Рулевое управление авто: Рулевое управление автомобиля: устройство, виды и требования – Рулевое управление автомобиля

  • 03.07.2020

Содержание

Рулевое управление: устройство, принцип работы, виды

Первые автомобили, в частности, автомобиль Карла Бенца, который считается первым в мире серийным авто, были трехколесными. Почему? Да просто конструкторы не могли придумать, как заставить оба передних колеса синхронно поворачивать в одну сторону. Поэтому переднее колесо было одно, а вместо привычной сегодня «баранки» стоял рычаг.

Но такое положение вещей не продлилось долго. Следующие «самоходные телеги» уже имели 4 колеса и худо-бедно справлялись с маневрами. Так начало развиваться рулевое управление, назначение которого не изменилось за все годы существования автомобиля.

Устройство и принцип работы типичного рулевого управления

https://www.youtube.com/watch?v=TNjrSKwj4V0

На абсолютном большинстве автомобилей рулевое управление реализовано по одинаковому принципу. Конечно, есть отличия (например, тип усилителя руля), но тип общей компоновки не меняется.

Устройство рулевого управления
  1. Руль стоит первым в цепочке управления автомобилем. Это не только способ передать сигнал системе управления, в какую сторону и как резко поворачивать, но и способ обратной связи, а также элемент пассивной безопасности автомобиля (в рулевое колесо встраивается подушка).
  2. Рулевая колонка – промежуточный элемент между самим рулем и механизмом поворота. На рулевую колонку может крепиться система безопасности, замок зажигания, рычаги включения дворников и поворотников.
  3. Следующий на очереди – рулевой механизм, с помощью которого поворот руля (а следовательно, и рулевой колонки) преобразовывается в команду на поворот для рулевых тяг.
  4. После того, как рулевой механизм передал усилие на рулевую рейку, в действие приходят рулевые тяги с наконечниками и рычагами. Они соединены с поворотными кулаками передних колес и заставляют их поворачивать в нужном направлении на нужный угол.
  5. Чтобы с вождением автомобиля справился любой человек, применяется гидравлический или электрический усилитель руля.

Классификация рулевого управления

Принципиальных отличий между разными типами рулевого управления нет, но часто его классифицируют по типу редуктора рулевого механизма:

Тип редуктора «шестерня-рейка».

Устройство рулевого управления с редуктором типа «шестерня-рейка» 1 — руль; 2 — рулевой вал с шестерней; 3 — рейка; 4 — рулевые тяги; 5 — поворотные рычаги; 6 — колеса.

Это самая распространенная разновидность рулевого редуктора, которая за годы использования показала свою надежность.

Принцип действия очень простой: на рулевом валу (который отходит от рулевой колонки) закреплена продолговатая шестерня. Рулевая рейка имеет зубчатый участок, который входит в зацепление с этой шестерней. При вращении руля шестерня вращается на месте и толкает зубчатую рейку в одну или другую сторону. Соответственно приходят в действие и рулевые тяги.

Передаточное число на рейке может быть неизменным, а может меняться ближе к краям. Получить такой эффект просто: нужно изменить наклон зубьев на рейке. Благодаря этому для поворота на большой угол не нужно «крутить баранку» до посинения, количество оборотов руля для маневра сокращается.

Тип редуктора «червяк-ролик».

Устройство рулевого управления с редуктором типа «червяк-ролик»: 1 — руль; 2 — рулевой вал с червяком; 3 — ролик с валом сошки; 4 — рулевая сошка; 5 — средняя тяга; 6 — боковые тяги; 7 — поворотные рычаги; 8 — колеса; 9 — маятниковый рычаг; 10 — шарниры рулевых тяг.

Этот тип редуктора можно назвать устаревшим, поскольку его давно перестали устанавливать на автомобили. Тем не менее, он еще встречается на старых машинах.

В основе заложена червячная передача, в которой червяк закреплен на дополнительном валу рулевой колонки. При повороте руля вращается червяк и приводит в движение ролик, стоящий с ним в зацеплении.

Сдвигаясь по нарезке червяка, ролик заставляет вращаться вал, на который он установлен и к которому присоединен рычаг рулевой сошки. Вал вращается, рулевая сошка описывает полукруг, приводит в действие остальные элементы рулевого привода (среднюю тягу, маятниковый рычаг, боковую тягу, поворотные кулаки колес).

Винтовой тип редуктора.

Устройство редуктора рулевого управления винтового типа

По принципу действия он очень похож на червячный редуктор. Однако на дополнительном валу рулевой колонки установлен не червяк, а винт. Он входит в зацепление с гайкой, на наружную сторону которой нанесен зубчатый обод. Когда вращается винт, гайка поворачивается в одну или другую сторону и поворачивает рулевую сошку, а она уже направляет остальные компоненты рулевого привода.

В усовершенствованных моделях на винт ставится шариковая шайба, которая служит промежуточным элементом между ним и гайкой. При вращении винта шарики сдвигают шайбу, а она поворачивает гайку.

Когда на легковые автомобили начали массово устанавливать гидроусилитель руля (ГУР), червячный редуктор вышел из обихода – к нему ГУР не поставишь. На его место пришел реечный привод, а винтовой «перекочевал» на тяжелые автомобили.

Кроме редуктора, в рулевом механизме могут отличаться типы передачи усилия на управляемые колёса. Более простой считается конструкция с реечным редуктором: от рулевой рейки отходят две рулевые тяги, которые крепятся к поворотным кулакам колес. Для того, чтобы соединение было подвижным, но без люфтов, используются шаровые наконечники.

На редуктор с червячной или винтовой передачей подходит другой тип рулевого механизма. Его называют рулевой трапецией и состоит он из довольно сложной системы рычагов. Сложность конструкции оправдывается большей мощностью, так что рулевая трапеция с винтовым редуктором ставится на грузовые автомобили, в то время как рулевая рейка лучше подходит для легковых.

И, наконец, систему рулевого управления классифицируют по типу усилителя: ГУР, ЭГУР и ЭУР.

  1. ГУР – гидравлический усилитель, классический тип. Он и сегодня ставится на автомобили, но постепенно уступает дорогу более современным видам усилителя;
  2. ЭГУР – электрогидравлический усилитель руля. В нём электромотор выполняет вспомогательную функцию, в то время как основная работа выполняется гидравликой;
  3. ЭУР – электроусилитель, современный способ управлять автомобилем. Электромотор умножает усилие, которое водитель прикладывает к рулю, то есть работает без каких-либо гидравлических элементов.

Основные неисправности рулевого управления

Конструкторы делают элементы рулевого управления из надежных износостойких материалов. Однако любая деталь имеет свой ресурс и свой запас прочности, так что рано или поздно в рулевом управлении начинают появляться неисправности и дефекты. Они достаточно типичные для большинства автомобилей.

  1. Износ шарниров рулевых тяг. По сути, любой шарнир в рулевом управлении – слабое место, особенно это касается конструкции рулевой трапеции. Однако рулевые тяги постоянно страдают от нагрузок, ударов и агрессивного вождения, и их шарниры выходят из строя чаще всего. Как только шарнирное соединение выходит из строя, оно дает о себе знать стуком во время выполнения поворота или просто езды по неровной дороге.
  2. Износ рулевых наконечников. Совершенно стандартная ситуация, поскольку рулевые наконечники считаются расходниками, особенно на наших дорогах. Шаровые шарниры защищены пыльниками и смазкой, но со временем вода попадает под пыльник, шарнир изнашивается и начинает люфтить. Водитель чувствует проблему как увеличение свободного хода руля и ухудшение управляемости. При появлении таких симптомов нужно поскорей принять меры. Замена рулевых наконечников – стандартная процедура, которую выполнят на любом СТО.
  3. Износ подшипника рулевой колонки. Такая поломка происходит редко, но требует срочных мер по устранению. Если подшипник изнашивается, рулевой вал начинает шататься, а водитель чувствует это как «биение руля». Лучше сразу обратиться в сервис, чем ставить на своей машине интересные опыты.
  4. Нарушение настроек колес. Неотбалансированные колёса будут ощущаться водителем как пульсация рулевого колеса при движении. Это не только доставляет дискомфорт, но и влияет на срок службы самих колес и смежных элементов.

Основные требования к рулевому управлению

Существуют стандартные требования, которые предъявляются к системе рулевого управления. Если система этим требованиям соответствует, ее можно считать исправной.

  1. Угол свободного хода руля. Это тот угол поворота, который делается «вхолостую», до начала поворота колес. В норме для легковых автомобилей он должен быть не боле 10 градусов, и если свободный ход постепенно увеличивается, это говорит о необходимости регулировки или ремонта.
  2. Система должна правильно «рулить»! То есть, нормально держать автомобиль при езде по прямой, точно выполнять маневры, не отклоняться от заданной траектории.
  3. Руль должен легко поворачиваться во время выполнения маневров. Усилители для того и придумали, чтобы на дороге водитель думал о дороге, а не о том, хватит ли ему сил на следующий поворот. Если управление тугое, требует значительных усилий, проблему нужно найти и решить.
  4. Строго выверенное число полных оборотов руля от среднего до крайнего положения. Для выполнения поворота водитель не должен выкручивать руль до бесконечности.
  5. Система должна работать даже после того, как отключится усилитель руля. В дороге может случиться всё, что угодно, в том числе утечка гидравлической жидкости или отказ электродвигателя в ЭУР. При этом автомобиль должен сохранить управляемость. Да, усилий это потребует больше, но и остановка будет там, где захочет водитель.

