взять хоть часть их, нужно тонко настраивать управляющую электронику.
Схема системы Bose «квадро»
Что-то вроде пружинно-гидравлической системы ABC (Active Body Control – активное регулирование подвески) у седанов Mercedes S-класса – только быстродействие несравненно выше и возможности управления еще богаче. И практически полная интеграция в 4 ЛЭ – с проводами высокого напряжения (и больших амперов), ведущими к ним.
Но в отличие от ABC, подвеска Bose по-своему решает болезненный вопрос об отборе мощности. Дело в том, что мерседесовская система работает под высоким гидравлическим давлением (около 150 бар), которое поддерживается гидронасосом, отбирающим от двигателя немалую мощность. Заметный перерасход горючего – в конечном счете на обогрев атмосферы. ЛЭ требуют примерно такой же (электрической) мощности [Баланс примерно такой: в высокоактивном режиме 4 ЛЭ расходуют в общей сложности 20-25 кВт мощности. Немало; но они и возвращают в сеть (рекуперация) 16-20 кВт. В любом случае нужен мощный альтернатор с приводом от вала двигателя – и емкая батарея.], однако электроупругие элементы/амортизаторы не рассеивают энергию впустую, а всякий раз рекуперируют ее – возвращают обратно в бортовую сеть. Вообразите ситуацию: ветер раскачивает машину на стоянке, а ЛЭ тем самым вырабатывают э-энергию и подзаряжают батареи… Ветроэлектростанция.
Правда, ЛЭ расходуют э-энергию даже и тогда, когда машина неподвижна. Просто потому, что нужно держать ее вес [Напротив, пружинно-гидравлическая ABC не расходует энергию, пока машина неподвижна. Гидроопоры пружин блокируются клапанами, и высота упругих элементов фиксируется – как стопором. С другой стороны, ABC практически не способна рекуперировать потраченную энергию и при динамической компенсации интенсивно обогревает атмосферу.]; иначе говоря, э-магнитные упругие элементы оправданы, только если подвеска в самом деле «активная» и все время работает в режиме динамической компенсации. Тогда э-энергия расходуется на стабилизацию шасси – и тут же возвращается обратно, рекуперируется при гашении колебаний подвески. А вот пружинно-гидравлическая ABC лучше подходит для «пассивной», статической компенсации (поскольку рекуперирование в гидросистеме организовать трудно) – при изменениях нагрузки. В каждом особом случае свое решение.
В металле
Д-р Bose – профессиональный математик, и четверть века назад он начал работу с создания компьютерных моделей автомобильной подвески. А теперь испытания проходит вполне реальный Lexus LS400, оснащенный э-магнитной «квадро»-подвеской. Вместо телескопических амортизаторов – ЛЭ; в паре с ними в качестве вспомогательных упругих элементов работают торсионы. Они принимают на себя вес пустого автомобиля, – чтобы не расходовать зря э-энергию на поддержание шасси в статике. А также чтобы «лекс» не ложился (как «ситроены» с гидропневматикой) после длительной стоянки на дорогу. Здесь немало разного рода технических (и электротехнических) тонкостей, однако соль – в 4-х ЛЭ и быстродействующем ЦПУ с соответствующим программным обеспечением. Работы впереди еще много, но уже сейчас д-р Bose показывает впечатляющие результаты.
Два LS400 – в «штатном» исполнении и модифицированный с подвеской Bose – бок о бок на скорости выполняли стандартный маневр двойной «переставки» по неровной дороге. Зрителей поразило практически полное отсутствие у Bose-«лекса» кренов [Для «квадро»-подвески нетрудно задать и обратный крен в виражах – как у мотоциклов; вопрос настройки «софта». Тогда планка держания дороги и управляемости поднимается на новую высоту.] и «клевков» – по контрасту с машиной на заводской подвеске. Тут же LS400 с ЛЭ подлетел к трамплину посреди демонстрационной площадки и изящно исполнил прыжок с мягким приземлением. Водитель вышел и поклонился собравшимся, «лекс» рядом с ним тоже сделал реверанс. Публика рукоплескала.
По словам профессиональных «драйверов», э-магнитная подвеска дает уверенность в полном контроле над автомобилем. А когда тест-машина катится по неровной дороге, активное подавление резких толчков и вибраций заметно повышает плавность хода. В общем, LS400 с э-магнитной подвеской Bose гармонично сочетает разнородные качества: плавность хода, которая превосходит стандарты легковушек люкс-класса. И стабильность шасси на скоростях, характерная для спортивно-гоночных «табуреток».
Поражает, насколько органично подвеска Bose вписывается в образ перспективного автомобиля с его мощной бортовой электросетью – на тяговых э-аккумуляторах или водородных топливных элементах. Ему принадлежит обозримое будущее, – и д-р Bose безошибочно попадает в ведущие тенденции. Правда, обойдется стерео-подвеска недешево и поначалу ее получат только самые дорогие и претенциозные модели. И электростартер впервые появился когда-то на недешевом «кадиллаке» и казался вопиющей роскошью. А теперь покупатель «хэтчбека» Golf-класса воспринимает отсутствие климат-контроля и электростеклоподъемников («по кругу»!) как оскорбление. Все относительно, как учил нас великий Эйнштейн.
