Мерседес v12 двигатель – Mercedes S65 AMG V12 Biturbo (Мерседес S65 AMG) — фото, технические характеристики, цена, видео, двигатель Мерседес W221 битурбо от Brabus

  • 02.08.2019

Двигатель M120 Mercedes-Benz: описание и характеристики

ЛюбительНедавно обзавелся данным аппаратом M120. неспешно восстанавливаю его, есть такие вопросы/проблемы: -двигатель на холостых оборотах в положении N работает нормально, а при перемещении рычага АКПП в положении R или D — глохнет еще до начала движения -если смотреть на двигатель спереди, то в левой части с краю блока коллекторов имеется некая черная крышечка и из нее выходит короткая трубочка (похожа на вентиляцию картера или рециркуляцию выхлопных газов), которая ни к чему не присоединена и из которой идут газы, на холостых — меньше, при нажатии на педаль-больше. Куда она должна быть присоединена? -нормальным ли является небольшой выход картерных газов при открытии маслозаливной крышки? — где и как штатно должны быть закреплены катушки зажигания? У меня они находятся на весу, обмотанные против сырости пленкой — каково нормальное давление масла на холостых оборотах? Сейчас на прогретом моторе стрелка показывает около 0.5, при подаче оборотов возрастает… Насколько я понимаю лампы критически низкого давления масла нет, есть только лампа низкого уровня масла в картере? Масло синтетическое Shell 5W40 (серая канистра).
Мастер ШтутгартСними почисть дроссельные для профилактики
ЛегендаК сожаления 6литровый мотор считатеся ненадежным, почемуто он в разряд «миллиоников» не попадает. Те надо обязательно обзавестись 2 программами, это ЕПЦ и ВИС. 
РобаВот с этим не соглашусь! Ресурс у него зачастую больше чем у 119-го. Он по электрике сложнее (вернее электро-узлов больше), которая чаще хромает чем у 119-го.
ЛёвкаПосле 2-недельного простоя видел немного (совсем немного) светлого налета на маслозаливной пробке. Это конденсат или все-таки — здравствуй замена прокладки и шлифовка ГБЦ?
ЛюбительНа щупе никакого «майонеза» или посветления цвета масла нет, так что опка похоже на конденсат, места для образования которого в 6л движке хоть отбавляй…Сегодня почему-то отказался заводиться. Все лампочки горят, бензонасос работает судя по звуку, а стартер не крутит. Буду копать в сторону втягивающего реле стартера, либо банально батарейка в иммобилайзере…
БывалыйИ у меня перестал крутиться стартер, хотя щелчки реле под капотом есть. Добрался снизу до стартера, обнаружил что соскочила клемма с втягивающего реле. Поставил на место — заработал
АланИмею CL600 97года,взял машину недавно и с тех пор пытаюсь понять как должен работать м120.Сразу после покупки продиагностировал машину Старухой показало ошибки расходомера и пропуски зажигания.Один расходомер заменил и оказалось рванный патрубок от расходомера к дросселю тоже заменил.Поставил новые подушки двигателя.Машина наконец то поехала,на крыльях счастья ездил неделю,но потом показалось что как то для с600 двигатель работает уж очень нестабильно,сравнив со своим намного более грубым в моем понимании Геликом g500(113 двигатель) я реально осознал что мой 6.0 работает как то странно. Ощущение такое что какие то мелкие пропуски зажигания или подсос воздуха.Все же решил начать с других вещей.
Проверил компрессию в двигателе все ок. Выкрутил свечи были в перемешку Беру и Чемпион,2 свечки были конченые я обрадовался поехал купил обычный Беру вкрутил стало еще хуже.Двигатель стал работать еще более нестабильно,оказалось мне продали свечи для старых некатушечных моторов,злой как собака поехал купил свечи БОШ платинум с зазором в 0,8мм,вкрутил стало как было на свечах в перемешку.Расстроившись поехал за 2 месяца владения в 7 раз к диагносту,проверили машину старухой никаких ошибок притом что сам электрик тоже говорит что двигатель работает неочень на холостом,самое интересное что прет машина ну очень хорошо,то есть даже на драйве колбасня двигателя почти неощутима.В добавок скажу что двигатель очень ухоженный,снимал поддон чтобы посмотреть на маслонасос и на срач в поддоне,оказалось девственно чистый двигатель.И поддон чистый был. Короче после очередной диагностики пришел в замешательство и стал думать что может быть???
Возможно Я1 подушки Гов….о или их как то перезатянули 2 где то очень слабо подсасывает воздух 3 свечи оказались фиговыми 4 форсунки засранны.
ПаулюсЯ тоже собираюсь менять подушки но даже с вытекшими подушками мотор работает идеально. Кто тебе так просто ответит? Какой пробег и расход топлива? Если думать логически получается до тебя с мотором были проблемы раз заменили две свечи, если помнишь на каких цилинадрах попробуй проверить еще раз. Может быть на самом деле форсунки!? Такое же впечатление что подсасывает воздух только с водительской стороны под воздухозаборником
Алан10свечек были свежими зря их вообще менял чемпион,две последних со стороны пассажира почему то были старые беру со сгоревшими в конец электродами.Я по глупости хотел как лучше и поменял все свечи но ничего не изменилось.Я просто прошу совета где мне искать хоть приблизительно.У самого руки рабочие половину всего во всех своих машинах делал сам и в принципе даже м120 небоюсь просто хочется докопаться до истины!
Человек-Легендау тебя или паранойя (тогда она и у диагноста), или проблема реально вне свечей и подушек. т.е. катушки, наконечники, форсунки, датчики детонации (вряд ли). подсосы и расходомер исключаем, т.к. от них вибрации не будет.
Аланнаконечники это что на свечку одевается?я думал что на 140 катушка неразборная…если бы были катушки то Стар диагностика показала бы наверное?буквально вчера продиагностил ошибок нет!
Человек-Легенданаконечники — между катушкой и свечой
Магичнадо менять ВСЕ без исключения наконечники. На них могут быть микротрещины, через которые идёт пробой. У меня была аналогичная ситуация с бумером, два месяца трахался, думал уже комп барахлит, ну ни как не верилось что такое из за этих резинок может быть. Поменял все и проблема исчезла. Бывает, что выкрутили свечки для замены/проверки компрессии/ещё чего нить и от старости незаметно потрескались насвечники. При этом начинается кипишь, мол, раньше то всё работало «ровно»
АлексСкориковБыла такая тема на одной тачке, как у тебя, сначала сделали диагностику старом, ни чего, решили наконечники на катушках, был новый комплект, заменили, все равно подрагивает мотор, проверили катушки контрольной свечей(контрольная свеча- откусываешь боковой электрод, а к нижней части резьбы где уплотнительное кольцо, припаиваешь кусок провода мм500, любой с автомобильной проводки, а к другому концу провода, припаиваешь не большой зажим, собачку, чтобы контакт с массой был надежным-контрольная свеча готова), свечу вставляешь в катушку а провод от свечи зажимом к надежной массе, пускаешь мотор, предварительно отключить бензонасос, либо предохранитель, либо реле вытащить, чтоб форсунки не смыли масло с цилиндров, и смотришь на мощность искры, если между центральным электродом и свечей проскакивает дуга синего цвета, катушка отличная, если ее нет вообще или цвет искры красно-желтый, катушка не годная , ну во общем обычная процедура проверки катушек. Так вот на той тачке оказалось расехранизация дроссельных заслонок, подключили стар, сбросили все адаптации и запустили обучение дроссельной заслонки, вторая заслонка обучается синхронно, тачка заработала исключительно, не смотря на то что никаких ошибок стар диагноз не выдавал,вот такая задница была. Как вычислили, случайно, не понравилось адаптация сгорания смеси, между левой и правой стороной двигателя, вот такое было. Извени что загрузил, но может с диагностом поговорить, пусть повнимательней посмотрит по компу, да и визуально, нет ли подсоса воздуха под впускным коллектором, можно пролить не большое количество бензина на то место где подозрительное шипение- обороты поднимутся значит есть подсос, можно лаком бесцветным задуть с баллона на то место- двигатель сразу ровнее станет работать, форсунки промыть, только промывку растянуть на часа 4-5, чтоб откисло получше, только все это нужно сделать последовательно и грамотно.

Вместо V12 Mercedes-AMG будет использовать гибриды

30 май 2018

Автор фото: фирма-производитель

Уходит эпоха: из-за ужесточившихся требований по экологии отделение Mercedes-AMG до 2020 полностью откажется от двигателей V12.

Первой жертвой стал внедорожник G-класса: из его гаммы исчезла самая мощная версия G65. Затем двигатель V12 перестанут устанавливать на родстер SL65 (будущее этой модели вообще под вопросом), а последним «сдастся» седан S-класса. У него версия с двигателем V12 исчезнет в следующем поколении.

Вместо него Mercedes-AMG предложит клиентам гибридную силовую установку, которая при сопоставимой мощности (максимальная отдача V12 от Mercedes-AMG составляет 630 л.с.) будет экономичнее и экологичнее, что позволит снизить показатель вредных веществ в среднем по модельному ряду.

Однако, полностью производство двигателя V12 не будет прекращено: он будет использоваться на Mercedes-Maybach S-класса, где присутствие 12-цилиндрового мотора является обязательным условием для нахождения в сегменте «лакшери», кроме того он будет устанавливаться на лимузин Pullman. Но стоимость этих автомобилей настолько высока, что покупатели даже не заметят, как на них переложили все затраты по омологации и сертификации двигателя.

Интересно, что инженеры Mercedes-Benz разработали новое поколение двигателя V12, но руководство концерна Daimler не дало проекту «зеленый свет», так как мотор получался слишком дорогим в производстве.

В феврале стало известно, что Mercedes-Benz зарегистрировала за собой права на ряд новых индексов, включая S73 и G73. Конечно же, ни о каком 7,3-литровом двигателе речи и быть не может: во-первых, они там не поместятся, во-вторых, ужесточающееся экологические требования лишают такие моторы права на жизнь. Это и будут гибридные силовые установки. Ранее представители Mercedes-AMG говорили о том, что помимо гиперкара Project ONE они хотят сделать ряд моделей с двигателями меньшей мощности. При этом мощность силовой установки «рангом ниже» должна составить около 800 л.с. Представительский седан с таким мотором мы еще представить можем, но внедорожник, да еще с аэродинамикой кирпича… Впрочем, 800-сильная версия «Гелика» есть у Brabus и даже пользуется спросом. Новые версии должны появиться на рынке примерно через два года.

При написании новости использовалась информация:
Car and Driver

Комментарии к новости

Оставить комментарий

AMG попрощается с моторами V12 — Авторевю

Как рассказал глава подразделения AMG Тобиас Моэрс в интервью изданию Car and Driver, компания скоро откажется от использования 12-цилиндровых двигателей на «заряженных» Мерседесах.

Нынешний битурбомотор M279 уходит корнями в восьмидесятые: у него до сих пор распределенный впрыск, по одному распредвалу в каждой головке и три клапана на цилиндр. Вариант для моделей AMG выдает 630 л.с. и 1000 Нм. До недавних пор такие моторы устанавливали на три модели, но внедорожник Mercedes-AMG G 65 уже снят с производства, а в новом поколении такая версия не заявлена. Производство родстеров SL 65 будет завершено в ближайшие месяцы, а дольше других продержится семейство S 65 (седан, купе и кабриолет), но в следующем поколении, которое ожидается через два—три года, аналогичного варианта не будет.

Mercedes-AMG SL 65

Впрочем, AMG продолжит выпуск моторов V12 для других суббрендов — в первую очередь для Майбаха. Тот же 630-сильный мотор, но имеющий более «спокойную» настройку, ставят на седаны Mercedes-Maybach S 650 и лимузины Pullman. А более скромный Mercedes-Benz S 600 L имеет базовую 530-сильную версию двигателя M279. Замена мотора не планируется: по информации Авторевю, проект нового агрегата V12 давно готов, однако зеленый свет на его реализацию Daimler не дает по финансовым соображениям.

Двигатель M279 AMG

Для покупателей Майбахов и «шестисотых» обязательное наличие двенадцати цилиндров под капотом — вопрос престижа, тогда как в случае с версиями AMG на первое место выходит темперамент. Как сказал Тобиас Моэрс, для замены V12 в подразделении AMG есть «другой путь». По предварительной информации, это будет гибридная силовая установка в составе битурбомотора V8 и электродвигателей. Гибриды окажутся мощнее и одновременно экономичнее, что позволит снизить средний показатель выбросов CO2 по модельному ряду.

Mercedes-Maybach S-класса

Об отказе от 12-цилиндровых двигателей недавно сообщили BMW и Audi. Причина та же, однако большие моторы сохранятся на автомобилях дочерних марок Rolls-Royce и Bentley, ведь эти машины изначально намного дороже, а потому затраты на доводку моторов, омологацию моделей и штрафы за повышенный средний показатель CO2 проще «растворить» в их цене.

Двигатель V12 на Mercedes: характеристики, модели, фото

Тобиас Моэрс, который является управляющим автомобильным концерном Mercedes, заявил о том, что V12 двигатель на Мерседесах будут использовать и в будущих моделях. Однако для не нарушения новоиспеченных экологических ограничений, продавать двигатель на Mercedes v12 будут исключительно с гибридной трансмиссией.

Стоит отметить, что двигатель V12 на Mercedes, а также на многие другие марки авто, устанавливают уже много лет. Двигатель V12 на Мерседес останется неизменным – как заявил управляющий компанией, покупателей данных моторов не очень много, поэтому разработка новых моделей нерентабельна.

Помимо этого, Mercedes AMG в ближайшее время не собирается разрабатывать новый гиперкар. Из этого следует, что преемника у SLR и SLS пока не будет. Также на Мерседес V12 Biturbo двигатель будет иметь ограниченную серию. Из-за финансового кризиса не многие автолюбители могут позволить себе такую роскошь, поэтому компания сконцентрируется на производстве автомобилей для так называемого среднего класса покупателей.

Как заявил управляющий компании – нужно чтобы как можно больше наших автомобилей мы видели на дорогах. Помимо всего прочего Моэрс заявил, что новоиспеченный AMG GT будет актуален не меньше двух поколений и получит не одну дополнительную версию.

Двигатель Mercedes M120

Двигатель Mercedes M120 — автомобильный поршневой двигатель V12 производства компании Merсedes, принадлежащий к семейству моторов производимых компанией в 1990-х и 2000-х годах. Двигатель был сконструирован и производится в Штутгарте, Германия. Блок двигателя выполнен из алюминия. Угол разворота цилиндров составляет 60 градусов.

Двигатель Mercedes M120

Основные данные
КомпоновкаV-образный, двенадцатицилинровый
Система газораспределенияDOCH, четыре клапана на цилиндр
Система впрыскаSFI
Объемот 6.0 до 7.3 l
Мощностьот 289 с.л. до 760 л.с.
Вес двигателя~ 300 кг

Шатуны стальные кованные. Головки блока цилиндров так же алюминиевые, DOCH, имеют четыре клапана на цилиндр, с двумя распредвалами на каждый ряд цилиндров. Система впрыска топлива Bosch LH-Jetronic. Система зажигания – EZL

Двигатель Mercedes M120 6.0

Двигатель производился в различных вариантах, как по объему, так и по показателям мощности и крутящего момента. Первой версией являлся Mercedes M120 V12 6.0, мощность которого составляла 389, 402 или 408 л.с. Двигатель мощностью 402 л.с. выпускался с 1992 года и был предназначен для рынка Северной Америки.

В 1991-1992 годах для рынка Европы выпускалась версия мощностью 408 л.с. Все остальные моторы, выпускаемые с 1993 от 1999 год, имели мощность 389 л.с.

Двигатели Mercedes M120 6.0 устанавливались на автомобили:

  • Mercedes 600SEC/S600 Coupe/CL600 с 1992-1999
  • Mercedes 600SEL/S600 с 1991-1999
  • Mercedes SL600 с 1992-2002

Двигатели Mercedes M120 увеличенного объема

В 1997 году на чемпионате FIA GT выступал гоночный автомобиль Mercedes-Benz CLK GTR оснащенный двигателем M120. 25 автомобилей соответствующих правилам FIA было произведено в 1999 году c двигателем объемом 6,9 литра.

Также существуют версии от AMG объемом 7,3 литра который устанавливался на Mercedes SL73 AMG, и мотор 7,0 устанавливаемый на редкий Mercedes SL70 AMG.

Двигатель M120 объемом 7,3 от AMG литра также устанавливался на S73 Kombi, универсал, построенный на базе S-класса для султана Брунея. Из восемнадцати построенных автомобилей десять были приобретены султаном.

Двигатель M120 на автомобилях Pagani Zonda

На автомобилях Pagani Zonda устанавливались двигатели M120 трех объемов 6.0, 7.0, 7.3 литра доработанные сотрудниками AMG. Двигатель объемом 6.0 литровустанавливался на Zonda C12, объемом 7.0 литров на Zonda C12S и Zonda R, и 7,3 литра на Zonda C12S 7,3, Zonda F, Zonda Cinque и Zonda Tricolore.

Фото: Версия Mercedes M120 от AMG

Форсированный до 740 л.с. мотор Mercedes M120 6.0 устанавливался на экстремальную версию Zonda R. Для каждой версии автомобиля вносились изменения в блоки управления двигателем, впускную и выпускную системы, что приводило к разным характеристикам.

  • Pagani Zonda C12 (1999 год) — Mercedes-AMG M120 6.0 L — 394 л.с.
  • Pagani Zonda C12 S (2000 год) — Mercedes-AMG M120 7.0 L — 550 л.с.
  • Pagani Zonda C12 S 7,3 (2002 год) — Mercedes-AMG M120 7.3 L — 555 л.с.
  • Pagani Zonda GR (2003 год) — Mercedes-AMG M120 7.0 L — 590 л.с.
  • Pagani Zonda F (2005 год) — Mercedes-AMG M120 7.3 L — 602 л.с.
  • Pagani Zonda Cinque (2009 год) — Mercedes-AMG M120 7.3 L — 678 л.с.
  • Pagani Zonda R (2009 год) — Mercedes-AMG M120 6.0 L — 750 л.с.
  • Pagani Zonda Tricolore (2010 год) — Mercedes-AMG M120 7.3 L — 670 л.с.
  • Pagani Zonda R Evoluzione (2011 год) — Mercedes-AMG M120 6.0 L — 760 л.с. 