Принципиальные отличия между «левым» и «правым» рулем

В отношении праворульных автомобилей до сих пор ведутся споры. Сторонники утверждают, что те машины, которые делались японскими или английскими инженерами «как для себя», выше по качеству, чем аналогичные модели, но выпущенные на экспорт. Сложно сказать, действительно ли это так, но факт остается фактом: есть отдельная категория автолюбителей, которые предпочитают только машины с правым рулем.

Основное отличие рулевого управления автомобилей с правым рулем – зеркальное расположение элементов. Например, размещение редуктора на рулевой рейке. И сам редуктор рассчитан на другую сторону подключения.

А можно ли переделать праворульную машину на леворульную? Купить автомобиль с правым рулем и затем перенести руль влево можно, и есть даже СТО, которые специализируются на таких услугах. Но цена такого тюнинга немаленькая, поскольку «перекраивать» придется много. Это не просто руль на другой стороне, отличается очень многое, от зеркал до головного света.

Заключение

Рулевое управление – система достаточно живучая. Если не считать регулярную замену расходников, моно проездить на своей машине долгие годы и ни разу его не ремонтировать. Однако если случается проблема или просто какие-то странные постукивания-пошатывания не дают покоя, лучше не затягивать с визитом на СТО. В системе рулевого управления все элементы взаимосвязаны, и поломка одного ведет к поломке другого. Грамотная диагностика и своевременный ремонт уберегут от проблем и лишних расходов.

Рулевое управление: назначение и виды

Рулевое управление служит для обеспечения движения автомобиля в заданном водителем направлении. Рулевое управление состоит из рулевого механизма и рулевого привода.

Рулевой механизм служит для увеличения и передачи на рулевой привод усилия, прилагаемого водителем к рулевому колесу. В легковых автомобилях в основном применяются рулевые механизмы червячного и реечного типа.

К достоинствам механизма «червяк-ролик» относятся: низкая склонность к передаче ударов от дорожных неровностей, большие углы поворота колес, возможность передачи больших усилий. Недостатками являются большое количество тяг и шарнирных сочленений с вечно накапливающимися люфтами, «тяжелый» и малоинформативный руль. Минусы в итоге оказались весомее плюсов. На современных автомобилях такие устройства практически не применяют.

Самый распространенный на сегодняшний день – реечный рулевой механизм. Малая масса, компактность, невысокая цена, минимальное количество тяг и шарниров – все это обусловило широкое применение. Механизм «шестерня-рейка» идеально подходит для переднеприводной компоновки и подвески McPherson, обеспечивая большую легкость и точность рулевого управления. Однако тут есть и минусы: из-за простоты конструкции любой толчок от колес передается на руль. Да и для тяжелых машин такой механизм не совсем подходит.

Рулевая трапецияРулевая трапеция

Рулевой привод предназначен для передачи усилия от рулевого механизма на управляемые колеса, обеспечивая при этом их поворот на неодинаковые углы. Если оба колеса повернуты на одинаковую величину, внутреннее колесо будет скрестись по дороге (скользить боком) что будет снижать эффективность рулевого управления. Это скольжение, которое также создает дополнительный нагрев и износ колеса, может быть устранено с помощью поворота внутреннего колеса на больший угол, чем угол поворота внешнего колеса. При движении на повороте каждое из колес описывает свою окружность отличную от другой, причем внешнее (дальнее от центра поворота) колесо движется по большему радиусу, чем внутреннее. А, так как центр поворота у них общий, то соответственно внутреннее колесо необходимо повернуть на больший угол, чем внешнее. Это обеспечивается конструкцией так называемой «рулевой трапеции», которая включает в себя поворотные рычаги и рулевые тяги с шарнирами. Необходимое соотношение углов поворота колес обеспечивается подбором угла наклона рулевых рычагов относительно продольной оси автомобиля и длины рулевых рычагов и поперечной тяги.

Содержание статьи

Рулевой механизм червячного типа

Червячный тип рулевого управленияЧервячный тип рулевого управления

Рулевой механизм червячного типа состоит из:
– рулевого колеса с валом,
– картера червячной пары,
– пары «червяк-ролик»,
– рулевой сошки.

В картере рулевого механизма в постоянном зацеплении находится пара «червяк-ролик». Червяк есть ни что иное, как нижний конец рулевого вала, а ролик, в свою очередь, находится на валу рулевой сошки. При вращении рулевого колеса ролик начинает перемещаться по винтовой нарезке червяка, что приводит к повороту вала рулевой сошки.

Червячная пара, как и любое другое зубчатое соединение, требует смазки, и поэтому в картер рулевого механизма заливается масло, марка которого указана в инструкции к автомобилю. Результатом взаимодействия пары «червяк-ролик» является преобразование вращения рулевого колеса в поворот рулевой сошки в ту или другую сторону. А далее усилие передается на рулевой привод и от него уже на управляемые (передние) колеса. В современных автомобилях применяется безопасный рулевой вал, который может складываться или ломаться при ударе водителя о рулевое колесо во время аварии во избежание серьезного повреждения грудной клетки.

Рулевой привод, применяемый с механизмом червячного типа включает в себя:
– правую и левую боковые тяги,
– среднюю тягу,
– маятниковый рычаг,
– правый и левый поворотные рычаги колес.

Каждая рулевая тяга на своих концах имеет шарниры, для того чтобы подвижные детали рулевого привода могли
свободно поворачиваться относительно друг друга и кузова в разных плоскостях.

Реечный рулевой механизм

Механизм реейчного типа (шестерня-рейка)Механизм реейчного типа (шестерня-рейка)

В рулевом механизме «шестерня – рейка» усилие к колесам передается с помощью прямозубой или косозубой шестерни, установленной в подшипниках, и зубчатой рейки, перемещающейся в направляющих втулках. Для обеспечения беззазорного зацепления рейка прижимается к шестерне пружинами. Шестерня рулевого механизма соединяется валом с рулевым колесом, а рейка — с двумя поперечными тягами, которые могут крепиться в середине или по концам рейки. Данные механизмы имеют небольшое передаточное число, что дает возможность быстро поворачивать управляемые колеса в требуемое положение. Полный поворот управляемых колес из одного крайнего положения в другое осуществляется за 1,75…2,5 оборота рулевого колеса.

Рулевой привод состоит из двух горизонтальных тяг и поворотных рычагов телескопических стоек передней подвески. Тяги соединяются с поворотными рычагами при помощи шаровых шарниров. Поворотные рычаги приварены к стойкам передней подвески. Тяги передают усилие на поворотные рычаги телескопических стоек подвески колес и соответственно поворачивают их вправо или влево.

Основные неисправности рулевого управления

Увеличенный люфт рулевого колеса, а также стуки могут явиться следствием ослабления крепления картера рулевого механизма, рулевой сошки или кронштейна маятникового рычага, чрезмерного износа шарниров рулевых тяг или втулок маятникового рычага, износа передающей пары («червяк-ролик» или «шестерня-рейка») или нарушения регулировки ее зацепления. Для устранения неисправности следует подтянуть все крепления, отрегулировать зацепление в передающей паре, заменить изношенные детали.

Тугое вращение рулевого колеса может быть из-за неправильной регулировки зацепления в передающей паре, отсутствия смазки в картере рулевого механизма, нарушения углов установки передних колес. Для устранения неисправности необходимо отрегулировать зацепление в передающей паре рулевого механизма, проверить уровень и при необходимости долить смазку в картер, отрегулировать углы установки передних колес в соответствии с рекомендациями завода-изготовителя.

Уход за рулевым управлением

Всем известно выражение: «Лучшее лечение это – профилактика». Поэтому каждый раз, общаясь со своим автомобилем снизу (на смотровой яме или эстакаде), одним из первых дел следует проверить элементы рулевого привода и механизма. Все защитные резинки должны быть целы, гайки зашплинтованы, рычаги в шарнирах не должны болтаться, элементы рулевого управления не должны иметь механических повреждений и деформаций. Люфты в шарнирах привода легко определяются, когда помощник покачивает рулевое колесо, а вы на ощупь, по взаимному перемещению сочлененных деталей, находите неисправный узел. К счастью времена всеобщего дефицита прошли, и есть возможность приобрести качественные детали, а не те многочисленные подделки, которые выходят из строя через неделю эксплуатации, как это было в недавнем прошлом.