Видео: уникальная электромагнитная подвеска для автомобилей
В 1980-х годах американская компания BOSE разработала уникальную автомобильную подвеску, которая обеспечивает оптимальный баланс между управляемостью и комфортом.
Процесс решения этих задач конфликтует друг с другом, в результате чего конструкторы вынуждены идти на компромисс.
В представительских седанах подвеска изначально проектируется для комфортного передвижения, но в результате автомобиль приобретает значительные крены в поворотах и раскачку на волнистых дорогах.
В спортивных автомобилях ситуация прямо противоположная — управляемость обеспечивается жёсткостью подвески, за счёт чего страдает комфорт. Компания BOSE, известный производитель акустических систем, попробовала решить эту проблему нестандартным образом.
Инженеры сконструировали подвеску на основе традиционной конструкции громкоговорителя. Звуковой динамик акустической системы работает за счёт перемещения звуковой катушки с медным проводом в магнитном поле. Под действием электрического тока катушка совершает линейные колебания, имеющие амплитуду в зависимости от мощности тока в витках катушки.
Данный эффект применили к автомобильному амортизатору и в результате на свет появилась электромагнитная подвеска, бескомпромиссно решающая извечную проблему баланса комфорта и управляемости.
В качестве демпфирующего элемента в ней работает линейный электродвигатель в соответствии с алгоритмами управляющего контроллера. Электромотор заменяет стандартный амортизатор, его шток представляет собой постоянный магнит, в корпус встроена обмотка, а катушка представляет собой статор.
Магнитный шток совершает возвратно-поступательные движения по длине обмотки статора под действием управляемых электрических сигналов, которые генерируются специальными усилителями.
Такая конструкция не только эффективно гасит колебания, но и обеспечивает невероятные возможности для настройки управляемости.
Оборудованный такой подвеской автомобиль почти лишён кренов в поворотах и при этом гибко адаптируется под дорожные условия, демонстрируя высочайший уровень комфорта для пассажиров.
Система была испытана на базе седана Lexus LS400, но в серийное производство, к сожалению, так и не попала.
Революции в автопроме не случилось по вполне банальной причине: сверхсовременная и сложнейшая система оказалась слишком дорогой для использования на серийных автомобилях и проект был заморожен.
Электромагнитная подвеска автомобиля | Техника и человек
Идея электромагнитной подвески не нова. Её первые образцы появились в конце XX века на поездах. В этом не было ничего удивительного. Железнодорожный транспорт не имеет особых проблем с обеспечением электроэнергией, необходимой для работы систем такого типа. Но мысли об оснащении подобной ходовой частью автомобилей не давала покоя и конструкторам. Благодаря разработке новых технологий появились первые работоспособные устройства.
Они не нашли пока массового применения, зато стали причиной появления изрядного количества мифов и заблуждений. Постараемся развеять эти мифы и оценить, как обстоят дела с электромагнитной подвеской в действительности.
Различные принципиальные устройства
Исследования ведутся в различных направлениях. Но до реального воплощения дошли электромагнитные подвески следующих типов:
Bose. Да-да, именно корпорация, занимающаяся разработкой звуковой аппаратуры и электронных систем, воплотила в жизнь одну из перспективных концепций.
SKF. Шведский машиностроительный гигант, известный по всему миру благодаря качественным подшипникам, решил не оставаться в стороне и экспериментирует со своим вариантом электромагнитной подвески.
Delphi. Один из самых крупных производителей автомобильных комплектующих, Delphi Corporation, чья штаб-квартира находится в США, имеет свой взгляд на перспективную конструкцию.
На сегодняшний день каждый из предложенных вариантов имеет свои достоинства и недостатки.
Bose
В электромагнитной подвеске такого типа используются принципы, сходные с теми, что заставляют работать магнитные динамики. Основные функции выполняет шток с магнитным сердечником, помещённый в создаваемое линейным электродвигателем магнитное поле. Ппривычные пружины, и стабилизаторы отсутствуют, а изменение упругих параметров подвески и положения кузова автомобиля достигается за счёт изменений характеристик магнитного поля. Вся система управляется электроникой, хотя остаётся возможность корректировки некоторых параметров с пульта управления. Необходимая информация поступает от датчиков, устанавливаемых в разных местах автомобиля. Некоторые компании, устанавливающие такие конструкции на свои машины, дополняют их стабилизаторами поперечной остойчивости.
К достоинствам электромагнитной подвески Bose относятся:
Малое количество механических компонентов, что обуславливает высокий ресурс конструкции и компактность её размещения.
Высокая скорость реакции. На движущийся в магнитном поле сердечник не влияют силы трения и его перемещения происходят очень быстро.
Возможность внесения изменений в характеристики прямо в движении. Автоматизация коррекции положения кузова.
Но есть и характерные недостатки:
Более высокое, по сравнению с другими системами, потребление электроэнергии.