Двигатели Mercedes-Benz — описание,обзор,виды,фото,видео. | НЕМЕЦКИЕ АВТОМАШИНЫ

 

О производителе

Mercedes-Benz Cars Group — сверхпопулярный производитель премиальных автомобилей, входит в концерн Daimler AG и так называемую большую немецкую тройку (вместе с Audi и BMW). Сам по себе бренд Мерседес является одним из самых дорогих и узнаваемых в мире. Кроме того, из ворот штутгартской компании выехали такие известные автомобили, как Mercedes-Benz 300SL, больше известный как «Крыло чайки», культовый Mercedes-Benz 600SEL (шестисотый), спортивный Mercedes-Benz SLR McLaren, нестареющий внедорожник Mercedes-Benz G-Class Gelandewagen и еще целый ряд популярных и всем известных автомобилей.
Учитывая все вышеприведенное, такой мощный автопроизводитель как Мерседес, просто обязан выпускать надежные двигатели, а вот как действительно с этим обстоят дела, вы узнаете ниже, в списке моделей.
Двигатели Мерседес это огромная линейка силовых агрегатов таких, как рядные 4-цилиндровые, пяти и шестицилиндровые, как рядной, так и V-образной конфигурации. Кроме того, производились моторы V8 и V12, для самых топовых и мощных автомобилей Mercedes-Benz. Кроме атмосферных версий производились моторы с наддувом: с компрессором, турбиной и twin-turbo. Для спортивных версий Mercedes-Benz, подразделением AMG, разрабатывались мощные версии моторов,

преимущественно V8 и V12. Кроме того, наряду с этим широчайшим рядом силовых агрегатов, выпускались и продолжают выпускаться также и дизельные двигатели Мерседес всех возможных конфигураций, любого рабочего объема и мощности.
Теперь не нужно искать разнообразные отзывы, все типы, маркировки, виды и модели двигателей Мерседес уже здесь: новые и старые, бензиновые и дизельные, атмосферники и компрессорные, обычные и AMG.
Выбрав свою модель, вы ознакомитесь со следующей информацией: какие двигатели ставят на Мерседес, их технические характеристики, описание, проблемы, неисправности (глохнет, стук, троит и др.) и ремонт, номера, ресурс и прочее.
Вместе с тем, имеется информация, какое масло в двигатель Мерседес лить, сколько масла требуется и как часто его нужно менять. В дополнении к этому, уделено внимание тюнингу двигателя Мерседес, как увеличить мощность без потери ресурса для городской эксплуатации и прочее.
Ознакомившись с имеющейся информацией, вы без труда определитесь, какой двигатель Мерседес самый надежный, а кому требуется замена мотора, легко решит, какой контрактный двигатель стоит купить.

Новое поколение двигателей Мерседес с инновационной технологией.

Инновационные? Как можно назвать бензиновые и дизельные двигатели инновационными? Многие экологи, эксперты и другие участники авторынка наверно недоумевают. Но это действительно так. Компания Мерседес представила новые двигатели с инновационными технологиями для обновленного S-класса, который будет выпускаться с 2017 года.

Странно? А как же электрические двигатели, о которых, наверное, уже сказано все, что только можно. Ведь по прогнозам экспертов и по планам ряда ведущих стран мира, дни двигателей внутреннего сгорания сочтены. Отчасти это так. Но есть одно но. В ближайшие годы массового рынка электрических автомобилей не ожидается.

Для того чтобы электрический транспорт вытеснил с рынка автомобили с ДВС скорее всего понадобятся десятилетия. И это независимо от того, что власти Западных стран хотят в ближайшее время избавиться от автотранспорта, работающего на двигателях внутреннего сгорания. Как бы этого не хотелось многим развитым странам, но пока популярность электрического транспорта не затмит бензиновые и дизельные автомобили, мы не увидим закат автотранспорта, работающего на традиционных двигателях внутреннего сгорания.

V8 Motor

Все новые двигатели Мерседес покрыты составом уменьшающего силу трения 

Именно поэтому компания Мерседес продолжает разрабатывать новые бензиновые и дизельные моторы для своих будущих моделей.

В итоге компания Мерседес представила пять новых двигателей ДВС, которые будут устанавливаться на автомобили S-класса с 2017 года.

Бензиновые двигатели 1.6, 1.8, 2.0 М 111 / М 271.

Краткое описание.

— 4-цилиндровый;

— 16-клапанный;

— многоточечный впрыск / прямой;

— компрессор или турбонаддув.

Mercedes довольно осторожно подходил к теме наддува бензиновых двигателей. Немцы сделали ставку на компрессор вместо турбины, чтобы обеспечить более плавный прирост мощности без неприятного эффекта «турбо лага». Результат был представлен в 1995 году в лице мотора М 111 с механическим компрессором, приводимым в движение обычным ручейковым ремнем. Семь лет спустя была показана его более современная версия – М 271.

Наибольшей распространение получила 1,8-литровая версия М 271 с многоточечной системой впрыска с различной степенью форсировки: от 122 до 192 л.с. В некоторых моделях применялась модификация с непосредственным впрыском топлива. Она производилась в период с 2003 по 2005 год и развивала мощность 170 л.с. Ее можно распознать по маркировке CGI.

Стремление к снижению емкости привело к созданию в 2008 году 1,6-литрового М 271 с компрессором. Его применение ограничилось С-классом W204 и не очень успешным CLC. Двигатель не имел прямого впрыска.

Последний вариант 1,8-литрового М 271 с непосредственным впрыском вместо компрессора получил турбонагнетатель. Этот двигатель развивал от 156 до 204 л.с.

Эксплуатация и типичные неисправности.

Износ компрессора.

В течение долгого времени за восстановление компрессора никто не брался, предлагая только менять. К счастью, сегодня механики освоили технологию его регенерации. Стоимость такой услуги – около 100-120 долларов, включая демонтаж и монтаж. Самой распространенной неисправностью компрессора является износ подшипников ротора, а также отказ муфты.

Если во время работы двигателя издается надоедливый вой, то значит пришло время вмешаться. Но будьте внимательны: точно такой же звук издают изношенные подшипники генератора. Вы можете купить б/у компрессор с разборки примерно за 300 долларов, ремонт муфты стоит около 500 долларов, а абсолютно новый агрегат обойдется в 1500 долларов. К сожалению, срок службы компрессора небольшой – чуть более 100 000 км.

Перескок цепи ГРМ.

Износ цепи ГРМ, к сожалению, происходит бессимптомно. Она может перепрыгнуть уже после 60-80 тыс. км. Жаль, что для привода ГРМ используется слабая однорядная цепь, к счастью ее замена не слишком дорогая – около 250 долларов. Неисправность касается только моторов М 271.

Утечка масла из регулятора фаз газораспределения.

Типичная неисправность старшего поколения двигателей М 111. Масло начинает стекать с электромагнитов, повреждая электрический жгут. Эффективное устранение дефекта – задача трудоемкая и, что самое плохое – не всегда выполнимая.

Применение двигателей 1.6-1.8 К / Т (М 111, М 271).

Эти моторы использовались только в автомобилях марки Mercedes. Они всегда располагались продольно спереди. Все моторы собирались только на одном заводе в Германии.

Mercedes E-класса W210: 06.1997-03.2002;

Mercedes E-класса W211: 11.2002-12.2008;

Mercedes C-класса W202: 10.1995-05.2000;

Mercedes C-класса W203: 05.2002-02.2007;

Mercedes C-класса W204: от 01.2007;

Mercedes CLK W208: 06.1997-06.2002;

Mercedes CLK W209: 06.2002-05.2009;

Mercedes CLC: 05.2008-06.2011;

Mercedes SLK R170: 09.1996-04.2004.

Заключение.

Если вы решитесь на Мерседес с компрессором, то обязательно выбирайте более новую версию М 271 и с самого начала будьте готовы вложиться на замену цепи. Преимущества двигателя 1.8 К – небольшой расход топлива. От старых версий М 111 лучше держаться подальше. В качестве альтернативы можно остановить свой выбор на атмосферном 2.0 16V или более позднем 2.4 V6.

Новые дизельные двигатели Мерседес с четырьмя и шестью цилиндрами

Кодовое обозначение новых четырех и шестицилиндровых дизельных двигателей Мерседес: OM 656

Естественно все новые моторы Мерседес 2017 года стали еще экономичнее и более мощней, по сравнению со своими предшественниками. Правда, для того чтобы добиться этих технических результатов инженеры применили при разработке силовых агрегатов совершенно разные технологии.

Новое поколение моторов Мерседес появилось на Мерседес Е-класса — модель E200 D.

Фактически новое поколение двигателей Мерседес начало вводиться с весны 2016 года, когда Немецкая марка представила новый двух литровый дизельный мотор для Е-класса. Этот двигатель потребляет на 13 процентов меньше топлива, чем предыдущий аналогичный силовой агрегат. Увеличение экономичности дизельного двигателя удалось достичь за счет меньшего веса блока силового агрегата, перенастройки программного обеспечения блока управления двигателем, а также за счет уменьшения трения в цилиндрах, благодаря новому особому покрытию «Nano Slide».

Новый же шестицилиндровый двигатель для S-класса обозначаемый под индексом OM 656, по сути, представляет увеличенную версию четырехцилиндрового мотора для Е-класса, который был представлен в начале 20016 года.

Совершенно новый шестицилиндровый дизельный мотор Мерседес, который будет устанавливаться на S-классе с 2017 года, имеет мощность 313 л.с. Напомним, что аналогичный двигатель прошлого поколения выдавал только 258 л.с.

Шестицилиндровый дизельный двигатель Мерседес 2017 года создан на базе четырехцилиндрового мотора OM 656, который устанавливается на Е200 d нового в кузове W213

Этот мотор использует аналогичную моноблочную технологию контроля выбросов, которая применяется в четырехцилиндровых силовых агрегатах, устанавливаемых на 2,0 литровых четырёхцилиндровых дизельных Е-классах.

 

Например, в шестицилиндровом дизельном двигателе инженеры Мерседес установили систему CAMTRONIC, которая ранее использовалась только на небольших силовых агрегатах. Эта система уменьшает время открытия впускных клапанов на небольших оборотах двигателя, что позволяет существенно экономить топливо.

Бензиновые двигатели:
Индекс Объем и мощность Годы выпуска Примечания
М102.922 1997 куб. см, 109 л.с. 1/1985—6/1993
М102.982 1997 куб. см, 132-136 л.с. 1/1984—6/1993
М102.963 1997 куб. см, 118-122 л.с. 6/1985—6/1993
М111.940 1998 куб. см, 129—136 л.с. 7/1993—5/1996 4 клапана на цилиндр
М111.960 2199 куб .см, 150 л.с. 9/1992—6/1996 4 клапана на цилиндр
М102.982 2299 куб. см, 132—136 л.с. 12/1984—6/1993
М103.940 2599 куб. см, 156—166 л.с. 6/1985—8/1992
М103.943 2599 куб. см, 166 л.с. 6/1985—8/1992 для версии 4Matic
М103.943 2599 куб .см, 156 л.с. 6/1985—8/1992 для версии 4Matic
М104.942 2799 куб. см, 193 л.с. 9/1992—6/1995 4 клапана на цилиндр
М104.980 2960 куб. см, 220 л.с. 1/1990—8/1992 4 клапана на цилиндр
М103.980 2962 куб. см, 180 л.с. 1/1985—6/1993
М103.983 2962 куб. см, 190 л.с. 8/1985—6/1993
М103.985 2962 куб. см, 177—188 л.с. 9/1986—6/1995 для версии 4Matic
М104.992 3199 куб. см, 211—231 л.с. 6/1992—6/1996 4 клапана на цилиндр
М119.975 4196 куб. см, 280 л.с. 7/1993—6/1995 V8, 4 клапана на цилиндр
М119.974 4973 куб. см, 326—333 л.с. 1/1991—6/1995 V8, 4 клапана на цилиндр

Дизельные двигатели
3,0 л OM606 2996 куб. см, 136 л.с., 7/1993- 2/1996 4 клапана на цилиндр
3,0 л OM603 2996 куб. см,109-147 л.с., 1/1985-3/1995 2 клапана на цилиндр
2,5 л ОМ605 2497 куб.см, 113 л.с., 7/1993-10/1995 4 клапана на цилиндр
2,5 л OM602 2497 куб. см,90-126 л.с., 5/1985-1/1996, 2 клапана на цилиндр
2,0 л OM601 1997 куб. см, 72-75 л.с., 1/1985-8/1995, 2 клапана на цилиндр
* С 1986 по 1993 годы каталитический нейтрализатор не входил в стандартное оснащение»

Дизельный двигатель 200-220 CDI – OM 611.

Рейтинг: ★★★☆☆.

Краткое описание.

— 4-цилиндровый;

— 16-клапанный;

— система впрыска Common Rail;

— турбонагнетатель;

— для автомобилей среднего класса и выше, фургонов.

В 1997 году в истории дизельных двигателей Mercedes произошли серьезные изменения: впервые был применен двигатель с непосредственным впрыском типа Common Rail. Он был использован в первом поколении Mercedes C-Class с кузовом универсал. Тогда же появилось обозначение CDI, которое используется и сегодня.

Двигатель получил маркировку ОМ 611. Он имеет 4 цилиндра и рабочий объем 2,2 литра. Первые образцы развивали 125 л.с. и 300 Нм крутящего момента. По сравнению с предшественником ОМ 604, новый агрегат получил прирост мощности на 30%, крутящего момента – на 100%, а расход топлива упал на 10%. Система впрыска работает при максимальном давлении 1350 бар. Изначально в двигателях устанавливался турбонагнетатель с постоянной геометрией, а с 1999 года начал применяться нагнетатель с регулируемым положением лопаток турбины. Также был немного уменьшен объем с 2151 до 2148 см3. Система газораспределения приводится в действие цепью, в головке находится два вала, на каждый цилиндр приходится по четыре клапана.

Семейство двигателей ОМ 611 имеет несколько различных модификаций. В легковых автомобилях (C и E-Class) применялся агрегат с маркировкой 200 CDI (102-115 л.с.) и 220 CDI (124-143 л.с.). Кроме того, есть вариации мощностью 82 и 102 л.с. для фургонов Vito, Viano и Sprinter, 122 л.с. – для Vito и Viano, и 129 л.с. для Sprinter.

В 2002 году с дебютом E-Class серии W211 – был введен 4-цилиндровый двигатель нового поколения ОМ 646 и его производные – 2,7-литровый ОМ 647 и 3,2-литровый ОМ 648. Несмотря на схожую конструкцию, около 80% компонентов новые.

270/320 CDI (OM 612 / OM 613).

Следующим направление развития семейства двигателей ОМ 611 стало увеличение количества цилиндров. 5-цилиндровый агрегат получил обозначение ОМ 612, а 6-цилиндровый – ОМ 613. Первый с маркировкой 270 CDI развивал от 156 до 170 л.с., а второй – 320 CDI 197 л.с. Следует упомянуть и про 3-литровую версию 612 ОМ мощностью 231 л.с., предназначенную для C 30 CDI AMG.

Эксплуатация и типичные неисправности.

Мерседесовские дизели предыдущего поколения славились своей невероятной выносливостью. Из-за более сложной конструкции порой возникали проблемы с ОМ 611. Просто большее число элементов имело и больше шансов сломаться. К счастью, серьезные неисправности происходили не слишком часто. Цилиндро-поршневая группа имеет высокую прочность. Турбина и двухмассовый маховик, как правило, выдерживают несколько сотен тысяч километров. Следует иметь в виду, что пробег автомобиля в объявлениях о продаже совпадает с реальным лишь в исключительных случаях. При выборе автомобиля с CDI необходимо руководствоваться оценкой технического состояния конкретного экземпляра.

Затрудненный запуск.

Как правило, связан с износом насоса высокого давления, реже с неисправностью системы впрыска – форсунки.

Впускной коллектор.

Во многих версиях мотора в системе впуска были установлены заслонки, закрытие которых приводило к увеличению турбулентности воздуха, поступаемого в цилиндры, что улучшало качество смешивания его с топливом. Неисправности этого элемента приводят к заметному снижению мощности двигателя и замедленному росту оборотов.

Термостат.

Двигатели CDI греются довольно медленно. Но если даже после нескольких десятков километров мотор так и не достигнет нужной температуры, то придется заменить термостат.

Применение ОМ 611.

4-цилиндровые моторы применялись в легковых автомобилях класса С и Е, и в микроавтобусах. 5-ти и 6-ти цилиндровые в более крупных моделях.

Mercedes C-класса W202: 09.1997-05.2000;

Mercedes C-класса W203: 05.2000-02.2007;

Mercedes E-класса W210: 06.1998-03.2002;

Mercedes V-класса: 03.1999-07.2003;

Mercedes Sprinter: 04.2000-05.2006.

Бензиновые шестицилиндровые двигатели Мерседес 2017 года

Новый бензиновый двигатель Мерседес теперь работает в новой 48-вольтовой электросети

Бесспорно, главное внимание экспертов и тем, кто интересуется новыми моторами Мерседес,  должно быть сосредоточено на новых бензиновых моторах. Особенно интересен V6 бензиновый силовой агрегат M256 , мощность которого теперь будет составлять 408 л.с. Крутящий момент более 500 Нм. Это стало возможным, благодаря применению технологий, которые ранее компания Мерседес использовала только на бензиновых моторах V8.

Благодаря инновациям, инженерам удалось снизить потребление топлива новых шестицилиндровых двигателей M256 на 15 процентов, по сравнению с прошлыми силовыми агрегатами, устанавливаемые на Mercedes S 400 (мощность 333 л.с.).