Решающую роль в долговечности деталей и узлов автомобиля играют стиль вождения, состояние дорог и своевременное обслуживание. Все это влияет и на срок службы деталей рулевого управления. Когда водитель постоянно дергает руль, крутит его на месте, прыгает по ямам и устраивает гонки по бездорожью – происходит интенсивный износ всех шарнирных соединений привода и деталей рулевого механизма. Если после «жесткой» поездки ваш автомобиль при движении стало уводить в сторону, то в лучшем случае вы обойдетесь регулировкой углов установки передних колес, ну а в худшем – затраты будут более ощутимы, так как придется заменить поврежденные детали. После замены любой из деталей рулевого привода или при уводе автомобиля от прямолинейного движения необходимо отрегулировать «сход-развал» передних колес. Работы по этим регулировкам следует проводить на стенде автосервиса с использованием специального оборудования.

Рулевое управление на пути к автономному автомобилю — журнал За рулем

Стремление к комфорту — двигатель прогресса. Это утверждение справедливо абсолютно для всех изобретений, будь то пульт дистанционного управления телевизором или мультиварка. Усилитель рулевого управления из этой же пьесы. Он позволил превратить вождение автомобиля из непростого занятия в приятное развлечение. А современные ГУР/ЭУР и вовсе приближают нас к эпохе автономного автомобиля.

history-of-the-steering-wheel

Один из первых чертежей привычной нам системы рулевого управления

Энциклопедии утверждают, что первым автомобилем с рулевым колесом, а не с рукояткой в качестве органа управления, стала модель марки Panhard, на которой в 1894 году Альфред Вашерон принял участие в гонке Париж — Руан. Уже через четыре года на всех машинах Panhard-Levassor устанавливалось рулевое колесо, а примеру французов последовали остальные автопроизводители.

Но, несмотря на прибавку в комфорте, управление первыми автомобилями продолжало оставаться делом непростым — крутить баранку было поистине мужской профессией, требовавшей значительных физических сил. На первых порах у шоферов грузовых машин даже были специальные помощники, которые не только играли роль механиков, но и помогали водителю справляться с рулем на крутых поворотах.

Поэтому неудивительно, что еще до внедрения рулевого колеса появились устройства, облегчающие обращение с рычагом-рукояткой. Если верить Морту Шульцу, опубликовавшему к столетию изобретения рулевого управления с усилителем в 1985 году статью в журнале «Популярная механика»под названием «Steering: A Century of Progress», первенство принадлежит изобретателю по фамилии Фиттс. Это он предложил свою систему усилителя рулевого управления в 1876 году. Но, к сожалению, о ней мы знаем весьма немного. В апреле 1900 года был выдан патент U.S. Patent 646,477, в котором описывается система полного привода и рулевого механизма с усилителем, изобретенная жителем Питтсбурга (штат Пенсильвания) Робертом Твайфордом. В 1902 году англичанин Фредерик Ланчестер запатентовал свою гидравлическую систему, а через два года был выдан патент на другую систему, с вакуумным усилителем в основе.

Ни один из этих патентов не нашел себе места на серийном автомобиле. Первым же серийным автомобилем с усилителем руля стал пятитонный грузовик Columbia, который был выпущен в 1903 году. Авторы публикации в журнале Motor Age, вышедшей в 1905 году, с восторгом описывали, как с этим усовершенствованием тяжелый грузовик «сохранял курс и легко управлялся на скорости в 18 миль в час!». С той поры системы рулевого управления, основанные на вакууме или сжатом воздухе, заняли свое место на коммерческом транспорте. К недостаткам пневматики относится то, что она была неприятно шумной и из-за большой упругости воздуха не могла гасить удары от дорожных неровностей. Если на грузовых машинах это было терпимо, то на скоростном легковом авто совершенно неприемлемо.

Прогресс подстегнула война. Инженер подразделения грузовых автомобилей компании Pierce Arrow Фрэнсис Дэвис в 20-х годах ХХ века начал исследовать, как облегчить рулевое управление и в 1926-м, базируясь на гидравлических системах, использовавшихся на морских судах, создал и продемонстрировал первую пригодную к серийному производству систему рулевого управления с гидроусилителем, с возможн

Рулевое управление автомобиля — назначение и устройство

Назначение рулевого управления

Рулевое управление предназначено для изменения направления движения автомобиля. Обычно управляемыми являются колеса передней оси, но это преимущественно на легковых автомобилях. Иногда для улучшения управляемости автомобиля и сохранения над ним полного контроля его делают полноуправляемым, то есть управляемыми являются не только основные передние колеса – задние также имеют возможность отклоняться на определенный угол.

Рулевое управление может быть с усилителем или без него, может устанавливаться на поперечине кузова в моторном отсеке или на подрамнике (практически на всех современных автомобилях).

 Устройство рулевого управления

Пример рулевого механизма
Рисунок 8.1 Пример рулевого механизма.
1 – рулевое колесо; 2 – гайка крепления рулевого колеса; 3 – верхний кожух рулевой колонки; 4 – шестерня рулевого редуктора; 5 – фланец рулевого вала; 6 – рулевой вал; 7 – труба рулевого вала; 8 – нижний кожух рулевой колонки; 9 – шаровой шарнир; 10 – наконечник рулевой тяги; 11 – пыльник; 12 – рейка рулевого редуктора; 13 – болт крепления рулевой тяги; 14 – стопорная пластина; 15 – рулевая тяга; 16 – поворотный рычаг передней стойки.

 Рулевое колесо и рулевая колонка

Садясь в автомобиль на место водителя, первое, что вы видите, — это рулевое колесо. Вращая его в ту или иную сторону, вы направляете автомобиль. Ничего в рулевом колесе (или руле) сложного нет… если это, конечно, руль автомобиля самой простой комплектации. В современных автомобилях руль — это и место для установки подушки безопасности, и пульт управления аудиосистемой вместе с телефоном, также это контроллер для управления бортовым компьютером. Рулевое колесо современного автомобиля иногда бывает попросту перегружено всяческими переключателями и кнопками, которые имеют различное назначение.

Рулевая колонка, это, по сути, два вала (реже один), соединенных между собой универсальными шарнирами (похожими на карданные). Она призвана передавать вращение от рулевого колеса к рулевому механизму. На многих нынешних автомобилях предусмотрена регулировка угла наклона рулевого колеса и расстояния его вылета. Другими словами, вы можете, перемещая рулевое колесо вверх/вниз и на себя/от себя, установить то положение, которое наиболее близко к идеальному, согласно вашим пожеланиям.

Примечание
Для обеспечения высоких показателей пассивной безопасности, к проектированию рулевой колонки относятся так же серьезно, как и, например, к проектированию сиденья. Это связано с тем, что при фронтальном столкновении рулевое колесо не должно смещаться более, чем это допустимо. Поэтому при столкновении рулевая колонка должна складываться или ломаться в определенных местах.

 Рулевой механизм

На современных легковых автомобилях применяются два самых распространенных типа рулевых механизмов: червячный и реечный.

Интересно
Огромное значение имеет место расположения на подрамнике рулевого механизма относительно воображаемой оси управляемых колес. Так, установка рулевого механизма за передней осью или перед ней в итоге может кардинально изменить поведение автомобиля на дороге, поэтому конструкторы при проектировании автомобиля подходят к этому вопросу очень серьезно.

 Червячный рулевой механизм

Если рулевой механизм червячный, то он состоит из глобоидного червяка и углового сектора, на который установлен ролик. К угловому сектору подсоединен вал, а на валу закреплена сошка. Перемещение сошки передается на рулевую трапецию, которая состоит из рулевых тяг. Тяги, перемещаясь, поворачивают колеса в ту или иную сторону. Устройство рулевого механизма показано на рисунке 8.2. Сейчас автомобили с червячным рулевым механизмом встречаются все реже.

Червячный рулевой механизм
Рисунок 8.2 Червячный рулевой механизм.

Червячная передача – это такой тип передачи, в которой имеется червяк, представляющий собой резьбовую часть болта, но только с увеличенными во много раз витками, и шестерня, входящая в зацепление с этим червяком.

Глобоидным червяк называется из-за своей формы: его профиль вогнутый, как показано на рисунке 8.3.

Внешний вид глобоидного червяка
Рисунок 8.3 Внешний вид глобоидного червяка.

 Реечный рулевой механизм

Теперь опишем реечный рулевой механизм (рисунок 8.4). Он состоит из шестерни и зубчатой рейки. Шестерня соединена с валом рулевой колонки, а рейка через тяги – с поворотными кулаками колес.

Реечный рулевой механизм
Рисунок 8.4 Реечный рулевой механизм.

Интересно
Иногда зубья на рейке наносят с переменным шагом (рисунок 8.5). Делают это для того, чтобы получить подобие активного рулевого управления для получения сочетания таких противоречивых показателей, как управляемость и комфорт. Так, для того чтобы при парковке водитель не вращал рулевое колесо на 5—10 оборотов в угоду легкости, желательно, чтобы число оборотов от упора до упора составляло как можно меньше – один, а то и пол-оборота. Но если от правого крайнего положения руля до левого будет всего один оборот, то рулевое управление будет довольно чувствительным к каждому движению, что опасно при движении на высоких скоростях, так как плавно выполнить все маневры не удастся, а это чревато последствиями. Вот и пришли к такому довольно простому компромиссному решению: шаг центральных зубьев рулевой рейки небольшой, а передаточное отношение чуть выше, а, следовательно, и чувствительность к отклонению рулевого колеса небольшая. Но от центра шаг зубьев увеличивается, чтобы уменьшить передаточное отношение и общее число оборотов рулевого колеса.