Полная потеря работоспособности при прекращении подачи тока.
Необходимость оснащения системы производительным управляющим компьютером с качественным программным обеспечением.
Если все условия, необходимые для работы соблюдены, то подвеска Bose демонстрирует высокую эффективность.
SKF
Шведские разработчики решили не отказываться полностью от традиционных упругих элементов. Нагрузки воспринимаются цилинд
рическими пружинами, листовыми
рессорами или торсионами. Роль амортизатора выполняет устройство, сходное по своей конструкции с элементами электромагнитной подвески Bose. Многие специалисты полагают это направление более перспективным и работают над его развитием.
Действительно, у систем SKF есть определённые преимущества:
Меньшая требовательность к энергообеспечению.
Сохранение хотя бы частичной работоспособности даже при прекращении подачи тока.
При этом сохраняется возможность программирования, постоянного контроля и внесения изменений в работу непосредственно в движении. Тем не менее сохраняются некоторые недостатки к которым добавляются новые:
Увеличивается число деталей. Для размещения элементов конструкции требуется значительный объём пространство.
Несколько снижается скорость реакции.
Механические упругие элементы со временем утрачивают свои характеристики, что должно быть учтено при разработке программного обеспечения.
Работы по совершенствованию электромагнитной подвески SKF не прекращаются. Не исключено, что разработчики сумеют если не устранить перечисленные недостатки, то свести их к минимуму.
Delphi
Иные принципы использованы в устройствах, которые разрабатывает компания Delphi. Здесь также сохранены практически все привычные компоненты. Основное отличие заключается в заполняющей амортизаторы магнитореологической жидкости. Постараемся объяснить, что это такое, не вдаваясь в сложные описания и не используя высоконаучные термины.
Электромагнитная подвеска Delphi в действии – видео, наглядно иллюстрирующее конструкцию и полученный результат.
Магнитореолологической жидкостью принято называть состав, в котором во взвешенном состоянии находятся микроскопические частицы железа, кобальта или никеля. Попросту говоря, частички материалов, способных взаимодействовать с магнитным полем. Результатом такого взаимодействия становится изменение пределов текучести вещества. Среди всех качеств магнитореологической жидкости для работы электромагнитной подвески важны два:
Хорошая агрегативная устойчивость в магнитном поле.
Малое время отклика.
При её использовании получают амортизаторы с регулируемыми характеристиками. Параметры изменяются при подаче команд автоматически или с пульта управления.
Достоинствами конструкции являются:
Малое энергопотребление.
Сохранение работоспособности при прекращении подачи тока.
По сути, такую подвеску можно отнести к электромагнитным достаточно условно. Это не является недостатком, но эффективность узлов, изготовленных по схеме Delphi несколько ниже, чем аналогов от Bose и SKF.
Препятствия для широкого распространения
Основным препятствием для широкого распространения является значительная стоимость электромагнитной подвески, складывающаяся из цены на материалы и сложные технологические решения. Не меньшей проблемой стала и разработка программного обеспечения, способного обеспечить надёжное функционирование электромагнитной подвески автомобиля в различных условиях Многое предстоит сделать для того, чтобы уменьшить размеры сложных узлов.
До серийного производства дело пока не дошло, если речь идёт об установке дорогостоящего оборудования, то лишь в качестве дополнительного оснащения. И всё же многие компании пытаются оснащать свои автомобили конструкциями различного типа. Причём довольно успешно.
Попытки внедрения
Известно, что активные работы в этой области ведёт концерн Toyota. Он проводил испытания системы Bose на Lexus LX400 и теперь устанавливает её опционально на некоторые модели. Не отстают от японцев и немецкие разработчики. Правда, компания BMW не сделала окончательного выбора и использует как американские, так и шведские разработки.
Значительных успехов удалось достичь специалистам компании Дженерал Моторс. Удачной признана подвеска типа Bose, разработанная для модели Chevrolet Corvette. Но этим американские разработчики не ограничиваются. Они устанавливают перспективные конструкции не только на легковые, но и на грузовые машины.
Область грузовых перевозок
Использование подобного оснащения на грузовом транспорте имеет свою специфику. На больших и мощных автомобилях проще решается проблема энергообеспечения. Точность и высокая плавность работы позволяет минимизировать риски при перевозке грузов, требующих бережного обращения. А потому электромагнитную подвеску можно встретить на моделях DAF и Scania, Kässbohrer Setra и Neoplan. В сегменте коммерческого транспорта высокая стоимость уже не оказывается столь существенным недостатком.
Подводя итог
Внедрение новых конструкций и технологий часто тормозиться по финансовым причинам. Проходит немало времени, пока новые разработки не выходят на уровень окупаемости. Но когда это происходит, их стоимость начинает неуклонно снижаться, опускаясь до разумного уровня. Не исключено, что это правило относится и к электромагнитным подвескам. Будем надеяться, что настанет время, когда ими будут оснащаться доступные модели машин и никто уже не будет этому удивляться. Надо лишь набраться терпения и подождать.