Mercedes-Benz V8-Biturbo-Benzinmotor, M176 ;
Mercedes-Benz V8-biturbo engine, M176;

Кстати в новом моторе между коленчатым валом и коробкой передач появился электромотор мощностью 20 л.с.

По сути, это интегрированный узел, представляющий собой генератор и стартер в одном компоненте (ISG). То есть когда это необходимо электромотор работает, как стартер и помогает двигателю достигать максимального крутящего момента в самом начале разгона, что обеспечивает автомобилю максимальную тягу на низких оборотах.

Также этот узел может работать как генератор, питая ряд важного оборудования автомобиля. Электромотор питается за счет энергии вырабатываемой при торможении, которая поступает в специальный аккумулятор.

Новые дизельные S-классы будут потреблять топлива менее 5 литров на 100 км

Каждый новый мотор Мерседес отличается многообразием различных технологий, которые сделали силовые агрегаты мощнее и гораздо экономичней своих предшественников. В среднем каждый двигатель стал на 5-10 процентов экономичней и на 5-15 процентов мощнее.

Наиболее эффективным на сегодняшний день является дизельный двигатель мощностью 258 л.с., который устанавливается в настоящий момент на Мерседес S350 d. Так эта модель имеет средний расход топлива в 5,3л/100 км. пути.

Новый же шестицилиндровый дизельный двигатель, который начнет устанавливаться на S-классе с 2017 года, будет расходовать менее 5 литров на 100 км.

V8 Biturbo AMG бензиновый двигатель Mercedes мощностью 476 л.с.

Двигатель M 176. Новый твин-турбо бензиновый мотор V8 объемом 4,0-литра мощностью 476 л.с

Последним новым двигателем, который вводит компания Мерседес является мощный V8 Би-турбо AMG силовой агрегат объемом 4,0 литра мощностью 476 л.с. с максимальным крутящим моментом в 700 Нм. Кодовое обозначение мотора M 176.

 

Новый мотор заменит 4,8 литровый двигатель V8 мощностью 455 л.с. Несмотря на повышение мощности, новый 4,0 литровый восьмицилиндровый двигатель будет на 10 процентов экономичней своего 4,8 литрового предшественника.

Это стало возможным благодаря технологии CAMTRONIC (система оптимизации открытия и закрытия клапанов), которая применяется в шестицилиндровых дизельных моторах. Кроме того, в новом восьмицилиндровом двигателе для экономии топлива применяется система дезактивации цилиндров (отключаются второй, третий, пятый и восьмой цилиндр). Этот режим активен только в режиме «Комфорт» и «Есо» при 3250 оборотах двигателя в минуту.

Новый двигатель 2017 Mercedes-Benz S-class под индексом M256

Двигатели фольксваген: описание,характеристики,виды,фото,видео.
Ниссан двигатели: мотор 1.0-1.4 (CR),двигатели 1.2-1.6,двигатели 1.6-2.0 (MR).
Двигатели ваз: описание,фото,видео,классические модели.
Гибридные двигатели в авто: устройство,принцип,первый гибридный мерседес,фото.
Фольксваген добавляет новые бензиновые двигатели на Пассат и тигуан
Как изготавливают двигатели для БМВ в Китае — видео
Автомобильные двигатели. Описание и технические термины.
Двигатели бмв маркировка описание обзор фото видео
Двигатели ауди описание обзор фото виды видео характеристики
Двигатели опель — описание обзор маркировка ремонт фото видео
Двигатель порше: описание,устройство,история развития,фото,видео.
Двигатель: описание,виды,устройство,работа,фото,видео.

ПОХОЖИЕ СТАТЬИ:

  • Коллекция автомобилей Дональда Трампа 2019 (+ бонусные самолеты и вертолет)
  • Мерседес Гелендваген: фото,видео,обзор,описание,комплектация.
  • Mercedes- CLA Coupe 2019 года: описание,обзор,фото,комплектации,характеристики
  • 4Matic — полный привод мерседес-бенц
  • История создания MERCEDES-BENZ — как все начиналось
  • BMW Group инвестирует 200 миллионов евро в аккумуляторную батарею
  • Mercedes: Топ-7 самых дорогих марок и моделей
  • Audi RS Q8 с мощным Twin-Turbo V8
  • Коллекция автомобилей Пэрис Хилтон 2019 — какими авто она владеет?
  • Лучшие новые авто 2019 г: 5 авто выхода которых мы ждем
  • 2018 Mercedes-AMG S63: технические характеристики,описание,фото,видео.
  • 10 Автомобилей под управлением голливудских звезд
  • Ауди a3 8l технические характеристики описание обзор фото видео комплектация
  • Мерседес 190: технические характеристики,обзор,описание,фото,видео
  • Вmw m5 e60 технические характеристики описание фото видео обзор

Нужно ли прогревать двигатель зимой перед поездкой – Рассуждения на тему нужно ли прогревать двигатель зимой перед поездкой или действовать в соответствии с инструкцией по эксплуатации

  • 29.07.2019

Нужно ли прогревать двигатель перед поездкой зимой и летом

Здравствуйте, дорогие друзья! Сегодня на улице с утра оказалось достаточно холодно, в связи с чем перед поездкой я по привычке, как меня учил еще дед, начал прогревать мотор на холостом ходу. И тут возникла мысль рассмотреть более подробно вопрос о том, нужно ли прогревать двигатель на автомобиле зимой в морозы и летом перед поездкой.

Согласитесь, вопрос актуальный и вызывает много споров. Одни утверждают, что на современных автомобилях совершенно не требуется прогревать силовые агрегаты. Другие же уверены, что вне зависимости от машины, двигатель обязательно нужно разогреть перед поездкой. Причем неважно, инжекторный он, с турбиной, дизельный двигатель или бензиновый. Также не играет роли наличие АКПП или МКПП, то есть машины на автомате и механике находятся в одинаковых условиях.

прогрев двигателя

Что говорят противники прогрева

Есть мнение экспертов и простых автолюбителей, выступающих против необходимости прогрева моторов перед поездками зимой и летом.

В качестве аргументов они приводят следующие факты:

  • прогревая машину на холостом ходу, вы вредите экологии, поскольку смесь становится слишком обогащенной и не полностью сгорает;
  • из первого пункта вытекает еще один довод — растет расход топлива;
  • с помощью современных технологий и материалов, включая моторные и трансмиссионные масла, нынешние автомобили можно эксплуатировать с ходу без прогрева;
  • изнашивается системы выпуска выхлопа, повышается уровень загрязнения свечей зажигания и масло плохо прогревается.

нужно ли прогревать двигатель

С этим все понятно. Доводы выглядят достаточно убедительно. Но нужно рассмотреть вопрос полноценно.

Поставив цепи и браслеты зимой на колеса, хорошо нашим дорогам вы не сделаете. Но первоочередным является вопрос вашей безопасности.

Я не буду вдаваться в подробности физико-химических процессов, которые происходят в двигателе. Но вы сами знаете, что при низких температурах металл сжимается. Также масла обладают определенной вязкостью. Чем ниже температура, тем более густыми они становятся. Поскольку двигатель и коробка не прогреты, вязкая жидкость не полностью обволакивает трущиеся детали, неравномерно распределяется по узлам, что приводит к быстрому износу и возможным поломкам. Подняв обороты еще выше, когда вы начинаете трогаться, износ увеличивается многократно.

Даже сами автопроизводители ограничивают обороты мотора в режиме прогрева, что уже подразумевает необходимость этого процесса перед поездками.

прогревать двигатель зимой и летом

Что делать летом

То есть вы уже понимаете, что прогревать машину зимой можно и даже нужно. А что делать при плюсовой температуре? При таких условиях масло остается текущим, неплохо обволакивает поверхности и не загустевает.

Делаем вывод, что летом прогревать машину не нужно? Нет. Прогрев нужен и в летний сезон. Это необходимо для распределения по системам всех рабочих жидкостей. Вам не придется стоять и крутить мотор на холостых 5-15 минут, как зимой. Но буквально 1-3 минуты подогреть двигатель до 40-50 градусов стоит. Особенно это актуально для автомобилей на автомате, то есть с АКПП.

прогрев мотора летом

Возможные проблемы

То, что перед заменой масла двигатель прогревается до рабочей температуры, знает практически каждый, кто хоть раз занимался подобным вопросом. Это позволяет придать ему текучесть, собрать осадок из картера и в полной мере слить.

Если машине не ездит некоторое время, либо даже просто постояла ночью в гараже или на стоянке, перед поездкой вам стоит прогреть ее. При игнорировании этой рекомендации возможно появление серьезных проблем. И не важно, Киа Рио у вас, БМВ или ВАЗ 2110.

прогревать мотор

Соглашусь с теми, кто указывает на отсутствие информации о прогреве мотора в официальных руководствах по эксплуатации к современным автомобилям. Это актуально для иномарок. Объясняется такая ситуация просто. Большинство импортных авто адаптированы под относительно умеренную температуру, которая зимой редко опускается ниже -10 градусов. В России же зимой стабильно столбик термометра преодолевает -10 и стремительно ползет вниз. Увы, соответствующие правки в руководствах по эксплуатации автопроизводители не делают.

По факту, если машину не прогревать, это приводит к определенным проблемам и дальнейшим поломкам.

прогрев мотора зимой летом

Моторное масло

Масло в двигателе и коробке передач напоминает кровь, циркулирующую в человеческом организме. Только когда мотор выключается, вся смазка начинает стекать в поддон. Чем дольше машина стоит, тем меньше на деталях остается масла.

Весной, летом и осенью, когда температура воздуха достаточно высокая, для запуска мотора и распределения масла по системе достаточно 1-2 минут прогрева. Старайтесь не трогаться с места раньше, чем через 30 секунд после пуска ДВС.

масло прогрев двигателя

Зимой ситуация сложнее, поскольку из-за простоя масло приобретает более густую консистенцию. Запуская двигатель, вы должны дать ему время нагреть масло, сделать его жидким и позволить распространиться по системе. На это уходит больше времени.

Если это не делать, увеличится износ деталей КПП и мотора, возникнут опасные поломки вплоть до необходимости капитального ремонта.

Масляный фильтр

Фильтр служит для задержки разного мусора от моторного и трансмиссионного масла. Когда жидкость вязкая, ей сложно проходить через фильтрующие элементы.

Если же масло не проходит через фильтр, начинает открываться перепускной клапан. В этом случае масло проникает в мотор без фильтрации. Соответственно, металлическая стружка, частицы нагара и прочий мусор оказывается в движке. Он быстро загрязняется, начинает плохо работать, расходовать много масла и топлива. Ничего хорошего, как вы понимаете.

масляный фильтр прогрев мотора

Компрессионные и маслосъемные кольца

Когда двигатель не прогрет, увеличивается вероятность повреждения этих колец, которые располагаются на проточках поршней силовой установке. Эти кольца нужны, чтобы удалять излишки масла и создавать компрессию. Следовательно, на них возложена серьезная функция.

С момента старта несколько секунд мотор работает при повышенных оборотах, которые затем падают. Это обусловлено ходом цилиндров. Прогрев установку, металл цилиндров расширится, что позволит освободить кольца от компрессии. Параллельно элементы силового агрегата лучше смазываются маслом.

Не прогревая мотор и отправляясь в дорогу, вы рискуете износить кольца и нанести ущерб цилиндрам. Ремонтировать их сложно и дорого.

прогрев двигателя перед поездкой

Датчик масла

Многие владельцы современных автомобилей сталкивались с ситуацией, когда ломался масляный датчик. Скажу сразу, что в основном это происходит из-за движения на непрогретом моторе.

Из-за воздействия очень густого масла датчики из пластика попросту повреждаются. И тут бортовой компьютер начинает сигналить вам о том, что в картере мало масла, хотя по факту вы просто сломали датчик.

Я сам сравнительно недавно поменял на прогрев авто взгляд, поскольку часто игнорировал рекомендации и трогался буквально сразу после пуска.

прогревать двигатель или нет

Сколько прогревать

Никто не будет спорить с тем фактом, что прогрев просто необходим для эффективной, безотказной и грамотной работы силовой установки и всего автомобиля.

Если машина не ездит некоторое время, пусть даже под капотом стоят современные 1,8 TSI, отказываться от прогрева не стоит. Но длительность зависит напрямую от того, какая температура за бортом.

Когда автомобиль был заглушен несколько минут назад, и вы опять садитесь за руль, чтобы куда-то ехать, разогревать его заново не нужно. Мотор и так находится в пределах рабочих температур.

прогрев мотора летом зимой

В случае длительного простоя, как показано на множестве роликов в ютуб, прогревать двигатель нужно исходя из температуры:

  • Если за бортом ниже -30 градусов, тогда на прогрев будет уходить 10-15 минут;
  • При температурном диапазоне от 10 до 30 со знаком минус, хватит и 7-10 минут;
  • Если на улице от -10 до +10 градусов Цельсия, рекомендуется прогреть силовой агрегат в течение 4-7 минут;
  • Когда температура воздуха более 10 градусов тепла, не тратьте на прогрев больше 1-3 минут.нужно ли прогревать мотор зимой и летом

При сильных морозах есть смысл приобрести и поставить предпусковой подогреватель. Но актуален только для регионов с наиболее суровыми зимами.

Так почему же автопроизводители часто не рекомендуют прогревать двигатели на их машинах? Это объясняется предельно просто. Температура в странах, где производится большинство ввозимых в Россию иномарок, редко падает ниже 10 градусов мотора. Именно этим обусловлены такие нюансы в руководствах по эксплуатации. Хотя они же отмечают, что автомобилю хватит 1-2 минут для распределения масла по системе, необходимого для безопасного начала двигателя.

прогревать двигатель зимой перед поездкой

Поскольку мы живем в стране, где зимы очень суровые, для нас такие правила не действуют. Так что не бойтесь прогревать свой автомобиль после длительного простоя перед поездками. Это не рекомендация, а даже необходимость. В противном случае вам мотор постепенно начнет изнашиваться, что закончится серьезными поломками и дорогостоящим ремонтом.

Не забывайте ставить на машину хорошие шипы или липучку, а также оснащать автомобиль специальными зимними щетками стеклоочистителя.

Спасибо вам за внимание! Подписывайтесь, оставляйте свои отзывы, пишите комментарии и задавайте вопросы. Не забывайте рассказывать о нас своим друзьям!

Необходимость прогрева автомобиля зимой перед первой поездкой

Нужно ли прогревать машину зимой перед поездкой

При всей открытости вопроса о необходимости прогревать двигатель в зимнее время, следует заметить, что у непрогретого мотора снижается такой важный показатель, как износостойкость. Также при низком температурном режиме сгущается масло. Это, естественно, затрудняет процесс доступа масла к деталям. Ходовая в результате начинает работать с меньшим качеством.

Получается, что машину зимой следует обязательно прогревать. Тогда она будет служить долго. Автомобили, которым уже 10 лет и более, требуют также и более длительного прогревания. Современным моделям достаточно буквально нескольких минут, чтобы двигатель достиг необходимой производительности. Чтобы окончательно закрыть вопрос о необходимости зимнего прогревания транспортного средства, суммируем аргументы за:

  • масло резко теряет свои полезные свойства при низких температурах. Так как оно густеет, то не происходит качественной смазки деталей;
  • повышается расход горючего. Это естественная реакция на то, что топливовоздушная смесь и окружающая среда сильно разнятся в температуре;
  • холод вызывает изношенность зазоров. Они отклоняются от нормы и на больших оборотах изнашиваются;
  • обзорность снижается. Это не удивительно, ведь стекла покрыты слоем инея, а, следовательно, повышается риск ДТП.

Прогреваем мотор правильно

Неправильный прогрев двигателя резко уменьшит его ресурс. Вот почему подход в этом вопросе должен быть взвешенным и грамотным. Необходимо твердо, в режиме раз и навсегда, усвоить порядок прогревания автомобиля. Алгоритм проведения операции следующий:

  • начинаем всегда с аккумулятора. Он не должен из-за мороза терять свои свойства. Чтобы нагрузить аккумулятор достаточно на 10-15 секунд включить свет дальних фар. За это время электролит сможет достаточным образом прогреться;
  • отключаем дальний свет на 30 секунд, чтобы восстановить АКБ;
  • процесс прогрева двигателя, опытные водители знают, можно ускорить, если снаружи закрыть радиатор, например, набросив на него войлок;
  • теперь запускаем мотор;
  • при механической КПП следует «утопить» педаль сцепления и 2 минуты подержать, чтобы разогреть масло;
  • если машина, после проведенных операций, не завелась, то берем паузу в 2 минуты. Это необходимо, чтобы восстановить аккумулятор. Обязательно контролируйте такой момент – стартер не должен вращаться более 20 секунд. Излишнее усердие в данной ситуации полностью неуместно. В том случае, когда машина опять не завелась, необходимо перейти к поиску неисправности;
  • если мотор благополучно и быстро завелся, включайте сразу печку. Теплый воздух заполнит салон и пойдет в район лобового стекла. Это избавит вас от микротрещин, которые появляются между кузовом автомобиля и лобовым стеклом;
  • некоторое время движение должно происходить на скорости не более 40 км/ч. Двигателю надо дать хорошенько разогреться. После 5 км. дороги функции автомобиля будут полностью готовы к обычному скоростному режиму.

Не поддавайтесь на распространенные в водительской среде заблуждения

Прогрев автомобиля зимой

Среда автолюбителей рождает множество вредных мифов. Они неизвестно откуда берутся и очень стойко, можно сказать, что даже весьма бойко, распространяются. Вопросы прогрева двигателя, к сожалению, не стали исключением. Мы собрали эти мифы и постараемся их развенчать:

  1. Разоблачение 1. Есть псевдоправильное мнение, что прогрев автомобиля на холостом ходу вызывает большой расход горючего. Никто не спорит, что перерасход будет. Но только в том случае, когда машина прогревается минут 30. А за 3 минуты прогрева расход минимальный. Это с лихвой окупится исправно работающими механизмами;
  2. Разоблачение 2. Ряд водителей уверены, что двигатель прогревать вредно. От этого на клапанах образуется смоляной налет. Это не совсем так. И этот налет не выведет двигатель из строя. А вот у не прогретой машины ломаются турбины. Вред очевиден;
  3. Разоблачение 3. И без прогрева мотор зимой можно спокойно ездить. Также вредный миф. Очень быстро при таком подходе поршневая приходит в негодность. А еще плохое испарение топлива приведет к возникновению конденсата и, как следствие, коррозии. А еще конденсат, содержащий большое количество серы, попадает в машинное масло. Это выводит из строя фильтры.