Рисунок 8.5 Пример зубчатой рейки рулевого механизма с переменным шагом зубьев.

Примечание
Шаг зубьев – это расстояние между центрами вершин зубьев.

Интересно
Кстати, может быть и обратная ситуация, когда шаг зубьев рейки уменьшается ближе к концам рейки.

Реечный рулевой механизм занял место червячного и основательно закрепился как наиболее актуальная конструкция, так как его преимущества говорят сами за себя: управление автомобилем, даже не оборудованным усилителем рулевого управления, несложное, небольшое количество звеньев всего рулевого механизма, простота монтажа на автомобиль и сведение к минимуму операций по обслуживанию.

 Рулевой привод

Рулевой привод — это набор тяг и шарниров, связывающих и передающих перемещения от рулевого механизма к поворотным кулакам управляемых колес.

Если вернуться к червячному рулевому механизму, то в классической схеме имеются три тяги — одна центральная и две боковые, они соединяются через шарниры. Тяги рулевого привода в данном случае называют рулевой трапецией. Конструкция рулевой трапеции в геометрическом плане такова, что она обеспечивает поворот управляемых колес на разные углы (смотрите главу «Ходовая часть»).

При условии установки реечного рулевого механизма все немного проще. К рулевой рейке крепятся рулевые тяги с обеих сторон, которые передают перемещение на поворотные кулаки колес. Преимущества очевидны, ведь чем меньше различных промежуточных звеньев, тем надежнее и точнее весь механизм.

Примечание
Чтобы исключить попадание грязи и пыли в корпус реечного рулевого механизма, с обеих его сторон установлены так называемые пыльники (гофрированные резиновые чехлы).

 Углы поворота управляемых колес

При повороте управляемые колеса автомобиля проходят различные расстояния. И если оба колеса будут поворачиваться на одинаковый угол, автомобиль будет смещаться с заданной траектории, при этом шины колес будут значительно быстрее изнашиваться.


Рисунок 8.6 Поворот управляемых колес на разные углы.

Для того чтобы избежать этого, рулевое управление проектируют таким образом, чтобы обеспечить поворот внутреннего колеса на больший угол относительно наружного.


Рисунок 8.7 Поворот управляемых колес на различные углы.

Рулевое управление автомобиля | Автомобильный справочник

 

Рулевое управление автомобиля, это система управления направлением движения с помощью рулевого колеса. Рулевое управление представляет собой совокупность узлов и механизмов, предназначенных для синхронизации положения рулевого колеса и угла поворота управляемых колес. Вот о том, из каких узлов состоит современное рулевое управление автомобиля, мы и поговорим в этой статье.

 

Содержание

 

 

Классификация системы рулевого управления

 

Системы рулевого управления можно класси­фицировать следующим образом:

 

Мускульная система рулевого управления

 

Необходимые усилия рулевого управления генерируются исключительно мускульной энергией водителя. Эти системы рулевого управления в настоящее время используются в самых маленьких легковых автомобилях.

 

Система рулевого управления с усилителем

 

Усилия рулевого управления генерируются му­скульной энергией водителя и вспомогательной силой, реализуемой гидравлически и в послед­нее время все чаще электрически. Эта система рулевого управления в настоящее время ис­пользуется в легковых и грузовых автомобилях.

 

Система автоматизированного рулевого управления

 

Усилия рулевого управления генерируются исключительно не мускульной (внешней) энергией (например, в машинах).

 

Фрикционная система рулевого управления

 

Усилия рулевого управления создаются си­лами, воздействующими на контактное пятно шины. Примером такой системы могут слу­жить поддерживающие мосты в грузовиках. Передача рулевых и вспомогательных сил происходит механически, гидравлически или электрически либо сочетаниями этих трех компонентов.

 

 

Требования к системе рулевого управления

 

Система рулевого управления преобразует соз­даваемые водителем вращательные движения рулевого колеса в изменение угла поворота управляемых колес автомобиля. Конструкция и схема системы призваны обеспечить удобное и безопасное рулевое управление автомобиля во всех ситуациях и на всех скоростях. Вся си­стема рулевого управления, от рулевого колеса и до управляемых колес, должна в этих целях обладать следующими свойствами.

Передача инициируемых водителем руля­щих движений на рулевом колесе без люфта особенно важна при движении по прямой. Это гарантирует безопасное, неутомительное для водителя управление автомобилем, пре­жде всего на средних и высоких скоростях.

Поэтому рулевой механизм должен быть очень жестким. Это необходимо для обеспе­чения точной управляемости и преодоления отклонения от заданного угла поворота ру­левого колеса под действием изменяющихся возвратных сил, возникающих, например, при изменении бокового ускорения.

Слабое трение в рулевом механизме по­зволяет водителю получать через реактивные силы тактильную обратную связь, дающую информацию о коэффициенте сцепления между дорогой и шинами. Слабое трение также помогает колесам выровняться для движения по прямой. В системах рулевого управления с мускульной энергией слабое трение обеспечивает небольшие движущие силы. В системах рулевого управления с усилителем оно повышает эффективность управления.

Кинематические параметры рулевого управления и конструкция управляемой оси автомобиля должны быть такими, чтобы во­дитель мог чувствовать величину сцепления между шинами и дорогой.

 

Требования к рулевому управлению

 

Требованиями к функционированию системы рулевого управления являются:

Легкое, безопасное рулевое управление автомобилем. Сюда, к примеру, относится тенденция рулевого управления автоматиче­ски возвращаться в положение прямолиней­ного движения при отпускании руля.

Максимально возможное демпфирование колебаний, передаваемых от колес автомо­биля на рулевое колесо при движении по не­ровным дорогам. Но этот процесс не должен приводить к потере обратной связи в рулевом управлении.

Для обеспечения чистого качения колес и, соответственно, предотвращения их из­быточного износа вся рулевая кинематика должна удовлетворять условию Аккермана. Это означает, что оси управляемых колес должны пересекаться в одной точке с осью задних колес (рис. «Условие Аккермана» ).

Достаточно жесткая схема всех компонен­тов рулевого механизма означает, что даже малые инициируемые водителем рулевые движения преобразуются в изменение на­правления управляемых колес, обеспечивая безопасную и точную управляемость авто­мобиля.

Угол поворота рулевого колеса от упора до упора по соображениям комфорта дол­жен быть как можно меньше при парковке и движении с небольшой скоростью. Однако на средних и высоких скоростях рулевое управ­ление не должно быть столь чувствительным.

 

Требования законодательства, предъявляемые к системам рулевого управления автомобилей

 

Требования законодательства, предъявляе­мые к системам рулевого управления автомо­билей, описаны в международных правилах ECE-R79. К этим требованиям, наряду с базовыми функциональными требованиями, относятся максимально допустимые управ­ляющие силы для исправной и неисправной систем рулевого управления. Эти требования регламентируют прежде всего поведение ав­томобиля и рулевого управления при въезде на круг и выезде с круга. Для автомобилей всех категорий: после отпускания рулевого колеса при движении автомобиля по окруж­ности на скорости 10 км/ч, радиус поворота автомобиля должен увеличиться или как ми­нимум остаться тем же.

Для автомобилей категории М1 (легко­вые автомобили с числом посадочных мест до 8): когда автомобиль в тангенциальном направлении выезжает из круга с радиусом 50 м на скорости 50 км/ч, в системе рулевого управления не должно возникать никаких не­обычных вибраций. В автомобилях категорий М2, М3, N1, N2 и N3 это поведение должно демонстрироваться на скорости 40 км/ч или, если это значение не достигается, то на мак­симальной скорости.

 

 

Это поведение также предписывается в случае неисправности у автомобилей с гидро- или электроусилителем рулевого управления. У автомобилей категории М1 это должно быть возможно в случае отказа сер­вопривода рулевого управления для въезда со скоростью 10 км/ч в течение 4 секунд в круг радиусом 20 м. Управляющее усилие на рулевом колесе не должно превышать 30 даН (табл. «Нормы рабочих усилий в системе рулевого управления» ).

 

 

Типы рулевых механизмов автомобиля

 

Требования к системе рулевого управления дали развитие прежде всего двум фундаментальным типам рулевых механизмов. Оба типа можно использовать в системах с чисто мускульной энергией или (в сочетании с со­ответствующими сервосистемами) в систе­мах с усилителем рулевого управления.

 

Реечный рулевой механизм

 

В принципе, как следует из названия, рееч­ный рулевой механизм состоит из шестерни и зубчатой рейки (рис. «Реечный рулевой механизм» ). Передаточное отно­шение механизма определяется отношением числа оборотов шестерни, равного числу оборотов рулевого колеса, к перемещению рейки.

 

 

В качестве альтернативы постоянному передаточному числу рейки на рейке за счет соответствующей нарезке зубьев имеется возможность изменять это число в зависи­мости от длины хода. Таким образом, устой­чивость при движении автомобиля по прямой можно улучшить посредством непрямого передаточного числа вокруг центра рулевого управления. В то же время, это возможно с реализацией прямого передаточного числа в диапазоне средних и больших углов поворота (например, при парковке) для уменьшения необходимого угла поворота при повороте рулевого колеса от упора до упора.

 

Рулевой механизм типа «винт-шариковая гайка-сектор»

 

Усилия, возникающие между винтом и гай­кой рулевой передачи, передаются через ряд рециркулирующих шариков, снижающих тре­ние (рис. «Рулевой механизм с шариковой гайкой» ). Гайка воздействует на вал сошки через зубчатый сектор. Этот рулевой меха­низм также позволяет получать переменное передаточное отношение.

Повышение эффективности рулевого управления с зубчатой рейкой означает, что рулевой механизм с шариковой гайкой прак­тически больше не используется в легковых автомобилях.

 

Рулевое управление с усилителем для легковых автомобилей

 

Увеличение размеров и массы автомобилей и повышение требований к комфорту и безопас­ности в последние годы привело к тому, что рулевое управление с усилителем появилось на всех категориях легковых автомобилей, вплоть до компактных. Эти системы, за редким исключением, устанавливаются в базовой ком­плектации. Усилия водителя по рулению поддер­живаются гидравлической или электрической сервосистемой. Эта сервосистема должна быть такой, чтобы водитель постоянно получал чет­кую обратную связь о сцеплении шин с дорогой, и чтобы эффективно гасились негативные воз­действия, вызываемые неровностями дороги.

 

Системы рулевого управления с гидравлическим усилителем

 

Сочетание механической конструкции руле­вого механизма с гидравлической сервосисте­мой привело к созданию реечного рулевого механизма с усилителем (рис. «Схема системы рулевого управления с усилителем» ) и рулевой механизм с шариковой гайкой с усилителем.

 

 

Распределительный клапан рулевой системы

 

Служит для нагнетания в силовой цилиндр ги­дравлической жидкости под таким давлением, которое соответствует углу поворота рулевого колеса (рис. «Принцип действия управляющего клапана рулевого управления с гидроусилителем» ). Упругий датчик крутящего мо­мента, обычно торсион («Схема системы рулевого управления с усилителем» ) обеспечивает преобразование момента на рулевом колесе при отсутствии люфта в пропорциональное этому моменту прецизионное управляющее перемещение золотника. Перемещение золот­ника вызывается поворотным скольжением относительно управляющей втулки. Каналы золотника, которые выполнены в форме паза, в результате управляющего перемещения об­разуют отверстия соответствующего попереч­ного сечения для пропуска жидкости.

 

 

Распределительные клапаны обычно рабо­тают в соответствии с так называемым прин­ципом «открытого центра», т.е. когда распре­делительный клапан не действует, жидкость, подаваемая насосом, перепускается обратно в бачок при нулевом давлении.

 

 

Характеристики рулевого управления с усилителем

 

Растущие требования к удобству и безопасно­сти привели к появлению управляемых систем рулевого управления с усилителем. Одним из примеров является управляемая электроникой реечная система рулевого управления с усили­телем (рис. «Схема управления системы рулевого управления с гидроусилителем» ). В зависимости от скорости дви­жения автомобиля, замеряемой посредством электронного спидометра, изменяется сила, воздействующая на рулевое управление (рис. «Характеристические кривые системы рулевого управления с усилителем» ). ЭБУ анализирует скорость и определяет уровень гидравлической обратной связи и, со­ответственно, необходимое рабочее усилие на рулевом колесе. Этот уровень гидравлической реакции передается на распределительный клапан системы рулевого управления через электрогидравлический конвертер, который модифицирует гидравлическую реакцию от­носительно скорости автомобиля.

 

 

Определенные характеристики усилителя рулевого управления позволяют поворачивать рулевое колесо с минимальным усилием при стоящем автомобиле или вовремя его движе­ния с небольшой скоростью. Степень усиления снижается с повышением скорости движения. Таким образом, при движении с высокими ско­ростями обеспечивается возможность управ­ления поворотами автомобиля в оптимальном режиме.

При такой системе важно, что давление и расход гидравлической жидкости никогда не снижаются и поэтому эти параметры могут быть немедленно востребованы в критических ситуа­циях управления.

 

Рабочий цилиндр рулевой системы

 

Силовой цилиндр двойного действия преоб­разует давление гидравлической жидкости во вспомогательное усилие, воздействующее на рейку и усиливающее воздействие водителя на рулевое колесо. Этот цилиндр обычно размеща­ется внутри картера рулевого механизма и харак­теризуется низким трением. Поскольку цилиндр должен иметь крайне низкое трение, то особо высокие требования предъявляются к поршню и уплотнениям штока.

 

Подача жидкости гидроусилителя руля

 

Подача жидкости осуществляется насосом (обычно приводимым от двигателя автомо­биля), который соединен с бачком посредством шлангов и трубок. Насос должен быть рассчитан на нагнетание необходимого давления и объема гидравлической жидкости для выполнения пар­ковки даже на холостых оборотах двигателя.

Для защиты от перегрузок в системе рулевого управления требуется клапан ограничения дав­ления. Этот клапан обычно встраивается в насос. Конструкция насоса должна обеспечивать такой режим работы, чтобы рабочая температура ги­дравлической жидкости не поднималась выше предельного уровня, отсутствовал шум при ра­боте насоса и не образовывалась пена в исполь­зуемой жидкости.

Насос для усиления рулевого управления мо­жет также иметь привод от электродвигателя. Здесь обычно используется шестеренчатый или роторный насос. Из-за ограниченной мощности электрической системы автомобиля эти системы используются в основном в автомобилях классов А и В. Поскольку необходимость в ременном при­воде от ДВС отпадает, то насос можно устанав­ливать произвольно, что благоприятствует мо­дульной конструкции автомобиля. Управляющая электроника и анализ сигналов, например, скоро­сти автомобиля и скорости руления, позволяют адаптировать частоту вращения вала насоса к те­кущему энергопотреблению рулевого управления и ситуации на дороге в целях экономии энергии.

 

 

Системы рулевого управления с электроусилителем

 

Системы рулевого управления с электроме­ханическим усилителем также используются в легковых автомобилях среднего и малого классов. Такие системы имеют электродви­гатель, работающий от бортовой сети. Меха­ническое соединение электродвигателя и ру­левого механизма может быть реализовано в виде рулевой колонки и привода. Система состоит из следующих компонентов (рис. «Схема рулевого управления с электроусилителем» ):

  • Рулевая колонка, соединяющая шесте­ренку рулевого механизма с рулевым ко­лесом автомобиля;
  • Шестерня, преобразующая вращательное рулевое движение в линейное перемеще­ние зубчатой рейки;
  • Зубчатая рейка, соединенная с колесами через тяги и рычаги;
  • Датчики, регистрирующие информацию для вычисления необходимого дополни­тельного крутящего момента на шестерне;
  • Серво-блок, состоящий из ЭБУ и сервод­вигателя (электродвигателя), генерирую­щего дополнительный крутящий момент на шестерне.

 

Когда водитель поворачивает рулевое ко­лесо, датчик регистрирует прилагаемый кру­тящий момент и отправляет эту информацию в виде электрического сигнала (аналогового или цифрового) на ЭБУ. ЭБУ вычисляет до­полнительный крутящий момент и на основа­нии вычисленного значения активирует сер­водвигатель. В настоящее время в качестве серводвигателей используются коллектор­ные или бесщеточные электродвигатели по­стоянного тока или трехфазные асинхронные двигатели. В зависимости от необходимых характеристик рулевого управления созда­ваемый этими электродвигателями крутящий момент составляет 3-6 Н-м.

 

 

Направление вращения двигателя зависит от направления вращения рулевого колеса. Возвратное движение рулевого колеса также может быть усилено. Это происходит, когда водитель выходит из поворота. В этой ситуа­ции серводвигатель создает крутящий момент, поддерживающий обратное вращение руле­вого колеса в положение движения по прямой.

Серводвигатель передает этот поддер­живающий крутящий момент через чер­вячную передачу или механизм типа «винт- шариковая гайка-сектор». В зависимости от варианта рулевого управления он передается на рулевую колонку, шестерню и зубчатую рейку реечного механизма.

Управляющая электроника учитывает раз­личные сигналы и параметры, например, скорость движения, угол поворота рулевого колеса, крутящий момент на рулевой ко­лонке и скорость руления. С помощью дру­гих расположенных в автомобиле датчиков и благодаря объединению в сеть ЭБУ руле­вого управления с другими ЭБУ, эту систему рулевого управления можно использовать для реализации вспомогательных функций, повышающих комфорт и безопасность дви­жения.