Важно помнить, что принципиально схема прогрева мотора не должна меняться, в зависимости от того, как подается топливо. Имеется в виду с помощью карбюратора или инжектора.

Когда запускается двигатель автомобиля, который в качестве горючего использует дизельное топливо, то следует помнить, что оно выпускается 3-х видов:

  • летнее горючее – температура окружающей среды от +1;
  • зимнее горючее – температура окружающей среды от 0 и до -30;
  • арктическое горючее – для северных широт.

Невозможность запустить машину часто вызвана использованием летнего горючего зимой.

Подводим итоги

Volkswagen Golf в снегу

Грамотный, терпеливый и обстоятельный подход к проблеме прогревания автомобиля в холодное время года безусловно позволяет значительно продлить срок эксплуатации двигателя. И это не удивительно, потому что механизмы не будут подвержены быстрому и неэффективному изнашиванию. Вместе с тем, следует помнить, что мера в этом деле тоже нужна. Прогревая двигатель, не стоит увлекаться, иначе можно переусердствовать.

Если у вашего автомобиля имеется бортовой компьютер, то совсем нетрудно будет определяться с тем моментом, когда процесс прогрева стоит завершать. Когда электроника отсутствует, а присутствует карбюраторный мотор, то разогрев масла отслеживают по стрелке датчика температуры. Визуально будет видно, как она сдвинется. При этом понизятся обороты холостого хода. О полном завершении процесса прогрева двигателя свидетельствует поднятие температуры до показателя в 50 градусов. Не увлекайтесь и не старайтесь резко увеличивать обороты. Это не рекомендовано. Разгон грамотно набирать только после того, как охлаждающая жидкость прогреется не менее чем до 80 градусов.

Видео

Поделитесь с друзьями!

положительные и отрицательные стороны прогрева

progrev dvigatelyaЭксплуатация автомобиля в российских реалиях подразумевает, что ему предстоит работать на протяжении нескольких месяцев при минусовой температуре. Практически каждый водитель знает правило, что зимой перед поездкой машину необходимо в течение нескольких минут прогреть. Многие водители и летом дают мотору некоторое время поработать, перед тем как отправляться в поездку. Но действительно ли современные двигатели обязательно прогревать перед поездкой?

Производители автомобилей в книге по технической эксплуатации часто указывают, что мотор, установленный в машине, прогревать не требуется. По их словам, данная процедура является бессмысленной тратой топлива, а во многих странах длительная работа мотора на холостом ходу, особенно в жилых кварталах, вовсе запрещена. Выходит, что прогрев двигателя автомобилю не нужен? Нет, все нет так просто, и в рамках данной статьи мы предлагаем рассмотреть, зачем прогревать двигатель, и что будет, если этого не делать перед поездкой.

Возможные проблемы при эксплуатации непрогретого двигателя

Руководство по технической эксплуатации автомобиля, выпущенное производителем, не всегда содержит актуальную информацию для региона, где эксплуатируется машина. В России продается множество иномарок, но техническую литературу по ним не всегда адаптируют к реалиям нашей страны. Не прогревая двигатель перед поездкой, водитель рискует приблизить необходимость капитального ремонта мотора максимально. Рассмотрим подробно, почему необходимо прогревать двигатель перед поездкой.

Температура моторного масла

rabota-motornogo-maslaО том, что масло необходимо своевременно менять, знает каждый водитель, но не все понимают, каким образом смазывающий элемент действует в двигателе. Во время работы мотора масло «бегает» по нему, словно кровь по организму человека. Когда двигатель останавливается, масло стекает в поддон, и на элементах мотора остается лишь небольшая масляная пленка. Чем дольше двигатель не заводится, тем меньше эта пленка, и тем опаснее отправляться в поездку без прогрева двигателя.

В теплое время года, чтобы моторное масло после старта двигателя разошлось по каналам и начало выполнять свою работу, ему требуется около 30 секунд. Поэтому в первые 30 секунд после пуска мотора отправляться в поездку нельзя даже летом. Зимой же ситуация усугубляется, поскольку за время простоя масло становится густым из-за низкой температуры, и ему требуется дополнительное время, чтобы пройти полный смазочный круг и войти в рабочую температуру.

Если не прогревать моторное масло, повышается не только износ, но и велик риск критической поломки узла двигателя, из-за которой потребуется немедленный ремонт.

Работа масляного фильтра

nushno li progret dvigatelЧтобы задерживать микрочастицы нагара, стружку, а также другой мусор, накопившийся в моторном масле, в автомобиле устанавливается фильтр. Основная рабочая зона фильтра – это бумага с микропорами, через которую проходит масло. В бумаге задерживается мусор, и чем менее вязкое масло, тем проще ему проходить сквозь фильтр.

Когда моторное масло не может пройти через фильтрующий элемент, открывается перепускной клапан, и масло без фильтрации направляется в двигатель. Таким образом грязь поступает в двигатель, и если в этот момент начать двигаться на автомобиле, износ агрегатов двигателя будет максимальным.

Прогрев двигателя для хорошего прохождения масла необходим как в теплое, так и в холодное время года. При температуре ниже минус 10 градусов по Цельсию рекомендуется прогревать автомобиль минимум 10 минут, чтобы масло стало менее вязким и хорошо фильтровалось.

Маслосъемные и компрессионные кольца

Если начать движение автомобиля на непрогретом двигателе, возникает высокий риск повреждения маслосъемных и компрессионных колец, расположенных на проточках поршня. Как известно, кольца установлены в двигателе для снятия излишек масла и создания компрессии. При работе на них приходятся серьезные нагрузки, поскольку они трутся о стенки цилиндров.

nushno li progrevat dvigatel

Многие водители замечали, что в течение нескольких секунд после старта мотора он работает на повышенных оборотах, которые через некоторое время опускаются. Связано это именно с ходом цилиндров двигателя. При прогревании цилиндры, как и любой металл, расширяются на несколько микрон, за счет чего освобождаются из-под сжатия кольца. В этот же момент элементы двигателя начинают более эффективно смазываться.

Не прогрев цилиндры двигателя перед стартом движения, водитель рискует повредить не только кольца, но и цилиндры.

Гидрокомпенсаторы и гидронатяжители

nushno li progrevat dvigatelКорректируют работу клапанов двигателя современных автомобилей гидрокомпенсаторы и гидрпонатяжители, необходимые для натяжения цепи. Для работы в элементы должно закачаться масло, что происходит после его прогрева до рабочей температуры. Если начать движение автомобиля не разогрев смазку, корректироваться зазоры будут с малой эффективностью.

Выход из строя датчика масла

Актуальной для современных автомобилей проблемой является выход из строя датчиков масла при работе непрогретого двигателя. Пластмассовые датчики под давлением густого масла повреждаются, если начать движение, и автомобиль начинает сигнализировать о недостатке смазывающей жидкости в поддоне.

Данная проблема актуальна для машин, в которых устанавливаются датчики масла в пластмассовом корпусе. Если элемент выполнен по большей части из металла, неисправность может не наблюдаться.

Почему производители автомобилей не рекомендуют прогревать двигатель

progrev-dvigatelya-nujno-li-progrevat-avtomobil0Как можно видеть, сразу несколько элементов мотора рискуют повредиться или выйти из строя, если начать движение на непрогретом двигателе. Но чем выше температура окружающего воздуха, тем меньше нужно прогревать мотор. Производители автомобилей, не рекомендуя прогрев двигателя, говорят именно о долгой стоянке с рабочим мотором, из-за которой повышается расход топлива и загрязняется окружающая среда. Только с целью защиты экологии водителям не рекомендуется заниматься прогревом двигателя перед поездкой, на самом моторе негативно прогрев не сказывается, если правильно работает вентилятор радиатора охлаждения.

Сколько греть автомобиль зимой и летом

Прогрев двигателю необходим для грамотной работы, и с этим сложно спорить. В зависимости от температуры окружающего воздуха на прогрев мотора может уходить разное время:

  • Ниже -30°C. Прогревать двигатель необходимо от 10 до 15 минут, чтобы моторное масло «разогрелось» до рабочей температуры;
  • От -10°C до -30°C. Можно ограничиться прогревом мотора в 7-10 минут;
  • От +10°C до -10°C. Достаточно прогрева автомобиля в 4-7 минут;
  • Выше +10°C. Требуется прогрев не более 1-3 минут, чтобы моторное масло разошлось по двигателю и дошло до рабочей температуры.

В зарубежных странах, где производится большинство иномарок и для которых составляются инструкции, температура редко опускается ниже –10°C. Именно поэтому производители не рекомендуют прогревать двигатель перед поездкой, тем самым отмечая, что достаточно пары минут работы мотора, чтобы по нему разошлось масло, и можно было начать движение. В России, где температура часто опускается значительно ниже -10°C, эксплуатация двигателя без предварительного прогрева приведет к его выходу из строя.

progrev-dvigatelya-nujno-li-progrevat-avtomobil0 Загрузка…

Рассуждения на тему нужно ли прогревать двигатель зимой перед поездкой или действовать в соответствии с инструкцией по эксплуатации

Споры о том нужно ли прогревать двигатель зимой если машина стоит на улице ведутся еще с прошлого века. В связи с чем этот вопрос не теряет своей актуальности? Прежде всего, это связано с возможностью эксплуатации современных автомобилей «на холодную».

до какой температуры нужно прогревать двигатель зимой

Большинство автолюбителей со стажем управления первыми моделями Жигулей помнят,  что двигаться на них при непрогретом двигателе, даже в холодный летний день, было проблематично. Пока стрелка индикатора температуры двигателя не переваливала во вторую половину шкалы, движение имело «дергающийся» характер. При малейшем нажатии на педаль акселератора двигатель захлебывался. Прогрев двигателя Жигулей был правилом, которое соблюдали практически все водители.

Видео — надо ли прогревать двигатель автомобиля зимой:

Нужно ли прогревать двигатель зимой перед поездкой у иномарок  и на современных отечественных автомобилях? Если да, то как правильно это делать и в каком режиме? Давайте разберемся.

Какие режимы эксплуатации ДВС нарушаются, если не прогревать двигатель зимой

  1. Вязкость автомобильного масла в двигателе.

Большинство автолюбителей в зимний период эксплуатации современного автомобиля заливают синтетическое или полусинтетическое масло. Эта смазка сохраняет свои свойства при температурах до минус 35 градусов Цельсия.

Какова будет вязкость при меньших температурах (а это случается в некоторых регионах России), определить сложно. Не факт, что смазка будет поступать в узлы двигателя с требуемой эффективностью.

Таким образом, эксплуатация двигателя, особенно с повышенными нагрузками, может привести к преждевременному износу элементов двигателя. Учитывая, что сейчас много двигателей — миллионников, небольшое снижение ресурса может быть незаметно, но все же есть резон не насиловать силовой агрегат.

  1. Компрессия в цилиндрах.

Из школьного курса физики известно, что при снижении температуры геометрические размеры металлических деталей также уменьшаются. Это относится и к блоку цилиндров. Многие водители автомобилей с «подгулявшими» движками отмечают, что зимой они легче схватывают во время запуска.

Действительно, в результате уменьшения физических размеров цилиндров компрессия увеличивается, что способствуют запуску двигателя. С одной стороны это хорошо для старых двигателей.

А каково новым движкам? В случае уменьшения диаметра цилиндра, кольца поршней будут усиленно растачивать цилиндр, в конечном счете, уменьшая компрессию. Конструкторы предусматривают этот момент, но дополнительная нагрузка на двигатель может свести к нулю их усилия.

  1. Состояние антифриза.

Антифриз при экстремально низких температурах не замерзает, но превращается в слегка кристаллизованную массу, имеющую меньшую текучесть. Через тонкие патрубки и трубки такая масса передвигается медленнее.

Во-первых, это создает дополнительную нагрузку на помпу (особенно, на повышенных оборотах). Во-вторых, может привести  к нарушению теплового режима двигателя, медленному прогреву радиатора печки салона.

Видео — эксперимент, показывающий сколько времени нужно прогревать машину зимой до температуры +30 градусов:

Ехать в непрогретом салоне автомобиля неприятно и опасно. В дополнение можно отметить, что качество антифриза не всегда соответствует заявленному на упаковке.

  1. Изменение физических свойств дизельного топлива.

Дизельное топливо может парафинизироваться. При этом оно прекращает поступление в цилиндры, прекращая свое путешествие в топливопроводах, фильтрах, инжекторах. Чаще всего это происходит во время движения. При этом температура топливопровода при обдуве встречным воздухом может быть значительно меньше, чем окружающего воздуха.

Во многих  дизельных авто используется режим «обратки» для подогрева топлива в баке. Даже незначительное поступление теплого топлива в бак может предотвратить парафинирование топлива, непредвиденную остановку в пути.

Видео — рассуждения о том, нужно ли прогревать двигатель зимой перед поездкой у иномарок и современных отечественных авто:

На какие системы автомобиля влияет отсутствие предварительного прогрева двигателя зимой

Автомобиль это не только двигатель. Есть много других систем, не менее важных для эксплуатации автомобиля.

 

  1. Механическая коробка переключения передач.

Неправильно считать, что для нее не имеет принципиального значения прогрев двигателя. В большинстве легковых автомобилей она находится в подкапотном пространстве, и также прогревается при работе двигателя.

Определяющим является факт, что многие автолюбители редко производят регламентную замену масла, промывку МКПП. За время эксплуатации физические свойства масла могут кардинально измениться. Прогрев масла перед эксплуатацией коробки помогает распределить его по механизмам МКПП, следовательно, увеличить ее ресурс.

  1. Автоматическая коробка переключения передач.

Исторически сложилось так, что большинство производителей АКПП расположены в странах, куда экстремальные холода не добираются. Есть комплектации автомобилей, предназначенные для холодных стран, в том числе, и адаптированные АКПП.

В пользовании российских автолюбителей находятся все варианты. В основе управления большинства моделей АКПП – взаимодействие устройств и узлов посредством каналов передачи давления масла. То есть, от его (масла) состояния напрямую зависит работа автоматической КПП. С этой точки зрения прогрев – необходимость поддержания АКПП в рабочем состоянии.

  1. Система комфорта.

В тех моделях автомобилей, где имеется высококачественная система комфорта, дистанционный прогрев транспортного средства заложен априори. От прогрева стекол, посадочных зон, лобового стекла зависит здоровье и безопасность водителя и пассажиров.

  1. Работа электрооборудования.

Электрические и электронные системы очень чувствительны к низким температурам. Замерзшая изоляция теряет свою эластичность. Если она в замерзшем состоянии будет перемещаться или подвергаться тряске, возможен обрыв проводников.

При резком перепаде температур происходит обильная конденсация. Избыточная влага попадает в электронные устройства, приводя их в негодность.

Отрицательное влияние движения на непрогретом двигателе могут проявляться в системе торможения, подвески.

Видео — как правильно прогревать двигатель зимой и почему:

Многие автолюбители руководствуются отдельными советами, в которых указано, что можно сразу после запуска двигателя в холодную погоду приступать к движению, если этот маневр не связан с дополнительными перегазовками, нагрузками на двигатель. Это имеет рациональное зерно, но только в пределах прямолинейного участка по двору, например, чтобы отъехать от подъезда, где живут привередливые соседи.

В условиях города трудно представить, что можно равномерно двигаться в течение трех-пяти минут для прогрева двигателя.

Видео — нужно ли греть двигатель зимой:

Общие советы по прогреву двигателя

Если вы проживаете в многоэтажном доме, либо автомобиль хранится на стоянке, зимой предварительный прогрев двигателя связан с ожиданием на холоде. На этот случай рационально установить дистанционную систему автозапуска. Затраты на установку окупятся достигнутым комфортом, экономией времени и средств на ремонт машины.

Стандартное ориентировочное время прогрева для различных климатических условий:

  • от 0 до минус 10 градусов Цельсия – 2-3 минуты;
  • от минус 10 до минус 20 градусов Цельсия – 3-5 минут;
  • от 20 до минус 35 градусов Цельсия – 5-10 минут.

Рассчитано, что во время прогрева автомобиля выполняется меньшее загрязнение окружающей среды и расход топлива, чем при движении на непрогретом двигателе.

Если отвечать на вопрос — до какой температуры нужно прогревать двигатель зимой, то можно посоветовать руководствоваться показаниями индикатора температуры двигателя, движение можно начинать, когда его показания будут на уровне около +40-500 С.

до какой температуры нужно прогревать двигатель зимойЕсли выбираете бустер для запуска двигателя посмотрите о каких нюансах при этом следует знать.

Какие виды толщиномеров ЛКП бывают и как они работают.

Читайте про каршеринговый автомобиль https://voditeliauto.ru/poleznaya-informaciya/online/carsharing.html что это такое и как им пользоваться.

Видео — как прогревать двигатель зимой:

Может заинтересовать:

до какой температуры нужно прогревать двигатель зимой
Сканер для самостоятельной диагностики автомобиля

Добавить свою рекламу

до какой температуры нужно прогревать двигатель зимой
Как быстро избавиться от царапин на кузове авто

Добавить свою рекламу

до какой температуры нужно прогревать двигатель зимой
Что дает установка автобаферов?