Ориентированное на потребности управ­ление электродвигателем позволяет достичь значительной экономии топлива, в среднем на 0,3 л /100 км по сравнению с гидроусили­телем, насос которого приводится в действие от ДВС. В городском цикле экономия топлива возрастает до 0,7 л /100 км.

В случае сбоя энергоснабжения или уси­ления рулевого управления водитель может продолжить руление чисто механически, но с большими мускульными затратами.

 

 

Рулевое управление с наложением угла поворота рулевого колеса

 

В системе рулевого управления с наложением угол поворота рулевого колеса может увели­чиваться или уменьшаться на определенную величину. Эта система обычно комбинирует с управляемой системой рулевого управле­ния с электро- или гидроусилителем. Рулевое управление с наложением угла поворота руле­вого колеса не обеспечивает автономной езды, но оптимально адаптирует характеристики ру­левого управления к ситуации движения, обе­спечивая максимальный комфорт и курсовую устойчивость. При объединении в сеть системы управления с динамическими параметрами та­кое рулевое управление может еще больше по­высить безопасность в критических ситуациях дорожного движения посредством не завися­щих от водителя регулировок рулевого управ­ления. Такие системы рулевого управления уже производятся серийно под торговыми марками Active Steering (BMW) и Dynamic Steering (Audi).

Угловое наложение, не зависящее от за­даваемого водителем угла поворота рулевого колеса, в настоящее время реализуется двумя техническими решениями.

 

Планетарный механизм рулевой системы

 

Двойной планетарный механизм с различ­ными передаточными числами встроен в об­щее водило планетарной передачи в рулевом механизме (рис. «Планетарный механизм, рулевое управление с наложением» ). Это означает постоянное наличие механической связи между рулевым колесом и управляемыми колесами.

 

 

Разные передаточные числа означают, что при пово­роте водила планетарной передачи задается дополнительный угол поворота. Угол зада­ется электродвигателем, вращающим чер­вячное колесо-водило планетарной передачи.

 

Волновая зубчатая передача с гибким звеном

 

Блок наложения угла поворота (рис. «Схема рулевого управления с наложением угла поворота с волновой передачей» ) в этом случае состоит из волновой зубчатой передачи с гибким звеном и электродвига­теля с полым валом (рис. «Актуатор рулевого управления с наложением угла поворота с волновой передачей» ). Очень ком­пактная конструкция позволяет встроить этот блок в рулевую колонку без ущерба таким параметрам, как монтажное пространство и поведение при столкновении. Вал на конце с рулевым колесом положительно соединен с гибким шлицем. Поворотное движение руле­вого колеса через зубчатое зацепление пере­дается на внутреннюю шестерню (круговой шлиц) для выходного вала. Эллиптический внутренний ротор (валогенератор), разме­щенный в гибком шлице, приводимый элек­тродвигателем, генерирует наложенный угол поворота через разное количество зубьев между гибким и круговым шлицами. Здесь также имеется постоянная механическая связь между рулевым колесом и управляе­мыми колесами через зубчатое зацепление волновой передачи.

В пассивном состоянии электродвигатель блокируется электромеханической блоки­ровкой, обеспечивая прямой механический сквозной привод для рулящего движения.

 

Концепция активации рулевого управления автомобиля

 

ЭБУ рулевого управления с наложением угла поворота проверяет правдоподобность необходимой информации датчика и ана­лизирует. Он вычисляет заданный угол для электродвигателя и через встроенный задаю­щий каскад генерирует сигналы широтно-им­пульсной модуляции для активации электро­двигателя, который представляет собой бесщеточный электродвигатель постоянного тока со встроенным датчиком положения ротора. Максимальный ток электродвига­теля составляет 40 А при напряжении бор­товой сети 12 В. Датчик положения ротора позволяет блоку управления регулировать электронную коммутацию и, соответственно, направление вращения ротора. Он также вы­числяет и проверяет суммарный заданный дополнительный угол поворота с помощью алгоритма суммирования в программном обеспечении блока управления.

Эффективный угол поворота, сумма угла поворота рулевого колеса и наложенного угла поворота электродвигателя вычисля­ются блоком управления и передаются по ав­томобильной шине связи на соответствую­щие ЭБУ.

 

Заданное значение эффективного угла поворота

 

Заданное значение эффективного угла по­ворота, формируемое в ЭБУ рулевого управ­ления с наложением угла поворота состоит из частичного заданного значения для ком­фортабельности рулевого управления и ча­стичного заданного значения для стабилиза­ции автомобиля. Сигналы, необходимые для вычисления этих переменных, считываются блоком управления по шине CAN.

Частичное заданное значение для комфор­табельности рулевого управления представ­ляет собой зависимое от скорости движения переменное передаточное отношение руле­вого управления. Это значение вычисляется из скорости движения автомобиля и угла поворота рулевого колеса. Когда автомо­биль неподвижен или движется с небольшой скоростью, к задаваемому водителем углу поворота добавляется определенный угол. Это делает передаточное отношение более чувствительным. Водитель может полно­стью повернуть колеса менее чем за один полный оборот рулевого колеса. Этот доба­вочный угол поворота непрерывно уменьша­ется с ростом скорости движения. Начиная со скорости порядка 80-90 км/ч из задавае­мого водителем угла поворота вычитается определенный угол, и рулевое управление становится менее чувствительным. Это обе­спечивает устойчивость автомобиля при движении по прямой на высокой скорости и в то же время предотвращает потерю управления над автомобилем из-за слишком резкого руления.

Для вычисления частичного заданного значения для стабилизации автомобиля — в дополнение к углу поворота и скорости движения — перемещение автомобиля из­меряется с помощью датчиков угловой ско­рости поворота вокруг вертикальной оси и бокового ускорения. В системе рулевого управления с наложением используются датчики системы курсовой устойчивости. Как же, как и ESP, запускаемая в ЭБУ вычис­лительная модель рассчитывает эталонное движение автомобиля. В случае отклонения фактического движения автомобиля от эта­лонного активируется рулевое управление для стабилизации автомобиля. Обе системы непрерывно обмениваются информацией, чтобы эффект взаимодействия контроллеров ESP и системы рулевого управления с нало­жением угла поворота был оптимальным.

 

Концепция безопасности рулевого управления

 

Все используемые внутренние и внешние сигналы непрерывно контролируются бло­ком управления, проверяется их правдопо­добность. Если сигнал датчика больше не ка­жется правдоподобным, то дополнительная функция рулевого управления, на базе ко­торой работает датчик, деактивируется. На­пример, при отказе датчика поворота автомо­биля вокруг вертикальной оси отключается измерение угла поворота автомобиля вокруг вертикальной оси системы рулевого управле­ния с наложением угла поворота. Переменное передаточное отношение остается активным.

Если безопасная активация электродвига­теля больше невозможна из-за сбоя, то си­стема полностью выключается, и обеспечи­вается непосредственный сквозной привод рулевого механизма от рулевого колеса пу­тем самоторможения шестеренчатой ступени и электромеханической блокировки. Этот переход на аварийный режим также активи­руется при остановке ДВС или отключении электропитания, что позволяет, к примеру, отбуксировать автомобиль.

 

 

Рулевое управление с усилителем для грузовых автомобилей

 

Рулевое управление полностью гидравлического типа

 

Гидростатические системы рулевого управ­ления представляют собой системы рулевого управления с гидроусилителем. Рулящее усилие водителя гидравлически усиливается и исключительно гидравлически передается на управляемые колеса. Поскольку механи­ческая связь отсутствует, то максимально допустимая скорость ограничивается регио­нальным законодательством. В Германии она составляет 25 км/ч. В зависимости от кон­фигурации системы и свойств аварийного рулевого управления возможно увеличение скорости до 62 км/ч. Поэтому использование этих систем ограничивается спецтехникой.

 

Рулевое управление с одноконтурным гидроусилителем для грузовых автомобилей

 

Грузовые автомобили обычно оснащаются ру­левым управлением с шариковой гайкой (рис. «Рулевой механизм с шариковой гайкой с усилителем» ). Управляющий клапан встроен в рулевой механизм и вместе с червячной передачей об­разует единый блок. Вращающее движение рулевого колеса передается по бесконечной цепи рециркулирующих шариков на шарико­вую гайку. Короткие зубья на шариковой гайке входят в зацепление с зубьями сектора. Созда­ваемое вращательное движение сектора через рулевой рычаг передается на рулевой привод управляемых колес.

 

 

Сервоусилие прилагается так же, как и в ре­ечном рулевом механизме с усилителем — по­воротным золотниковым клапаном. Рабочий цилиндр образуется уплотняющей поверх­ностью между корпусом шариковой гайки и рулевым блоком. Поскольку снаружи корпуса не требуется дополнительных трубопроводов, создается прочный и компактный рулевой блок с высокой выходной мощностью.