Добавить свою рекламу

до какой температуры нужно прогревать двигатель зимой
Зеркало видеорегистратор Car DVRs Mirror

Добавить свою рекламу

Нужно ли прогревать двигатель перед поездкой

Продлить эксплуатационный срок своего автомобиля и как можно дальше отодвинуть возможный ремонт двигателя – к этому стремятся многие автовладельцы. Регулярное прохождение ТО, применение рекомендованных смазочных материалов – всё это положительно сказывается на техническом состоянии машины. Но есть еще один момент, вызывающий извечные споры: прогрев двигателя. Мнения кардинально различаются. Одни считают, что это делать просто необходимо, другие кивают на инструкции к авто и мнение производителей, не рекомендующих это делать. Как всегда, истина где-то посередине. И все же: нужно ли прогревать двигатель и если да, то почему и зачем?

Теория прогрева

Основной материал для изготовления силовых агрегатов – металл, расширяющийся при повышении температуры и сжимающийся при охлаждении. Детали силовой установки скомпонованы с учетом минимизации зазоров между ними. Это уменьшает энергетические потери при воспламенении смеси. До тех пор, пока мотор не прогрелся, зазоры не такие, как предусмотрено автопроизводителем, следовательно, ДВС работает не в штатном режиме.

Во время нагрева до рабочей температуры ЦПГ испытывает максимальные нагрузки. Так имеет ли смысл начинать движение в таких условиях?

нагрев двигателя

нагрев двигателя

Прогрев двигателя: плюсы

Они, безусловно, есть, и главный из них – восстановление нужных зазоров между деталями мотора, которые предусмотрены автопроизводителем. Но есть и иные преимущества:

  • масло получает нужную вязкость и свободно проникает во все полости, уменьшая силу трения, что способствует снижению скорости износа деталей;
  • двигатель начинает работать устойчиво: поездки с «дерганием» вряд ли кому понравятся;
  • расход горючего на прогретом моторе меньше;
  • машина прогревается внутри, и садиться в нее зимой будет гораздо комфортнее.

Минусы прогрева

Самый главный недостаток относится к экологической проблеме. Например, загрязнение окружающей среды выхлопными газами, которые «выдает» неподвижная машина с работающим двигателем в Европе, карается штрафом (если стоять более 5 минут). Такие же меры предприняты в России правительствами Москвы и Санкт-Петербурга. Есть и другие отрицательные стороны:

Еще один момент: как утверждают автопроизводители, современные автомобили подготовлены к немедленному движению.

экология

экология

Особенности прогрева мотора зимой

Отрицательная температура приводит к загустеванию масла, как в силовой установке, так и КПП. Это значит, что в момент старта детали полноценно не смазывается, а нагрузка на масляный насос резко увеличивается. Конечно, есть специальные смазывающие материалы, но и они имеют свой предел.

Еще один фактор – содержание кислорода в воздухе: чем ниже температура, тем его больше. Значит, горючая смесь обедняется. На карбюраторном моторе эту проблему можно решить, вытянув подсос: заслонка прикроется, смесь обогатится. В инжекторном двигателе все решает электроника, выставляющая раннее зажигание и подающая больше топлива в цилиндры.

зима

зима

Как прогревать мотор

Начинать нужно с аккумуляторной батареи, чтобы разогреть в ней электролит. Для этого на 15 сек. включите дальний свет, затем его выключите, и подождите с полминуты. При наличии механической коробки выжмите сцепление и после этого заводите двигатель. Если с первого раза пуск не удался, выждите пару минут, чтобы АКБ восстановилась, и повторите попытку. Если и она не удалась, можно переходить к поиску неисправностей. Когда мотор заведется, включите печку и направьте поток воздуха на лобовое стекло: это поможет избежать появления возможных микротрещин между кузовом и стеклом.

Прогрев на ходу

Минимальное время прогрева на стоянке – 5 минут. За это время можно, например, смести снег с кузова авто. В этот период инжекторный мотор прогреется и убавит обороты, а масло разжижится и станет лучше смазывать детали. Дальнейший прогрев можно выполнять и на ходу, но при этом необходимо соблюдать несколько правил:

  1. Масло, используемое в двигателе, должно быть синтетическим и с большим индексом вязкости. Такой состав уверенно заполнит все каналы даже в холодное время года, что гарантированно «спасет» от задиров на стенках цилиндров.
  2. Ехать нужно плавно, ровно, медленно, без резких ускорений и торможений. За это время вы как раз выедите из гаража или со стоянки.
  3. Преодолевая первый километр, избегайте ухабов и иных неровностей на дороге.

прогрев на ходу

прогрев на ходу

Нужно ли прогревать дизельный двигатель

Дизельный двигатель зимой заводится гораздо труднее, чем карбюраторный или инжекторный, что обусловлено иными условиями воспламенения смеси. При отрицательной температуре солярка становится густой и ее распыление по форсункам затрудняется.

Главное отличие дизеля от бензинового двигателя заключается в том, что его работа возможна при самовоспламенении смеси за счет ее сжатия: оно повышает температуру до 800-900 градусов. Охлажденный воздух препятствует нагреву. Частично помогают свечи накаливания, нагревающие камеру сгорания. Еще одно условие для успешного старта —  выбор топлива, соответствующего сезону:

  • летнее: рекомендованная температура от нуля и более;
  • зимнее: применяется до минус 30 градусов;
  • арктическое: востребовано в северных регионах.

дизель

дизель

Зачастую трудности с пуском дизеля возникают именно из-за топлива, не соответствующего сезону.

Предпусковые нагреватели

Их установка помогает быстрее греть двигатель. Причем использование данных устройств актуально как для дизельных моторов, так и бензиновых. Особенно важно применение подогревателей в северных регионах. Рынок сегодня предлагает множество решений: необходимо лишь выбрать наиболее оптимальный вариант изделия.

предпусковой подогреватель

предпусковой подогреватель

Заблуждения, связанные с прогревом

  1. После прогрева двигателя до рабочей температуры автомобиль можно использовать на любых режимах и по максимальной мощности. Это неверно, т. к. помимо мотора, в прогреве нуждаются и иные узлы: например, коробка передач, редуктор заднего моста (если он есть).
  2. Для более быстрого прогрева нужно увеличить число оборотов. Но это приведет только к более интенсивному износу деталей цилиндро-поршневой группы.
  3. Новый автомобиль вообще прогревать не требуется. Безусловно, двигатель машины, недавно выпущенной с завода, достигнет рабочей температуры быстрее по сравнению с намотавшим не один десяток тысяч километров агрегатом. Тем не менее, игнорировать прогрев не рекомендуется.

Прогревать машину (двигатель авто) зимой или летом нужно ли

Ищите нужно ли прогревать машину (двигатель автомобиля) и сколько по времени прогревать автомобиль перед поездкой? В статье узнате нужно ли прогревать машину (двигатель автомобиля) зимой или летом и сколько времени прогревать авто.

spaliny

Опытные и не очень водители часто спорят о необходимости прогревать свое авто. Одни считают, что это нужно делать и для «старичков» и современных автомобилей. По мнению другой группы автолюбителей, прогрев необходим только в холодное время года.

— Прогрев двигателя перед поездкой — один из самых распространенных мифов среди водителей. Эта практика необоснованна. Это просто не сделано, даже в старых автомобилях. Некоторые объясняют прогревание необходимостью получения оптимальной температуры масла, чтобы двигатель работал лучше. Это не так. Правильная температура будет достигнута быстрее во время вождения, чем когда двигатель стоит на месте и работает на низкой скорости, хотя в сильный мороз стоит подождать несколько секунд, прежде чем уехать, пока масло не распространилось по маслопроводу, — говорит Адам Ленхорт,  автомобильный эксперт.

Как зависит работа двигателя от температуры

Производители современных недорогих иномарок утверждают, что при уличной температуре ниже 0 градусов, нет необходимости прогревать авто 15 минут. Однако есть факторы, говорящие об обязательности зимнего прогрева автомобиля:

  1. Вязкость масла зависит от температуры.
  2. Изнашивание клапанов холодного мотора выше.
  3. Снижение приемистости холодного двигателя. Чем меньше объем, тем меньше мощность.
  4. Топлива расходуется больше на 15%. И при прогреве его затрачивается до 15 %.
  5. Дополнительным минусом является уменьшение видимости сквозь замерзшие окна.

 

При увеличенной вязкости моторного масла, детали не получат достаточной смазки, следствием будет износ двигателя и окончательная его поломка при езде в условиях нагрузки в течение зимы.

Автолюбители с малым стажем не видят разницы между холостой работой двигателя и под нагрузкой. При холостых оборотах не происходит изнашивания мотора. Он прослужит дольше.

При непрогретом двигателе клапаны функционируют неправильно, наблюдается нестабильность в работе двигателя.

Холодный двигатель значительно потребляет топливо. Прогрев необходим для долгосрочной службы автомобиля, а не регулярного обращения в сервисные центры и возможной поломки через 3 года эксплуатации.

Что касается летнего прогрева, то здесь рекомендуется проводить процедуру в зависимости от уличной температуры. Если за окном плюс 10 градусов, то прогрев автомобиля составит 3-6 минут. С минусовыми показателями до минус 10 – 5-8 минут.

При теплой и жаркой погоде от плюс 10 и выше, двигатель прогревается 2 минуты и даже меньше. Цель такой процедуры: разогреть масло до нужной кондиции.

Сколько нужно прогревать двигатель автомобиля?

Инструкции по прогреву двигателя

Многие думают, что это процедура, не требующая необходимых знаний и навыков. Но это не так. Для правильного прогрева мотора автомобиля нужно знать несколько правил:

  1. Аккумулятор. Сначала нужно заставить работать его. Включить фары ближнего света на 20 секунд, не заводя при этом авто.
  2. Началось функционирование аккумулятора. Лучше подождать полминуты для окончательного пробуждения батареи, выключить фары.
  3. Заводится двигатель. С механической коробкой передач выжимается сцепление, затем дело за двигателем. Если машина не завелась с первого раза, выдерживается пауза до 7 минут. Попытка повторяется. В случае второй неудачи нужно искать поломки.
  4. Двигатель работает. После удачного запуска включается печка, очищаются стекла. Рекомендуется ехать с низкой скоростью до 55 км в час.

Предубеждения о прогреве авто

Существует ложное мнение о затрате большого количества топлива при работе двигателя вхолостую. Если процедура не занимает 40 минут вместо 10, то расхода не наблюдается.

Считается, что, прогрев мотора негативно влияет на клапаны. Небольшое воздействие имеется, но гораздо больший вред приносит эксплуатация машины с холодным двигателем.

Согласно последнему слуху, прогрев бесполезен. Наоборот, при отсутствии этой процедуры собирающаяся влага вызовет появление ржавчины. При прогреве машины ориентироваться следует на датчики. Оптимальной считается температура в 60 градусов.

Заключение

Во многих странах на законодательном уровне запрещается прогревать автомобиль с целью защиты экологии. Есть и такие, где температура не опускается до минусовых отметок, прогрева автомобиля в большинстве случаев не требуется. В странах с холодным климатом без прогрева автомобиля в несколько минут не обойтись.

 

Что заливается в систему охлаждения двигателя – тосол или антифриз, видео о разнице между ними, какую охлаждающую жидкость заливать в систему охлаждения двигателя автомобиля

  • 16.07.2019

что нужно обязательно знать каждому автовладельцу

Начнем с того, что функцию охлаждающей жидкости в двигателях внутреннего сгорания выполняют специальные составы, известные среди автомобилистов под названием ТОСОЛ или антифриз. От использования дистиллированной воды в системах охлаждения давно отказались, так как вода замерзает при отрицательных температурах, вызывает усиленную коррозию каналов в блоке цилиндров и ГБЦ, становится причиной образования накипи и т.д.

Сегодня различные ТОСОЛы или антифризы могут быть доступны в двух вариантах:

  • в виде концентрата, который нужно дополнительно разбавлять дистиллированной водой в заданных пропорциях;
  • готовый к использованию продукт, который можно сразу заливать в систему охлаждения без дополнительных манипуляций;
В любом случае, охлаждающая жидкость двигателя не только защищает мотор от перегрева и не замерзает зимой (в отличие от воды), но и препятствует началу в жидкостной системе охлаждения ДВС активных процессов коррозии, поддерживает чистоту каналов, продлевает срок службы отдельных элементов (помпа, термостат, радиатор и т.д.)

При этом важно учитывать, что антифризы бывают разными по составу, а также теряют и изменяют свои свойства в процессе эксплуатации. Это значит, что их нельзя свободно смешивать. Также жидкость имеет строго ограниченный срок службы, то есть необходимо производить периодическую замену тосола или антифриза, а также регулярно контролировать состояние ОЖ.

Читайте в этой статье

Жидкость для охлаждения двигателя автомобиля: общая информация

Хорошо известно, что двигатель внутреннего сгорания является тепловой машиной, которая преобразует энергию сгорающего топлива в механическую работу.  Естественно, такую установку нужно охлаждать, чтобы поддерживать необходимый тепловой режим.

Другими словами, для нормальной работы всех узлов и деталей ДВС под нагрузками нагрев мотора должен оставаться в строго заданных пределах. Рабочая температура двигателя не должна как опускаться ниже заданного порога, так и превышать расчетный показатель.

Для решения задачи на автомобилях используется комбинированная система охлаждения, которая представляет собой совокупность воздушного и жидкостного охлаждения ДВС. Жидкостная система предполагает принудительную циркуляцию рабочей жидкости.

На работающем двигателе нагрев ОЖ может доходить до 100 градусов по Цельсию и даже выше, при этом после остановки мотора жидкость во время длительного простоя охлаждается до наружной температуры.

Как видно, рабочая жидкость находится в достаточно тяжелых условиях. При этом к ней выдвигаются особые требования. Дело в том, что свойства жидкости должны, в первую очередь, обеспечивать максимальную эффективность работы системы охлаждения двигателя. От этого напрямую зависит надежность агрегата и его ресурс.  ОЖ должна обладать высокой теплопроводностью и теплоемкостью, иметь высокий температурный порог кипения, достаточную текучесть.

При этом после остывания такая жидкость не должна сильно расширяться в объеме и кристаллизироваться (превращаться в лед). Параллельно с этим жидкость также не должна пениться во время работы, а также не оказываться агрессивной, то есть взывать коррозию различных металлических элементов, оказывать воздействие на резиновые патрубки, уплотнения и т.д.

К сожалению, хотя дистиллированная или очищенная вода дешевая в производстве и имеет ряд необходимых свойств (отличается высокой способностью к эффективному охлаждению, обладает высокой теплоемкость, негорючая и т.д.), все же использовать ее в двигателе проблемно.

Прежде всего, она имеет низкую температуру закипания, быстро испаряется, а различные примеси в ее составе (соли и т.д.)  вызывают активное образование накипи. Также вода замерзает в системе тогда, когда наружная температура опускается до ноля градусов и далее образуется лед.

При этом происходит значительное увеличением объема замерзшей воды, что становится причиной разрывов каналов и патрубков, то есть происходит повреждение, в металлических деталях появляются трещины и т.п. По этой причине воду нельзя использовать круглогодично в регионах, где в зимний период отмечено понижение среднесуточных температур до ноля и ниже.

Вполне очевидно, что весьма затруднительно заниматься постоянным сливом воды из системы охлаждения перед стоянкой машины на улице или в неотапливаемом помещении. Для решения проблемы были разработаны специальные охлаждающие жидкости, которые получили свойство не замерзать при низких температурах.

Фактически само название «антифриз» происходит от английского  «antifreeze», то есть незамерзающая. Указанные составы быстро вытеснили воду из жидкостных систем охлаждения, тем самым в значительной мере упростились и особенности эксплуатации ТС.

Что касается ТОСОЛа, данная разработка является аналогом западного антифриза, только была разработана на территории бывшего СССР. Указанный тип ОЖ изначально создавался для автомобилей ВАЗ, при этом торговая марка не регистрировалась.

Сегодня многие изготовители охлаждающих жидкостей на территории СНГ используют широко известное название ТОСОЛ для своих продуктов, однако эксплуатационные свойства жидкостей могут отличаться по причине наличия разных присадок и дополнительных компонентов.

Особенности антифриза и практическая эксплуатация

Отметим, что в двигателях современных авто  чаще всего используются жидкости-антифризы, в основе которых лежит гликолевая основа. Если просто, такая незамерзающая жидкость представляет собой смесь воды и этиленгликоля. Также встречаются ОЖ, в которых используется пропиленгликоль, при этом смешивать этиленгликолевые ОЖ с пропиленгликолевыми не рекомендуется.

На практике этиленгликоль или моноэтиленгликоль представляет собой маслянистую жидкость желтоватого оттенка. Жидкость не имеет запаха, отличается незначительной вязкостью, имеет среднюю плотность и температуру кипения около 200 градусов по Цельсию. При этом температура кристаллизации (замерзания) составляет чуть менее -12 градусов.

Если этиленгликоль или раствор этиленгликоля с водой нагреть, происходит значительное расширение. Чтобы систему не «разрывало» от избыточного давления,  в устройство был добавлен расширительный бачок системы охлаждения, который имеет отметки «мин» и «макс». По ним определяется необходимый уровень ОЖ.

Также важно учитывать, что этиленгликоль и его растворы  весьма агрессивны, способны вызвать сильную коррозию деталей из стали, алюминия, чугуна, меди или латуни. Параллельно с этим отмечается повышенная токсичность этиленгликоля и его крайне негативное воздействие на живые организмы. Другими словами, это сильный и опасный яд!

Что касается пропиленгликолей, они имеют схожие свойства с этиленгликолями, но при этом не столь токсичны. Однако пропиленгликоль намного дороже в производстве, в результате чего его конечная стоимость ощутимо выше. Также при низких температурах пропиленгликоль становится более вязким, текучесть у него хуже.

По указанным выше причинам в составе ОЖ в обязательном порядке используется целый пакет активных дополнительных присадок, которые обеспечивают антикоррозионные, защитные и моющие свойства, препятствуют вспениванию, стабилизируют жидкость, подкрашивают раствор, придают характерный узнаваемый запах и т.д. Также присадки несколько снижают токсичность.

Вернемся к использованию антифризов. Необходимость смешивать этиленгликоль или пропиленгликоль с дистиллированной водой продиктована тем, что температура замерзания такого раствора напрямую зависит от пропорций этих двух составляющих.

Простыми словами, вода замерзает при ноле, этиленгликоль при -12, однако их смешивание в разных пропорциях позволяет создать растворы, у которых порог замерзания составляет от 0 до -70 градусов и даже выше. Также соотношение гликоля и воды влияет на температуру кипения раствора.

Если не вдаваться в подробности, на практике самой низкой температуры замерзания можно добиться, если в составе будет чуть менее 67 % этиленгликоля, который разбавили 33% воды. При этом одинаковую или очень близкую температуру замерзания можно получить при разных соотношениях воды и концентрата.

Что касается практической эксплуатации, как правило, автомобилисты при замене ОЖ во многих регионах зачастую используют простую схему, разбавляя концентрат антифриза водой в пропорциях 60/40.  Обратите внимание, это общее руководство, перед приготовлением раствора ознакомьтесь с отдельными рекомендациями того или иного производителя антифриза на упаковке.

Чтобы проверить соотношение этиленгликоля и воды в растворе дополнительно измеряется плотность. Для этого чаще всего используется ареометр. На основании полученных данных можно сделать вывод о том, каково содержание этиленгликоля и определить температуру кристаллизации.

 Смешивание антифризов и ТОСОЛов

Необходимо отметить, что совместимость различных охлаждающих жидкостей зависит от технических условий их изготовления. Простыми словами,  жидкости могут быть полностью несовместимы или допускается только частичная совместимость.

Дело в том, что каждый производитель использует разные присадки, которые могут  вступать в реакцию, тем самым смесь теряет необходимые свойства, происходит выпадение осадка и целый ряд других нежелательных последствий.

С учетом того, что в процессе эксплуатации периодически возникает необходимость поднять уровень ОЖ в расширительном бачке (вода в составе со временем выкипает), правильнее доливать дистиллированную воду или использовать только ту марку и тип антифриза, который использовался ранее.

Если же возникала аварийная неисправность, тогда оптимально или полностью слить имеющиеся остатки, промыть систему и залить свежую ОЖ в полном объеме, или же доливать антифриз, подходящий по цвету и свойствам.

Что касается норм и стандартов, как правило, отечественные ТОСОЛы должны соответствовать требованиям ГОСТа, при этом отдельно не сертифицируются. Импортные антифризы проходят стандартизацию по SAE и ASTM.

Зарубежные стандарты определяют различные свойства жидкостей на основе этилен или пропиленгликоля, определяя назначение с поправкой на условия эксплуатации. Жидкости делятся на составы для легковых авто, малых грузовиков, большегрузного транспорта, спецтехники и т.д. Отметим, что антифризы по ASTM типа D 3306 допускаются к использованию на легковых ТС отечественного производства.

Также следует учитывать и отдельные спецификации самих автопроизводителей, которые  часто выдвигают ряд собственных требований. В списке различных предписаний крупных концернов следует выделить, что запрещается или крайне не рекомендуется использование антифризов, в которых отмечено наличие всевозможных ингибиторов коррозии, включающих в себя нитриты, фосфаты и т.п.

При этом также  определяются и максимальное содержание силикатов, хлоридов и других компонентов в ОЖ. Следование таким предписаниям позволяет продлить срок службы уплотнений, избежать активного образования накипи, повысить уровень защиты от коррозии.

Когда и почему нужна замена антифриза

Как уже было сказано, антифризы способны оказывать негативное воздействие на детали системы охлаждения и сам двигатель. Для уменьшения степени этого воздействия используются различные присадки. Однако в процессе эксплуатации указанные добавки «срабатываются», то есть содержание присадок и их эффективность работы сокращается.

Если просто, со временем активизируются процессы коррозии, ОЖ начинает сильнее пениться, теплоотвод ухудшается, нарушается температурный режим во время работы ДВС. По этой причине антифризы рекомендуется менять через 2 года, или каждые 50-60 тыс. км. пробега (в зависимости от того, что наступит раньше).

Что касается современных разработок типа антифризов G12 и G12+, срок службы этих жидкостей продлен до 3-4 лет, однако минусом можно считать их более высокую стоимость.

Также охлаждающая жидкость для двигателя ну3ждается в замене в тех случаях, когда в систему охлаждения происходило попадание отработавших газов из цилиндров или в антифризе/тосоле видны следы моторного масла.  Как правило,  причиной подобных неисправностей является пробитая прокладка головки блока  цилиндров, трещины в БЦ или ГБЦ. В любом случае, охлаждающая жидкость в таких условиях будет быстро терять свои полезные свойства.

На необходимость замены ОЖ указывают следующие признаки:

  • появление масляных пятен на поверхности антифриза в расширительном бачке;
  • изменение цвета охлаждающей жидкости, появление горелого запаха;
  • при незначительном понижении наружной температуры в бачке виден осадок, антифриз становится желеобразным и т.п.
  • температура двигателя повышается выше нормы, постоянно работает вентилятор системы охлаждения, мотор находится на грани перегрева;
  • антифриз приобрел коричневато-бурый цвет, стал мутным. Это говорит о том, что жидкость отработала свой ресурс, присадки не выполняют свою функцию, а внутри системы охлаждения протекает активная коррозия элементов и деталей.

Еще отметим, что в случае возникновения аварийных ситуаций в антифриз часто приходится доливать или ОЖ другого производителя, дистиллированную воду сомнительного качества или же обычную проточную. В подобных случаях необходимо добраться до места ремонта, произвести все работы, после чего в обязательном порядке промыть систему охлаждения и только после этого полностью заменить антифриз.

  1. Что касается самого процесса, менять охлаждающую жидкость нужно только на холодном двигателе. После того, как мотор остыл, нужно открутить крышку расширительного бачка или крышку радиатора.
  2. Далее понадобится открыть кран радиатора внутрисалонного отопителя (радиатора печки). Это нужно для того, чтобы удалить возможные остатки жидкости в радиаторе и патрубках к нему.
  3. Затем следует открутить сливные пробки в радиаторе системы охлаждения автомобиля, а также пробку в блоке цилиндров.
  4. После этого ОЖ сливается в заранее приготовленную емкость, после чего пробки можно закрутить.

Учтите, при работе с ОЖ важно понимать, что этиленгликоль является сильным ядом, а также способен попадать в организм даже через кожные покровы. Небольшой дозы этиленгликоля при приеме внутрь достаточно для сильнейшего отравления и наступления смерти!

Также этиленгликоль имеет сладковатый привкус, его необходимо держать в недоступном для детей месте. Запрещено разливать этиленгликоль или пропиленгликоль, так как жидкость опасна для животных. Запрещается выливать антифриз в водоемы, сливать на землю или в канализацию!

  1. Завершающим этапом будет заливка в расширительный бачок свежей жидкости. Заливать ОЖ нужно медленно и аккуратно, чтобы избежать образования воздушных пробок в системе.
  2. По окончании процедуры крышку бачка и/или радиатора закручивают, затем двигатель можно запускать. После запуска агрегат прогревается на ХХ до рабочей температуры (на многих авто до срабатывания вентилятора).
  3. Теперь двигатель нужно остановить и дать ему остыть, после чего крышку бачка снова открывают и доливают ОЖ по уровню (в случае его снижения).

Если же говорить о промывке системы охлаждения и радиатора, во время плановых регулярных замен антифриза одной и той же марки/типа, тогда будет достаточно промыть всю систему обычной дистиллированной водой. В крайнем случае, можно заранее прокипятить проточную воду, после чего использовать ее для промывки.

В случаях, когда осуществляется переход с ТОСОЛа на антифриз, с воды на ТОСОЛ, с антифриза одного цвета на другой тип ОЖ или же просто меняется грязный антифриз и т.п., тогда систему нужно очищать более тщательно. Это значит, что потребуется отдельно удалять  возможные или явные отложения, накипь, ржавчину, продукты распада присадок в старом антифризе и т.д.

Как правило, для очистки используются специальные готовые составы-очистители системы охлаждения двигателя. Такие составы комплексные, имеют ингибиторы коррозии, хорошо удаляют накипь и отложения.  Также автолюбители для промывки используют различные водно-кислотные растворы самостоятельного приготовления, однако на современных ДВС использование таких решений не рекомендуется.

Общие порядок действий для промывки системы охлаждения следующий:

  • после слива ОЖ из системы производится заливка промывочной жидкости. Затем двигатель запускают, после чего агрегат работает определенное количество времени (обычно 20-40 мин.).
  • Далее промывку сливают, оценивая степень загрязненности сливаемой жидкости. Процедуру повторяют до тех пор, пока вытекающая промывка не станет чистой.
  • По окончании в систему заливается дистиллированная вода, двигатель снова прогревается до рабочих температур, потом воду сливают. Это необходимо для удаления остатков промывки. Затем можно заливать свежий антифриз без риска потери его свойств в результате контакта с остатками промывки.
  • Еще отметим, что хотя вымыть остатки очистителя в системе охлаждения можно и за один раз, опытные водители рекомендуют как минимум дважды промывать систему дистиллированной водой.

Советы и рекомендации

В процессе эксплуатации уровень антифриза в расширительном бачке понижается даже тогда, когда система герметична. Дело в том, что имеет место испарение воды. В бачок нужно доливать дистиллированную воду (в крайнем случае, обычную и хорошо прокипяченную не мене 30-40 минут).

Если же произошла утечка антифриза, тогда компенсировать потери одной водой уже нельзя. Другими словами, нужно доливать охлаждающую жидкость, причем учитывая то, что многие ОЖ между собой не смешиваются.

Оптимально для долива иметь в запасе концентрат и дистиллированную воду, смешивая жидкости в указанной производителем пропорции. Что касается уже готовых антифризов, старайтесь избегать приобретения подобных составов на авторынках или у частных лиц, которые реализуют подобную продукцию вдоль трасс.

Отмечены частые случаи, когда вместо ОЖ продавалась подкрашенная проточная вода, антифриз-отработка и т.п. По этой причине правильным решением будет покупка охлаждающей жидкости в специализированных автомагазинах.

Еще отметим, что чистый неразбавленный водой концентрат использовать в системе охлаждения двигателя  запрещено. Как уже говорилось,  этиленгликоль с пакетом присадок замерзает при отрицательных температурах около -12 градусов.

Получается, концентрат попросту замерзнет в системе, так как без разбавления водой его нельзя считать готовым к использованию продуктом. Что касается пропорций, необходимо изучать этикетку на упаковке с концентратом. Обычно производители сами отдельно указывают, что лить в радиатор или бачок на разных авто, сколько концентрата и воды нужно, а также как их смешивать для того, чтобы получить желаемую температуру замерзания охлаждающей жидкости.

Параллельно отметим, что на территории СНГ участились случаи подделки антифризов известных брендов. По этой причине внимательно осматривайте канистру. Тара должна быть качественно изготовлена, все наклейки и этикетки должны иметь четкий шрифт и располагаться на канистре ровно.

На канистре должен быть указан номер партии, производитель, а также рекомендации о том, как правильно разбавлять антифриз (в случае с концентратом) или использовать уже готовый продукт. Также указывается температура кипения, температура замерзания, дата изготовления, срок годности и другая важная информация.

Отдельного внимания заслуживает и пробка. Обычно изготовители используют крышки с одноразовой пломбой. Дополнительно для лучшей защиты от фальсификата может присутствовать наклейка-голограмма и т.п.

Необходимо удостовериться в целостности пломбы, зубчатое кольцо должно плотно прилегать к горловине, не прокручиваться. Сама крышка не должна быть приклеена к горловине. Также канистра должна быть герметичной, не допускается наличие утечек  жидкости или выхода воздуха из-под крышки при переворачивании или нажатии.

Напоследок отметим, что многие производители используют тару из прозрачного или полупрозрачного пластика, позволяя оценить цвет и состояние жидкости в канистре. При встряхивании канистры с ОЖ должна образоваться пена, которая оседает через пару секунд в канистре с готовой к применению жидкостью, а также через 4-5 сек. в случае с неразбавленным концентратом.

Если при осмотре замечено, что жидкость помутнела, пенообразование высокое, просматривается осадок на дне или общий цвет антифриза вызывает подозрения, тогда от такой покупки лучше воздержаться.

Читайте также

Как узнать, что залито: антифриз или «Тосол»: способы, фото и видео

Как известно, охлаждающая жидкость является важным расходным элементом в системе любого автомобиля. Поэтому выбор хладагента является приоритетной задачей при его замене. Сегодня мы расскажем вам, как определить — «Тосол» или антифриз залит, и в чем заключаются различия между этими веществами.

Многие опытные автолюбители знают, что оптимальная и эффективная работа мотора транспортного средства обеспечивается качественной залитой охлаждающей жидкостью. Если расходный материал действительно добротный, то он может продлить ресурс эксплуатации комплектующих элементов двигателя, а также обеспечить их нормальную работу.

Антифризы и «Тосолы» разных производителей, дистиллированная водаАнтифризы и «Тосолы» разных производителей, дистиллированная водаАнтифризы и «Тосолы» разных производителей, дистиллированная вода

Как же быть, если вы не знаете, какая именно охлаждающая жидкость (далее — ОЖ) залита в вашем авто? Определить это не так легко, как кажется на первый взгляд.

Содержание

[ Раскрыть]

[ Скрыть]

Зачем автомобилисту это знать?

Как правило, автомобилисты знают, что залито в их охладительные системы. Но это в том случае, если речь идет о постоянном владельце авто. На самом деле причин, по которым автомобилист хочет узнать, что именно залито в расширительный бачок его авто, может быть очень много. К примеру:

  • Транспортное средство было недавно куплено — было бы логично узнать, какой хладагент залит в систему и когда он менялся в последний раз.
  • В системе охлаждения автомобиля возникли неполадки — плохо работает печка, периодически закипает двигатель. В некоторых случаях эти последствия могут быть причиной некачественной расходной жидкости. Тогда автомобилисту будет интересно знать, какой расходный материал залит в его авто, чтобы впредь никогда им не пользоваться.
  • Система охлаждения работает превосходно в течение долгого времени, в общем, нет никаких недостатков. В этом случае водителю тоже будет интересно узнать, что залито в систему — «Тосол» или антифриз, чтобы в дальнейшем заливать именно эту ОЖ.
Розовая охлаждающая жидкость в расширительном бачкеРозовая охлаждающая жидкость в расширительном бачкеРозовая охлаждающая жидкость в расширительном бачке

Основные различия между этими ОЖ

В чем же заключаются различия между традиционным антифризом и «Тосолом»? В первую очередь стоит отметить, что «Тосол» — это та же охлаждающая жидкость только отечественного производства. История того, как на постсоветском пространстве автомобилисты стали называть любой антифриз «Тосолом», уходит на несколько десятилетий.

Тогда при Советском Союзе на авторынке продавался единственный вид хладагента и он назывался «Тосолом». Отсюда это и пошло. Некоторые автомобилисты ошибочно считают, что главным различием российского «Тосола» от любого другого хладагента является синий цвет. Однако это далеко не так. Цвет расходного вещества зависит исключительно от красителя, который в него добавляют, но ни на какие эксплуатационные характеристики он не влияет. Так что мнение о том, что синий цвет — главное различие между «Тосолом» и антифризом, ошибочное.

Долив дистиллированной воды в расширительный бачокДолив дистиллированной воды в расширительный бачокДолив дистиллированной воды в расширительный бачок

Состав

Собственно, эксплуатационные характеристики и состав вещества — это главное различие между ними. В составе ОЖ отечественного производства входит этиленгликоль и дистиллированная вода. Кроме того, в составе «Тосола» также присутствуют дополнительные присадки на основе солей неорганических кислот. В частности, речь идет о фосфатах, силикатах, нитритах и нитратах.

В основе любого антифриза присутствует этиленгликоль и дистиллят, а также пропиленгликоль и спирт. Но ключевую роль здесь играют именно органические присадки. Их состав особенно ценен для расходного вещества, поскольку данные присадки увеличивают антикоррозийные и антипенные свойства материала.

Характеристики

«Тосол». В результате того, что на поверхности металлических компонентов охлаждающей системы появляется защитный слой, толщина которого зачастую не превышает 0.5 мм, это отражается на теплопередаче. Именно из-за этого может вырасти расход бензина, а ресурс мотора транспортного средства будет сокращаться. На практике хладагенты отечественного производства теряют свои свойства уже спустя 30-40 тысяч километров пробега.

Залив зеленой охлаждающей жидкости в расширительный бачок транспортного средстваЗалив зеленой охлаждающей жидкости в расширительный бачок транспортного средстваЗалив зеленой охлаждающей жидкости в расширительный бачок транспортного средства

Поскольку в составе «Тосола» могут присутствовать фосфаты и силикаты, эта ОЖ может образовывать гели и осадки на стенках охладительной системы. Образование отложений в системе впоследствии может привести к засорению радиатора и, соответственно, выходу его из строя.

Антифриз. Качественный хладагент образовывает защитный слой только на тех компонентах системы, которые более подвержены коррозии. Кроме того, теплопередача не нарушается, а значит для деталей двигателя использование такой ОЖ более безопасно.

Как определить, что залито?

Как же узнать, какой расходный материал залит? Как сказано выше, по одному только цвету определить никак не получится. Ровно так же, как и понять это по вкусу. Существует миф о том, что вкус у антифриза сладковатый, но это не более, чем просто миф. Да и нужно быть осторожным при «дегустации» — химические вещества, входящие в состав ОЖ, чрезвычайно ядовиты.

Кипение двигателя - результат эксплуатации некачественного расходного материалаКипение двигателя - результат эксплуатации некачественного расходного материалаКипение двигателя — результат эксплуатации некачественного расходного материала

Что же делать автомобилисту, если он хочет узнать, какой хладагент залит в охладительную систему его авто?