 

Двухконтурная система рулевого управле­ния, предназначенная для большегрузных грузовых автомобилей

 

Двухконтурные системы рулевого управле­ния (рис. «Двухконтурная система рулевого управле­ния с усилителем» ) требуются тогда, когда необ­ходимые движущие силы на рулевом колесе превышают регламентируемые Правилами ECE-R79 при отказе усилителя рулевого управления. Эти системы рулевого управле­ния отличаются гидравлической избыточ­ностью. Оба контура рулевого управления в этих системах функционально испытываются с помощью индикаторов расхода, и водителю сигнализируется состояние сбоя. Насосы для запитывания независимых контуров рулевого управления должны иметь разные приводы (например, от двигателя, от устройства, ра­бота которого зависит от скорости движения автомобиля или электропривода). При отказе одного контура, к примеру, из-за сбоя в си­стеме рулевого управления или остановки ДВС, автомобилем можно управлять с по­мощью рабочего резервного контура в соот­ветствии с требованиями законодательства.

Двухконтурные системы обычно прини­мают форму рулевого управления с шари­ковой гайкой с усилителем со встроенным вторым клапаном рулевого управления. Этот второй клапан управляет дополнительно установленным рабочим цилиндром и обе­спечивает дублирование существующей сер­восистемы в рулевом управлении с шарико­вой гайкой.

В следующей статье я расскажу о тормозной системе автомобиля.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Рулевое управление. Назначение и устройство

Назначение рулевого управления

Для осуществления движения транспортного средства (ТС) по выбираемой водителем траектории служит рулевое управление (РУ), конструкция которого во многом определяет безопасность движения и утомляемость водителя. К рулевому управлению ТС предъявляются специфические требования, основными из которых являются:

  • обеспечение высокой маневренности ТС
  • легкость управления (за счет применения усилителей рулевого управления)
  • обеспечение по возможности чистого качения (без бокового скольжения) всех колес ТС при поворотах (за счет правильной конструкции привода)
  • автоматическая стабилизация управляемых колес, т.е. возвращение их в состояние прямолинейного движения после снятия воздействия со стороны водителя
  • необратимость рулевого управления — отсутствие передачи ударов управляемых колес о неровности дороги на руки водителя
  • обеспечение следящего действия (любое воздействие водителя на рулевое управление должно вызывать соответствующее изменение направления движения)

Рулевое управление

Рис. Рулевое управление:
1 — масляный радиатор; 2, 4 — валы; 3 — рулевая колонка; 5 — рулевое колесо; 6 — насос гидроусилителя руля; 7 — рулевой механизм; 8 — сошка

Система рулевого управления представляет собой совокупность устройств, служащих для поворота управляемых колес автомобиля при воздействии водителя на рулевой управляющий орган (рулевое колесо).

Устройство рулевого управления

Рассмотрим устройство рулевого управления колесных машин с управляемыми колесами. Конструктивно рулевое управление состоит из:

  • рулевого механизма;
  • усилителя;
  • рулевого привода.

Компоновка рулевого управления грузового автомобиля с управляемыми колесами первой оси (КамАЗ, МАЗ) показана на рисунке. Использование регулируемых рулевых колонок позволяет менять угол наклона ступенчато, как правило, с шагом 5° в пределах до 40°. Рулевое управление с передними управляемыми колесами применяется у двух- и трехосных автомобилей. Компоновка и конструкция рулевого управления сравнительно просты и принципиально могут быть сведены к схемам, приведенным на рисунке.

Схемы рулевого управления автомобилей с управляемыми колесами передней оси

Рис. Схемы рулевого управления автомобилей с управляемыми колесами передней оси:
а — с задней неразрезной трапецией; б — с разрезной трапецией и маятниковым рычагом; в — с реечным рулевым механизмом; г — с разрезной трапецией и двумя маятниковыми рычагами; д — с расчлененным рулевым валом; е — с передней неразрезной трапецией; ж — с разрезной трапецией и двумя маятниковыми рычагами, направленными назад; з — с неразрезной трапецией и одним маятниковым рычагом; и — с неразрезной трапецией и объединенным рулевым усилителем; к — с неразрезной трапецией и раздельным рулевым усилителем

На четырехосных автомобилях чаще всего устанавливают рулевое управление с поворотом колес первой и второй осей, первой и четвертой, либо всех осей.

Для многоосных (шестиосных) шасси большой грузоподъемности используют рулевое управление с поворотом колес первых трех осей (в последних схемах для повышения маневренности применяют поворотные колеса самоустанавливающегося типа на шестой оси). При прямолинейном движении автомобиля самоустанавливающиеся колеса, связанные друг с другом приводом, блокируются специальным устройством. При движении в повороте с повышенной кривизной траектории эти колеса разблокируются и свободно поворачиваются в режиме слежения.

Видео: Рулевое управление

Рулевое колесо: описание,назначение,устройство,фото,видео | АВТОМАШИНЫ

Измене­ние направления движения автомобиля осуществляется поворотом относитель­но его продольной оси управляемых ко­лес, которыми, как правило, являются передние колеса.

Вследствие поворота управляемых ко­лес вектор скорости каждого из них, па­раллельный продольной оси автомоби­ля, перестает совпадать с плоскостью вращения колес. В результате в контак­те колес с дорогой возникают боковые силы, перпендикулярные плоскости вра­щения колес. Эти боковые силы застав­ляют управляемые колеса и автомобиль в целом отклоняться от прямолинейно­го движения и совершать поворот.

Руле­вое управление обеспечивает необходи­мое направление движения автомобиля путем раздельного и согласованного по­ворота его управляемых колес. Сово­купность механизмов, служащих для по­ворота управляемых колес, называется рулевым управлением.

Рулевое управление служит для изменения направления движения автомобиля. При неподвижной передней оси изменение направления движения автомобиля осуществляется поворотом передних управляемых колес.

Рулевое управление со­стоит из рулевого колеса, соединенного валом с рулевым механизмом, и руле­вого привода. Иногда в рулевое упра­вление включен усилитель.

Рулевым механизмом называют замедляющую передачу, преобразующую вращение вала рулевого колеса во вра­щение вала сошки. Этот механизм уве­личивает прикладываемое к рулевому колесу усилие водителя и облегчает его работу.

Рулевым приводом называют систему тяг и рычагов, осуществляющую в сово­купности с рулевым механизмом пово­рот автомобиля.

Для того чтобы при движении автомобиль совершил поворот без бокового скольжения колес, все они должны катиться по дугам разной длины, описанным из центра поворота “ О ” (рис.1). При этом передние управляемые колеса должны поворачиваться на разные углы. Внутреннее по отношению к центру поворота колесо должно поворачиваться на угол альфа-В, наружное — на меньший угол альфа-Н. Это обеспечивается соединением тяг и рычагов рулевого привода в форме трапеции. Основанием трапеции служит балка переднего моста автомобиля, боковыми сторонами являются левый и правый поворотные рычаги, а вершину трапеции образует поперечная тяга, которая соединяется с рычагами шарнирно. К рычагам жестко присоединены поворотные цапфы колес.

Содержание статьи

Рулевая колонка

Промежуточным звеном между рулевым колесом и механизмом является рулевая колонка, представленная рулевым валом. Часто он является шарнирным, что позволяет рациональнее использовать рулевое управление автомобиля и применять откидывающуюся кабину для грузовых автомобилей. Более того, шарнирный вал уменьшает травмоопасность колонки, уменьшая смещение рулевого колеса внутрь салона при аварии, не допуская сильного травмирования грудной клетки водителя.

Также в него могут быть встроены сминаемые элементы, складывающиеся при фронтальном ударе. А для защиты от угона может использоваться механическая или электрическая блокировка. Однако она не только защищает, но и порождает весьма неприятные неисправности рулевого управления. При окислении контактов в блоке elv возможно возникновение ложных сигналов блокировки. Самостоятельно производить замену не рекомендуется, поскольку происходит полная перепрошивка системы безопасности (даже для ключей, поэтому их надо будет принести с собой).

Рулевой механизм

От колонки усилие передается рулевому механизму (червячному, винтовому или реечному), который усилие увеличивает и передает приводу. Самый распространенный из них – реечный, т. к. большинство легковых автомобилей оборудовано именно им. Он состоит из:

1. Рулевой рейки.

2. Рулевых тяг.

3. Рулевого наконечника.

При вращении рулевого колеса усилие передается на шестерню, приводящую в действие рейку. Она, в свою очередь, поворачивается направо или налево, в зависимости от направления поворота рулевого колеса. При движении рейки поворачиваются и рулевые тяги и поворачивают колеса.

Реечный механизм отличает простота, надежность, жесткость и высокий КПД. В то же время он очень чувствителен к ударным нагрузкам от неровных поверхностей и склонен к вибрациям. Из-за вышеописанных особенностей подобная схема используется в основном на легковых автомобилях с передним приводом и независимой подвеской.

Существует и другая система рулевого управления, а именно – с червячным механизмом. Она состоит из глобоидного червяка (стержня с резьбой и переменным диаметром), соединенного с валом, и ролика. При вращении руля ролик обкатывает червяк, который вращает ведомую шестерню, приводящую в движение сошку. Она же, в свою очередь, перемещает рулевые тяги и с их помощью происходит поворот колес.