  • На ощупь и запах. Традиционный антифриз не имеет запаха, а на ощупь это вещество маслянистое. Российский «Тосол» на ощупь не будет таким же маслянистым.
  • По устойчивости к морозу. Если налить небольшое количество ОЖ в бутылку и поместить ее в морозильную камеру, то она не должна замерзнуть. Если замерзла, то скорее всего это «Тосол» некачественного производства, если нет — то это, по всей вероятности, антифриз высокого качества.
  • Совместимость расходного материала с водопроводной водой. Возьмите немного ОЖ из системы своего автомобиля и налейте ее в бутылку. В пропорции один к одному налейте в эту бутылку обычной воды из-под крана, подождите около часа. Если вы увидели расслоение веществ, смесь помутнела или налицо осадок, то это «Тосол» российского производства. При использовании качественного зарубежного антифриза этого всего возникнуть не должно.
  • Узнать, какой хладагент залит, можно по плотности. Но для этого вам понадобится ареометр — специальный прибор для проверки плотности ОЖ. Проверка вещества осуществляется при температуре окружающей среды или помещения более 20 градусов тепла. Если плотность вещества составляет от 1.073 до 1.079 г/см3, то перед вами, скорее всего, хороший антифриз.
Проверка плотности охладительной жидкости при помощи специального прибора ареометраПроверка плотности охладительной жидкости при помощи специального прибора ареометраПроверка плотности охладительной жидкости при помощи специального прибора ареометра

Есть еще один, так сказать, гаражный способ определения.

  1. Возьмите металлическую пластину или любое другое изделие из железа. Также вам понадобится какая-либо вещь из резины (идеально подойдет кусочек патрубка охладительной системы).
  2. Из расширительного бачка своего авто возьмите немного ОЖ в резервуар и поместите в него металлическую и резиновую детали.
  3. Подождите 10-20 минут. Как известно, российский «Тосол» образовывает защитную пленку на всех без исключения элементах системы, а значит как на металлических деталях, так и на резиновых деталях. Антифриз же считается более «умным» веществом, и защищает только те элементы, которые более подвержены образованию коррозии. То есть он будет защищать только металлические компоненты.
  4. Теперь достаньте обе детали из резервуара и внимательно проверьте их на ощупь. Если вы почувствуете, что пленка образовалась на обоих элементах, то в вашем расширительном бачке залита ОЖ российского производства. Если же пленочку вы чувствуете только на металлической детали, то в системе вашего транспортного средства залит антифриз.
Антифриз закипел и вспенился в расширительном бачкеАнтифриз закипел и вспенился в расширительном бачкеАнтифриз закипел и вспенился в расширительном бачке

Более точно определить, что именно залито в системе, никак не получится. Стопроцентный правильный ответ может дать только заключение экспертов в лаборатории. Если вы недавно приобрели авто и не знаете, какая ОЖ в нем залита, то мы посоветуем вам сразу же заменить ее на ту, которую рекомендует производитель машины. Лучше один раз немного потратиться на замену хладагента, чем потом отдавать немалые деньги за ремонт всей системы.

Видео от Сергея Масольда «Как отделить ОЖ от воды?»

Автор видео показывает зрителям способ отделения хладагента от воды.

Для чего нужен антифриз в машине

Я уже давно интересуюсь автомобилями и почти идеально разбираюсь во всех тонкостях его работы. Также я имею достаточный опыт работы с десятками перебранных двигателей и сотней отремонтированных авто разных марок. Эта статья должна вам помочь и дать ответ на вопрос: зачем требуется антифриз в автомобиле и поможет научиться его заливать. Также в тексте есть полезные советы и рекомендации от опытных мастеров с большим стажем работы.

Что такое антифриз

Антифризом в автомобиле называют специальную охлаждающую смесь, которая заливается в систему охлаждения двигателя машины. Циркулируя около радиатора, такая охлаждающая жидкость поможет отводить лишнюю тепловую энергию от мотора, чтобы тот не нагревался и не сломался во время эксплуатации.

Машинный антифриз условно подразделяется на четыре вида в зависимости от типа добавок, которые в нем используются: в продаже можно найти антифриз типа лобрид (Lobrid), также на рынке имеется большое количество карбоксилатных антифризов (ОАТ) и антифризов смешанного типа (Hybrid). Большую часть товаров составляет так называемый Traditional антифриз.

Также можно отметить тосол (изобретен в советском союзе) – это более понятное и привычное нашему уху торговое обозначение машинного антифриза, который делается на базе этиленгликоля. Используется тосол еще с давних времен.

Часто к общепринятому названию тосол прибавляются дополнительные литеры и цифры, которые указывают температуру замерзания: Есть Тосол-40, также в продаже имеется Тосол-65.

Антифриз (как и любая другая охлаждающая жидкость в автомобиле) требуется для работы мотора на постоянной основе, особенно антифриз нужен во время разогрева мотора автомобиля.

Механизм охлаждения автомобильного мотора сделан таким образом, что по системе патрубков все время циркулирует антифриз методом перекачивания насоса. При нагреве мотора автомобильный антифриз действует в первом круге обращения, при этом обходя стороной радиатор, где он мог бы быстрее охлаждаться.

Разогреваясь по ходу сгорания топливной смеси в моторе и работы элементов включенного автомобильного двигателя, используемый антифриз дает возможность более быстро и в то же время равномерно разогреть всю систему агрегата.

После того как мотор нагревается до нужной температуры (это примерно 60 градусов по Цельсию) внутренняя система охлаждения переустанавливает путь охлаждающей смеси на второй круг, куда входит система радиаторов.

Следование охлаждающей смеси проводится в самом блоке цилиндров двигателя. Его стены имеют многочисленную сеть из патрубков, которые обычно сравнивают с кожухом, обводящим цилиндры двигателя. Главное свойство смеси — разогреваться от одного источника, что дает возможность переводить тепло назад от цилиндров и далее выводить его к радиаторной решетке.

Какие типы антифриза бывают и история создания

Антифриз – это скорее общее обозначение для большей части охлаждающих смесей в автомобиле, которых существует большое количество на рынке. Однако для охлаждения мотора ранее применялась обычная вода. Далее воду заменили на раствор соли и собственно воды.

Первичный прототип антифриза для системы охлаждения автомобиля был получен в 1930 году. После этого основную охлаждающую роль стал выполнять стандартный этиленгликоль. Потом к этиленгликолю было решено добавлять различные присадки и со временем уже был получен новый антифриз.

В настоящий момент на рынке авто товаров можно увидеть большое количество антифризов. Все они различаются между собой по составу используемой смеси, а также могут отличаться цветом и временем гарантийной работы.

По применяемому в работе составу антифризы бывают

  • карбоксилатными;
  • силикатными;
  • гибридными.

Все вышеназванные типы антифризов имеют определенные особенности для использования и отличаются друг от друга по многим свойствам. Например, силикатные виды антифризов для мотора имеют в себе много неорганической кислоты. Такой тип антифриза является наиболее популярным в использовании и имеет множество добавок.

  • Отрицательной компонентой этого типа смеси для охлаждения является — склонность к появлению налета. Далее по ходу использования такого антифриза, соли в его составе создают собой аккуратную пленочку налета, которая может оседать и не позволяет мотору стабильно работать. Это провоцирует чрезмерное нагревание двигателя автомобиля, а также приводит к еще более значительному потреблению мотором смазки и бензина.
  • Карбоксилатные типы антифризов имеют отличные антикоррозионные, а также антикавитационные характеристики.
  • Гибридные виды антифризов имеют в себе как различные органические, так и всевозможные неорганические виды кислот. Данный вид антифриза имеет обозначение – G11. Этот вид антифриза сочетает в себе как отрицательные, так и положительные характеристики двух описанных ранее типов антифризов.
  • Новым в списке среди всех охлаждающих антифризов можно назвать лобрид антифриз — G12 плюс и последний антифриз G13. Он имеет в своем составе естественную природную основу и многочисленные присадки. Благодаря своему продуманному составу данная смесь может служить до 100 тысяч километров пробега.
  • Самой известной и в то же время доступной по стоимости, но все же не особо качественной является классическая охлаждающая смесь. Время ее службы не больше двух лет. Этот вид охлаждающей смеси не способен выдерживать максимальную температуру в работе и переходит в фазу кипения при 105 градусах.

Различия в цвете

Антифризы могут отличаться между собой по оттенку, однако сам цвет не обусловлен входящими в состав компонентами либо качеством полученной смеси. Определенный оттенок скорее закреплен за каждый производителем.

Какими основными соображениями важно руководствоваться при создании смесей между двумя и более антифризами? В этом месте можно написать, минимум, несколько простых рекомендаций:

  1. Без опасений вы можете смешивать между собой различные антифризы, которые имеют общую базу и компоненты, соответствующие установленным нормам качества. Однако, характеристики такой жидкости очень часто не пишутся компанией, и поэтому покупателю стоит лишь следовать инструкциям, установленным на упаковке.
  2. Различные виды смесей (с искусственными и натуральными добавками) можно перемешивать лишь при указании производителя.

Учитывайте, что несовместимость охлаждающих смесей заключается в вероятности появления реакции между входящими в состав добавками. Это может негативно повлиять на работу мотора.

Сколько требуется антифриза

Некоторые разведут спор — что же лучше для охлаждения: ТОСОЛ либо антифриз, отвечу — антифриз является более эффективным по многим параметрам и в большей части случаев превосходит ТОСОЛ.

Если говорить более коротко, то многие варианты антифризов для систем охлаждения мотора (например G12 – G13), значительно превосходят ТОСОЛ.

Для чего нужно на постоянной основе заменять антифриз

Тут многое зависит от того, что любой автомобильный антифриз или ТОСОЛ с течением времени меняет свои свойства и становится негодным, но если вы не хотели бы, чтобы систему охлаждения автомобиля разъело со временем – меняйте антифриз регулярно.

  • Обычно автомобильный антифриз реализуется в концентрированном составе, который, перед тем как вы начнете его открывать для заливания в систему охлаждения машины стоит смешать с очищенной водой в пропорции 50 на 50. Однако данная концентрация смешивания воды и охлаждающей жидкости может потерпеть определенные изменения в зависимости от того, каким образом вы будете использовать свой автомобиль.
  • Стоит учитывать, что в северной части страны, где в зимние месяцы обычно минимальная температура на улице, соотношение количества воды к охлажд. смеси стоит доводить до самого минимального показателя.
  • Антифриз для охлаждения можно заливать даже в концентрированном состоянии. Тут многое зависит от того при каком значении температуры на улице вы решили ездить на своем автомобиле. Запомните, что чем большее количество антифриза вы добавляете, тем большей делаете показатель застывания смеси.

Выводы

  • Автомобильный антифриз реализуется в концентрированном составе, который стоит смешать с очищенной водой в пропорции 50 на 50. Однако данная концентрация смешивания воды и охлаждающей жидкости может потерпеть определенные изменения в зависимости от того, каким образом вы будете использовать свой автомобиль.
  • Без опасений вы можете смешивать между собой различные антифризы, которые имеют общую базу и компоненты, соответствующие установленным нормам качества. Однако, характеристики такой жидкости очень часто не пишутся компанией, и поэтому покупателю стоит лишь следовать инструкциям, установленным на упаковке.
  • Различные виды смесей (с искусственными и натуральными добавками) можно перемешивать лишь при указании производителя.
  • Антифризом в автомобиле называют охлаждающую смесь, которая заливается в систему охлаждения двигателя машины. Циркулируя около радиатора, такая охлаждающая жидкость поможет отводить лишнюю тепловую энергию от мотора, чтобы тот не нагревался и не сломался во время эксплуатации.
  • Машинный антифриз условно подразделяется в зависимости от типа добавок, которые в нем используются: в продаже можно найти антифриз типа лобрид, также на рынке имеется большое количество карбоксилатных антифризов и антифризов смешанного типа.

Что лучше тосол или антифриз

Хладагент или охлаждающая жидкость (ОЖ) – вещество, разработанное для защиты двигателя автомобиля от перегрева.

Кипение мотора во время езды недопустимо. По этой причине хозяин авто должен заранее подобрать качественное средство, способное предотвратить превышение допустимых температур во время езды. Рынок хладагентов отличается разнообразием.

Сегодня существует много марок ОЖ. Обилие вариаций хладагентов может привести владельца авто в замешательство. Решение вопроса, что лучше: тосол или антифриз, может стать целой дилеммой. По этой причине опытные владельцы авто советуют новичкам заранее ознакомиться с актуальной информацией по теме.

Изучив представленный материал, владелец транспортного средства сможет выяснить основные характеристики популярных охлаждающих жидкостей, присутствующих на прилавках большинства автомагазинов. Анализ свойств расходных материалов даст возможность определить их преимущества и недостатки.

Обладая актуальной информацией по теме, автомобилист поймет, какой хладагент лучше использовать в системе охлаждения конкретного транспортного средства. Детальное изучение преимуществ охлаждающих жидкостей и их недостатков позволит окончательно разобраться в том, какой расходный материал лучше: тосол или антифриз, и какой ОЖ отдать предпочтение.

chto luchshe tosol ili antifriz 

Содержание:

  1. Разновидности антифриза
  2. Разновидности тосола
  3. Какое преимущество есть у антифриза перед тосолом
  4. Что лучше тосол или антифриз

Разновидности антифриза

Антифриз – это международное название жидкостей, используемых для функционирования системы охлаждения автомобиля. В их основе лежит этиленгликоль или пропиленгликоль и различные присадки, позволяющие защитить детали авто от преждевременного износа.

Если человек думает над тем, антифриз или тосол: что лучше использовать, необходимо ознакомиться с существующими разновидностями хладагента.

Антифриз

 
Карбосиликатный

Карбоксилатные антифризы входят в класс G12. Занимаясь созданием жидкости, производители учли минусы силикатной группы и превратили их в преимущества нового продукта.

Карбоксилатные присадки, входящие в состав антифризов класса G12, не образуют защитный слой по всей поверхности системы охлаждения автомобиля. Воздействие на очаги коррозии происходит точечно. При этом толщина защитного слоя в местах поражения не превышает 1 микрона.

Карбосиликатный антифриз

 

Использование карбоксилатного антифриза связано со следующими преимуществами:

  • жидкость обладает высоким уровнем теплоотдачи.
  • продукт не наносит вред системе охлаждения автомобиля.
  • период эксплуатации антифриза увеличен до 3-5 лет.

Однако использование ОЖ с карбоксилатными присадками имеет и неприятные особенности. Вещество начинает оказывать воздействие на область, подвергшуюся коррозии, только когда признаки поражения уже появились. Антифриз не обладает защитными свойствами, позволяющими предотвратить возникновение проблемы.

Антифризы, входящие в класс G12, не единственные хладагенты, относящиеся к категории карбоксилатных. Стремясь устранить основной недостаток продукта, производители приняли решение объединить технологию производства силикатных охлаждающих жидкостей с карбоксилатными. Так был разработан класс G12+.

Антифризы, входящие в категорию, называют гибридными. В отличие от других карбоксилатных ОЖ, хладагенты класса G12+ содержат и органические присадки, и неорганические. Точный состав дополнительных веществ зависит от страны изготовителя. Так, в Европе в гибридные антифризы добавляют силикаты, в Америке – нитриты, а в Японии – фосфаты.

От точного состава зависят защитные свойства антифриза. Подобрав хладагент с учетом рекомендаций, которые производитель авто указал в инструкции по эксплуатации, хозяин транспортного средства сможет минимизировать износ системы охлаждения и мотора.

Силикатный

К силикатным антифризам относят охлаждающие жидкости, изготовленные по традиционной технологии. Специалисты выделяют их в отдельную категорию G11. Силикатные антифризы не только помогают предотвратить перегрев двигателя, но и препятствуют коррозии. Для наделения продукта подобными свойствами, производители включают в состав присадки из неорганических веществ и их комбинаций:

  • силикаты,
  • нитриты,
  • амины,
  • фосфаты,
  • бораты.

Попадая в систему охлаждения автомобиля, присадки, входящие в состав силикатных антифризов, покрывают поверхность защитным слоем.

Он предотвращает преждевременное разрушение деталей. Однако подобное свойство значительно снижает процесс теплоотдачи. Кроме того, со временем защитный слой начинает разрушаться и осыпаться вниз.

Упавшие кусочки захватываются потоком охлаждающей жидкости и начинают разрушать все на своем пути. Чтобы минимизировать вероятность нанесения вреда деталям системы, рекомендуется менять силикатные антифризы не реже, чем 1 раз в 2 года.

Силикатный антифриз

 

Разновидности тосола

Тосол – хладагент, разработанный отечественными производителями. Жидкость преимущественно применяется для обеспечения функционирования системы охлаждения авто российского производства.

Сегодня существует целый комплекс разновидностей тосолов, различающихся по температуре замерзания и другим свойствам.

 

Тосол

ТОСОЛ А-40М

Тосол А-40М – разработка отечественных производителей. Его основным компонентом является гликолевый спирт.

Чтобы придать веществу свойства охлаждающих жидкостей, производители добавляют в него до 10 различных присадок. Они препятствуют образованию пены и коррозии.

Тосол А-40М не имеет запаха и обладает сладковатым привкусом. Чтобы жидкость отличалась от прочих, ее окрашивают в неестественные цвета.

Тосол, изготовленный российскими производителями, обычно имеет голубой или светло-зеленый оттенок. Используя вещество, необходимо помнить о том, что оно очень ядовито.

Эксперты советуют избегать попадания охлаждающей жидкости на кожу. Если тосол все же случайно попал на тело автолюбителя, необходимо смыть жидкость большим количеством воды.

Тосол А 40М

 

Осуществляя выбор между разными видами охлаждающих жидкостей, необходимо внимательно изучить их свойства.

Так, тосолу А-40М присущи следующие характеристики:

  • имеет температуру кипения +108 градусов,
  • обладает небольшой вязкостью,
  • не оказывает отрицательное влияние на детали системы охлаждения,
  • не замерзает при температуре до -40 градусов,
  • не пенится,
  • во время эксплуатации и хранения остается химически стабильным,
  • обладает высокой теплопроводимостью.

От антифриза тосол А-40М отличается набором присадок, препятствующих коррозии. Смешивать охлаждающие жидкости запрещается.

Компоненты, входящие в их состав, могут вступить в реакцию, и свойства ОЖ изменятся.

Тосол А-40М рассчитан на пробег в 60 000 км. Когда отметка будет достигнута, жидкость нужно заменить.