Червячный механизм намного сложнее реечного (и, естественно, дороже в производстве), наличие большого количества соединений требует периодической регулировки, однако он менее чувствителен к ударным нагрузкам и обеспечивает большие углы поворота управляемых колес. Как следствие, заметно возрастает маневренность. Он применяется на легковых автомобилях повышенной проходимости, автобусах и небольших грузовых автомобилях. Также червячные механизмы устанавливались на старых отечественных автомобилях (подобное рулевое управление «ВАЗ» использовал при создании модели «Жигули»).

И, наконец, последний вид рулевых механизмов – винтовой. В его конструкцию входят:

— винт на валу рулевого колеса;

— перемещающаяся по винту гайка;

— нарезанная на гайке зубчатая рейка;

— соединенный с гайкой зубчатый сектор;

— рулевая сошка.

Винт и гайка соединяются с помощью шариков, что ведет к заметно меньшему износу.

При повороте руля винт вращается, перемещая гайку, шарики начинают циркулировать, в то время как гайка (с помощью рейки) перемещает зубчатый сектор. Вследствие этого перемещается сошка, и, как вы уже успели догадаться, с помощью тяг осуществляется поворот колес.

Этот механизм рулевого управления устанавливается на тяжелые грузовые автомобили и машины представительского класса.

ДАТЧИК УГЛА ПОВОРОТА РУЛЕВОГО КОЛЕСА – ПРИЗНАК «УМНОГО» АВТОМОБИЛЯ

Одним из ярких примеров возложения на рулевое управление множества дополнительных функций является установка датчика угла поворота рулевого колеса. Для серийных автомашин практически всех именитых зарубежных марок, такой девайс стал очень необходимым. Ведь вращение руля связано с огромным количеством электронных устройств.

Устанавливается датчик в блоке подрулевого управления, иногда инсталлируется в рулевой механизм. Это устройство помогает получить информацию о направлении движения автомобиля, скорости вращения вала и так далее.

Сведения от датчика угла поворота, помогают в работе:

  • системе курсовой устойчивости;
  • круиз-контролю;
  • электрогидравлическому и электромеханическому усилителю руля;
  • активной подвеске;
  • активному рулевому управлению.

Конструкторами разработано множество совершенно разных по устройству и принципу работы, датчиков угла поворота рулевого колеса. Независимо от конструкции от этого устройства в значительной степени зависит комфорт и безопасность водителя и пассажиров.

Червячный тип рулевого механизма

Это самый древний тип рулевого управления. Система состоит из картера со встроенным винтом, получившим название «червяк». «Червяк» напрямую соединяется с рулевым валом. Помимо винта, в системе присутствует еще один вал с роликом-сектором. Вращение руля приводит к вращению «червяка» и последующему вращению ролика-сектора. К ролику-сектору присоединена рулевая сошка, связанная посредством шарнирного управления с системой тяг.

В результате работы этой системы тяг управляемые колеса поворачиваются, и автомобиль изменяет направление движения. Червячный тип рулевого механизма имеет ряд недостатков. Во-первых, это большая потеря энергии за счет большого трения внутри механизма. Во-вторых, отсутствует жесткая связь между колесами и рулем. В-третьих, для того, чтобы изменить направление движения, нужно обернуть руль несколько раз, что не только выглядит несовременно, но и не соответствует существующим в мире стандартам управления. В настоящее время устройства червячного типа используются только в российских УАЗах, ВАЗах с задним приводом и ГАЗах.

  1. рулевой механизм;
  2. уплотнитель;
  3. карданный шарнир;
  4. рулевой вал;
  5. труба рулевой колонки;
  6. контактное кольцо;
  7. гайка;
  8. рулевое колесо;
  9. подшипник;
  10. рулевая сошка;
  11. шарнир наконечника боковой тяги;
  12. поворотный рычаг;
  13. стяжной хомут;
  14. регулировочная трубка;
  15. шарнир тяги сошки;
  16. боковая тяга;
  17. шарнир боковой тяги;
  18. тяга сошки;
  19. наконечник рулевой тяги;
  20. шарнир маятникового рычага;
  21. маятниковый рычаг;
  22. кронштейн маятникового рычага;
  23. резьбовая заглушка;
  24. коническая пружина;
  25. опорная пята;
  26. проушина тяги;
  27. корпус шарнира;
  28. пластмассовая распорная втулка;
  29. резиновый уплотнитель шарнира боковой тяги;
  30. проушина поворотного рычага или тяги сошки;
  31. шаровой палец;
  32. гайка пальца шарнира;
  33. шплинт резьбовой заглушки;
  34. пластмассовый сухарь;
  35. резиновый уплотнитель шарнира тяги сошки;
  36. металлическая распорная втулка;
  37. палец маятникового рычага;
  38. гайка пальца маятникового рычага;
  39. втулка;
  40. резиновая защитная втулка;
  41. резиновая защитная втулка.

 

Винтовой механизм по-другому называют «винт-шариковая гайка». Разрабатывая эту систему, конструкторы заменили «червяка» специальным винтом с присоединенной к нему шариковой гайкой. На внешней стороне гайки располагаются зубья, которые и входят в контакт с таким же, как и в предыдущей системе, роликом-сектором.

Для того чтобы уменьшить трение, разработчики предложили разместить между роликом-сектором и гайкой шариковые каналы. Благодаря такому решению удалось значительно уменьшить трение, увеличить отдачу и облегчить управление. Однако наличие все той же сложной системы тяг, большие размеры и неудобная форма винтового механизма привели к тому, что винтовая система была признана также неприспособленной к современным условиям. Однако некоторые известные автопроизводители до сих пор используют механизм «винт-шариковая гайка» при изготовлении машин с продольным двигателем.  Подобные механизмы имеют автомобили Nissan Patrol, Mitsubishi Pajero  и другие.

«Слабые звенья» рулевого управления

Как и любой другой механизм, рулевое управление время от времени ломается. Опытный водитель прислушивается к своему автомобилю и может определить наличие той или иной неисправности по характерным звукам.

Например, стуки или увеличение люфта рулевого колеса могут свидетельствовать о том, что в рулевом механизме ослаблено крепление картера, кронштейна маятникового рычага или рулевой сошки. Также это может быть признаком того, что шарниры рулевых тяг, передающая пара или втулка маятникового рычага пришли в негодность. Эти неисправности можно устранить при помощи нехитрых манипуляций: замены износившихся деталей, регулировки зацеплений или креплений.

В том случае, если при вращении руля ощущается чрезмерное сопротивление, можно говорить о том, что нарушилось соотношение углов установки передних колес или зацепление передающей пары. Также руль может туго двигаться при отсутствии смазки в картере. Следует устранить данные недостатки: долить смазку, сбалансировать углы установки, отрегулировать зацепление.

Измерение и регулировка люфта

Под рулевым люфтом имеется в виду расстояние, преодолеваемое рулем «свободно» (т. е. без отклика системы – поворачивания колес). Обычно для его измерения используется специальный прибор – люфтометр, но можно это сделать и с помощью обычного штангенциркуля.

Ход работы:

1. Установите машину на ровную и не скользкую площадку.

2. Выставляем колеса так, как будто машина движется по прямой

3. Поворачиваем руль до тех пор, пока колеса не начнут двигаться.

4. Делаем на рулевом колесе пометку (мелом, изолентой и т. д.)

5. Затем вращаем в другую сторону и делаем еще одну пометку

6. Измеряем расстояние между метками штангенциркулем

Для каждого автомобиля существует свое предельное значение люфта, при превышении которого следует провести немедленную регулировку, иначе вскоре вас ждет ремонт рулевого управления.

Настройка производится с помощью винтов усиления шарниров карданчиков, которые находятся в рулевом валу.

ПОХОЖИЕ СТАТЬИ:

  • Новый Audi Q2 2016-2017 описание технические характеристики фото видео
  • Golf VII (лифтинг 2016) технические характеристики
  • Фольксваген каравелла Т6 2016 комплектации и цены обзор описание характеристики фото видео.
  • Фольксваген T-Cross 2019: двигатели,опции,оборудовании,технологии,фото,обзор
  • Бмв x5 2019: обзор,фото,комплектации,цена,характеристики
  • Порше Панамера 2019: обзор,характеристики,комплектации,цены,фото
  • Ауди Q3 2019 года: обзор,фото,характеристики,комплектации,цена
  • Мерседес Майбах 2019 года: описание,обзор,фото,характеристики,цена
  • Мерседес Гелендваген G-class — 2019 года: характеристики,комплектации,цена,фото
  • Опель Корса 2019 года: характеристики,цена,фото ,комплектация
  • Опель Астра gtc 2019 года: технические характеристики,цена,фото,внешний вид
  • Тонировка авто: виды пленок и как наклеить самому
  • Хендай Солярис 2019 года: комплектация,цена,характеристики,фото,описание
  • 15 Самых дорогих внедорожников в мире
  • Фольксваген Тигуан 2019 года:описание,обзор,характеристики,фото

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*