Если автовладелец использует транспортное средство не очень активно, тосол нужно менять не реже 1 раза в 2 года.

Эксперты советуют меня использованную жидкость на средство той же марки. Если автолюбитель планирует поменять Тосол А-40М на другой антифриз, систему охлаждения нужно промыть.

Применение ОЖ данной марки связано с рядом положительных и отрицательных моментов. Так, в тосоле А-40М присутствуют присадки, защищающие чугун, медь, сталь, латунь.

При этом вещества для защиты алюминия отсутствуют. Это делает ОЖ идеальной для использования в системах охлаждения отечественных ВАЗов, но препятствует применению в иномарках.

Кроме того, жидкость обладает относительно высокой температурой замерзания. В регионах с суровыми зимами использование тосола А-40М не возможно.

ТОСОЛ А-65М

Тосол А-65М – еще одна разновидность охлаждающей жидкости, пользующаяся популярностью у российских автовладельцев. ОЖ применяется для охлаждения моторов разных типов:

  • легковых машин,
  • грузового транспорта,
  • авто отечественного производства,
  • транспортных средств, изготовленных заграницей.

От других расходных материалов для системы охлаждения авто жидкость отличается устойчивостью к резким перепадам температур.

Присадки, входящие в состав тосола, прекрасно функционируют, как при +110, так и при -65 градусов по Цельсию. Жидкость соответствует требованиям государственного стандарта.

Она не оказывает негативного влияния на детали системы охлаждения, изготовленные из резины и пластмассы.

Тосол А 65М

Основа тосола А-65М – этиленгликоль. ОЖ можно смешивать с продуктами других марок, базирующихся на таком же веществе. Однако эксперты советуют прибегать к осуществлению действия только в крайних случаях.

Тосолу А-65М присущи следующие характеристики:

  • кристаллизация происходит, если температура опускается ниже – 65 градусов,
  • плотность ОЖ составляет 1,085 — 1,100 г/см3,
  • хладагент может закипеть, если температура поднимется выше +110 градусов,
  • исчезновение пены происходит не более, чем за 3 с,
  • обладает водородным показателем 7,5 — 11,0.

К положительным особенностям ОЖ данной марки можно отнести хорошие тепловые качества. Кроме того, тосол обладает хорошими смазочными свойствами. Однако вещество является агрессивным.

Ряд автолюбителей утверждает, что его использование может привести к повреждению деталей системы охлаждения.

ТОСОЛ АМ (концентрат)

В отличие от других ОЖ, Тосол АМ-К не используют сразу, после покупки. Перед тем, как залить жидкость в систему охлаждения автомобиля, ее предварительно разбавляют дистиллированной водой.

tosol amkoncentrat

Основной компонент Тосола АМ-К – этиленгликоль.

Помимо главного компонента, в состав ОЖ входят:

  • вода,
  • добавки, препятствующие коррозии,
  • красящие вещества,
  • добавки, препятствующие образованию пены.

Внешне тосол АМ-К не имеет существенных отличий от других продуктов, позволяющих обеспечивать нормальное функционирование системы охлаждения автомобиля.

Он представляет собой жидкость голубого цвета без механических примесей. Однако тосол АМ-К имеет одну из самых высоких температур замерзания среди аналогов. Его кристаллизация происходит уже при -35 градусов по Цельсию. Эта особенность является главным минусом средства. К плюсам можно отнести его небольшую стоимость.

Показатель

Особенности тосола АМ-К

Щелочность

10 см3

Набухание резины

Не более 5%

Температура кристаллизации хладагента

-35 градусов по Цельсию

Плотность продукта

1,120-1,150 г/см3

Вспениваемость

Не более 30 см3

Срок исчезновения пены

Не более 3 с

Какое преимущество есть у антифриза перед тосолом

Эксперты советуют заливать в систему охлаждения авто хладагент, обладающий наибольшим количеством преимуществ перед аналогами.

Какая способность эффективно охлаждать двигатель

Главное преимущество антифриза перед тосолом – повышенная эффективность охлаждения двигателя.

Использование классических жидкостей может привести к образованию накипи. Ее толщина на стенках системы охлаждения может достигать 0,5 мм.

Такой слой может защитить металл от ржавчины, однако значительно ухудшает теплоотвод. Тосол в данной ситуации начинает работать, как изолятор.

Двигатель при этом вынужден функционировать в условиях повышенной температуры. Обстоятельство отрицательно сказывается на его работоспособности и может привести к поломке.

Скорость износа деталей повышается. При этом происходит снижение общей мощности двигателя.

Карбоксилатный антифриз позволяет предотвратить перегрев. Использование жидкости не приводит к образованию накипи. Защитный слой появляется только на тех участках, где стало заметно воздействие коррозии. При этом толщина слоя не превышает 0,0006 мм, что не отражается на теплоотводе. Используя антифриз, автовладелец минимизирует вероятность возникновения проблем с работой системы охлаждения двигателя.

Какой срок эксплуатации

Известно, что пакеты силикатов содержат соли неорганических кислот. С большой уверенностью можно заявить, что при производстве российских антифризов в большинстве своем применяются нитриты и силикаты.

По логике эти вещества должны относиться к тосолам. Силикаты добавляют в состав расходного материала для того, чтобы во время использования он надежно защищал детали системы охлаждения, изготовленные из алюминия, от коррозии. Нитриты помогают оградить металл от кавитационной эрозии. По этой причине их тоже включают в состав российского антифриза.

Пакеты присадок, входящих в состав охлаждающей жидкости, сбалансированы. Однако это не препятствует тому, что они быстро теряют свои свойства из-за нарушения композиции по причине расхода одного из элементов.

Исследования показали, что в первую очередь истощаются запасы нитритов и силикатов. Если охлаждающая жидкость изготовлена только на основе этих присадок, уже через 30 000-40 000 км она полностью утратит свои защитные свойства.

В отличие от ОЖ отечественного производства, иностранные антифризы лучше сохраняют стабильность. Эта особенность объясняется тем, что зарубежные изготовители применяют другие присадки. Добиться стабильности охлаждающей жидкости позволяет карбоксильная технология. Расход присадок, входящих в состав антифриза, происходит медленно.

При этом эффективность защиты металла двигателя от коррозии не снижается. Не происходит и уменьшение мощности мотора. Так, некоторые марки зарубежного антифриза могут исправно выполнять свои функции до достижения пробега в 250 000 км.

Другими словами, жидкость для охлаждения зарубежного производства можно не менять до 5 лет, если она используется для нормальной работы двигателя легкового автомобиля, и до 7 лет, если расходный материал использован для грузового транспорта.

Какая защита водяного насоса

Многие автовладельцы сталкиваются с тем, что водяной насос часто выходит из строя. Главной причиной поломки служит гидродинамическая кавитация.

Течение физического процесса приводит к тому, что в детали начинают образовываться так называемые каверны – полости или пустоты.

Их появление приводит к тому, что лопасти водяного фильтра разрушаются, и он выходит из строя.

Многие автолюбители пытаются защитить свое транспортное средство от гидродинамической кавитации, пытаясь подобрать правильный антифриз, способный минимизировать разрушительное воздействие процесса.

Однако ряд специалистов утверждает, что охлаждающей жидкости, способной предотвратить быстрый выход из строя водяного фильтра на химическом уровне не существует.

Утверждение верно лишь отчасти. Отдав предпочтение карбоксилатному антифризу, владелец транспортного средства существенно снизит воздействие гидродинамической кавитации.

Срок службы водяного насоса при этом может увеличиться до 50%.

Что лучше тосол или антифриз

Даже зная основные свойства охлаждающих жидкостей, не всегда просто понять, что лучше заливать: тосол или антифриз?

Чтобы дать ответ на этот вопрос, эксперты советуют ознакомиться с требованиями к расходным материалам, которые предъявляет производитель конкретного автомобиля.

Нередко компания, выпустившая транспортное средство, самостоятельно указывает марки ОЖ, которые можно использовать для замены антифриза.

Однако чаще в инструкции по эксплуатации авто содержится только описание свойств, которыми должна обладать подходящая охлаждающая жидкость. Выбор разновидности расходного материала в данной ситуации ложится на плечи владельца авто.

Зарубежный антифриз и отечественный тосол изготавливаются по одной и той же технологии. Однако эксперты утверждают, что первая охлаждающая жидкость превосходит по качеству вторую.

При этом необходимо учитывать, что в учет принимались только качественные хладагенты. Если охлаждающая жидкость не соответствует нормам, она может нанести вред автомобилю, вне зависимости от того, тосол это или антифриз. Преимущества качественного антифриза перед тосолом представлены в таблице ниже.

Преимущество

Пояснение

   

Антифриз лучше охлаждает двигатель авто, чем тосол

В состав любого тосола входят вещества, которые способствуют защите деталей от коррозии и преждевременного разрушения. Попадая в систему охлаждения автомобиля, ОЖ данного типа создает на металлических элементах слой, толщина которого может доходить до 0,5 мм. Защищая компоненты системы от коррозии, тосол существенно снижает коэффициент теплоотдачи. Это приводит к тому, что двигатель автомобиля вынужден функционировать в условиях повышенной температуры. Мотор начинает быстрее изнашиваться. Кроме того, происходит снижение мощности двигателя, а расход топлива повышается.

Антифриз функционирует по другим принципам. Он создает защитный слой только в том месте, где наблюдается воздействие коррозии. Эта особенность позволяет сохранить теплоотдачу на положенном уровне.

Антифриз можно менять значительно реже, чем тосол

В отличие от тосола, антифриз обладает повышенной стабильностью. Расход присадок, входящих в состав ОЖ, осуществляется значительно медленнее. Антифриз может сохранять свои свойства до 100 000-250 000 км пробега. Если автовладелец использует расходный материал для обеспечения функционирования системы охлаждения легкового автомобиля, он может не менять ОЖ до 5 лет, а если хозяином грузового – то до 7 лет.

Самый мощный тосол приходит в негодность уже после 40 000 км пробега. Менять охлаждающую жидкость данного типа необходимо не реже, чем 1 раз в 2 года.

Антифриз позволяет обеспечить лучший уровень защиты алюминия

Подобный факт особенно важен для владельца автомобиля, в котором установлен радиатор из алюминия. В традиционных отечественных тосолах отсутствуют присадки, защищающие разновидность металла и предотвращающие его разрушение. Применение ОЖ данного типа приведет к преждевременному выходу системы охлаждения из строя.

В отличие от тосолов, карбоксилатный антифриз отлично защищает алюминиевые детали от разрушения.

Антифриз способствует увеличению периода функционирования водяного насоса

Водяные насосы быстро ломаются. Под действием протекающих физических процессов, в них начинают образовываться полости, которые приводят к быстрому разрушению детали. Использование антифриза может повысить период работы водяного фильтра на 40-50%. Классические тосолы подобным свойством не обладают.

Антифризу присуща стабильность свойств

Если автомобилист использует стандартный тосол, в системе охлаждения автомобиля могут образоваться гели. Они оказывают негативное влияние на охлаждение двигателя. Так, гели могут засорить радиатор и даже блокировать работу термостата. Воздействие гелей приводит к тому, что система охлаждения начинает работать хуже.

Карбоксилатный антифриз стабильнее тосола. Он не превращается в гель в процессе использования и не приводит к возникновению негативных последствий, к которым могут привести изменение свойств веществ.

Карбоксилаты обладают хорошей совместимостью

Карбоксилаты отлично совмещаются с пластмассовыми и резиновыми элементами, которые входят в состав системы охлаждения автомобиля.

Антифризы обладают стабильностью при высоких температурах

Охлаждающие жидкости данного типа не меняют свойств и позволяют обеспечить нормальное функционирование двигателя.

 

Какой антифриз лучше заливать ?

Немаловажную роль в эксплуатации автомобиля играет охлаждающая жидкость. Для чего она предназначена, из чего состоит, как часто ее следует менять и какую именно жидкость выбрать для той или иной модели – на эти и другие наиболее часто задаваемые нашими читателями вопросы мы ответим в нашей сегодняшней статье.

Для чего нужна охлаждающая жидкость?

Основная функция охлаждающей жидкости – уменьшать тепловые нагрузки на узлы и детали двигателя внутреннего сгорания, установленного в автомобиле. Она циркулирует по замкнутому контуру, соприкасаясь со стенками цилиндров двигателя (в них температура сгораемого топлива достигает нескольких тысяч градусов Цельсия) через так называемую «рубашку охлаждения» силовой установки (специальная полость), нагревается и отводит от блока цилиндров избыточное тепло.

система охлаждения двигателясистема охлаждения двигателя

В системе охлаждения двигателя рабочая жидкость течет по двум контурам – малому и большому, периодически нагреваясь (у рабочих поверхностей мотора) и охлаждаясь (в радиаторе). За циркуляцию охлаждающей жидкости в системе отвечает центробежный насос, а за ее перенаправление от большого контура к малому (при прогреве двигателя) в зависимости от рабочей температуры мотора – термостат.

Важную роль в системе охлаждения двигателя играет расширительный бачок: здесь содержится запас «охлаждайки», через его клапан регулируется избыточное давление охлаждающей жидкости, что позволяет мотору работать при более высоких температурах, не допуская ее вскипания.

Расширительный бачокРасширительный бачок

Из чего состоит охлаждающая жидкость?

Для охлаждения двигателя используются два вида жидкостей: дистиллированная вода и антифризы. Вода является наиболее дешевой, нетоксичной, с максимальной удельной теплоемкостью (способность поглощать тепло на единицу веса) и наибольшей способностью к охлаждению жидкостью. Антифризы – сложные по химическому составу вещества, которые обладают высокой температурой кипения и не подвержены замерзанию при критически низких температурах (от -40°С до -70°С).

антифризДистиллированная вода, антифриз, тосол

В системе охлаждения двигателя современных автомобилей воду не применяют из-за ее непрактичности: она замерзает уже при 0°С, расширяясь в объеме до 10% и превращаясь в кристаллы льда. Соответственно, выполнять свою основную функцию, отвод тепла от двигателя, в зимнее время эта «охлаждайка» уже не сможет, к тому же кристаллы льда, образовавшиеся в системе охлаждения мотора, могут нанести вред узлам и деталям силового агрегата, приведя к так называемому «размораживанию» двигателя — то есть, разрушению блоков цилиндров и головок блока. Поэтому сегодня автопроизводители отдают предпочтение антифризам, которые лишены присущих воде недостатков.

В состав антифризов входят два основных элемента — вода и многоатомные спирты, обладающие высокой способностью к расширению при нагревании, одной из ключевых характеристик охлаждающей жидкости. Помимо воды и многоатомных спиртов в составе антифризов присутствуют разнообразные присадки, улучшающие эксплуатационные характеристики охлаждающей жидкости: подавление образования ржавчины на металлических поверхностях, вспенивания при достижении высоких температур, разрушения поверхностей резиновых деталей, образования парового конденсата и прочих. Еще одним элементом антифриза является краситель, который играет роль маркера – если жидкость в процессе эксплуатации меняет цвет, то настало время для его замены.

По составу спиртов все антифризы делятся на два вида: этиленгликолевые и пропиленгликолевые.

Этиленгликолевые охлаждающие жидкости содержат этиленгликоль – многоатомный спирт сладковатого запаха, желтого цвета, плотность которого при +20°С составляет 1.112-1.113 г/см³, температура кипения — 197°С, а замерзания -11.5°С. В зависимости от того, для каких условий эксплуатации предназначена «охлаждайка» на основе этиленгликоля, ее разбавляют с водой в таких пропорциях 1:1, 1:2 или 2:3. Чем большее содержание в такой смеси этиленгликоля, тем большей стойкостью к замерзанию и закипанию он обладает.

Пропиленгликолевые антифризы в своем составе имеют пропиленгликоль – многоатомный спирт, во много схожий по химическим свойствам с этиленгликолем, но обладающий меньшей токсичностью и большей степенью кинематической вязкости. Последнее его свойство можно отнести к недостаткам, так как при воздействии на силовой агрегат внешних низких температур скорость циркуляции такой «охлаждайки» по системе охлаждения двигателя падает, и жидкость хуже выполняет свои функции.

Антифризы также различаются по химическому составу присадок — их делят на четыре типа: традиционные, карбоксилатные, гибридные и лобридные.

Традиционные, используемые в основном в автомобилях, выпускавшихся в странах Европы, Северной Америки и ряде азиатских стран (Япония, Южная Корея) до 2 000 года, присадки в своем составе содержат замедлители коррозии из неорганических элементов – фосфатов, нитратов, боратов и так далее. Их перестали использовать для охлаждения двигателей по нескольким причинам: сравнительно короткий срок эксплуатации (до 2 лет), низкая температура кипения (до 105°С). В процессе работы традиционные присадки, разлагаясь, покрывали слоем содержащихся в них веществ рабочие поверхности, что приводило к ухудшению охлаждения узлов и деталей силовой установки, разрушению элементов центробежного насоса, засорения магистрали системы охлаждения машины.

Применение: традиционные антифризы (Тосол) сегодня используют в машинах отечественного производства (ВАЗ, УАЗ, ГАЗ).

Карбоксилатные, содержащие в своем составе органические кислоты (карбоксилаты), присадки являются наиболее эффективными в замедлении коррозии. Они способны точечно воздействовать на потенциальные очаги коррозии и кавитации (образовании парового конденсата), покрывая проблемные места защитным слоем не более 1 микрона, что позволяет более эффективно охлаждать двигатель. Срок службы таких присадок – от пяти лет и более, в зависимости от условий эксплуатации.

Применение: карбоксилатные антифризы используют в автомобилях марок Fiat, Ford, KIA, Hyundai, Renault и прочих.
Гибридные присадки содержат в своем составе неорганические (силикаты, нитриты или фосфаты) и органические (карбоксилаты) вещества. Совокупное воздействие этих смесей на очаги возникновения коррозии и парового конденсата выше, чем у традиционных присадок, но из-за наличия неограники они имеют те же, но выраженные в меньшей мере, недостатки, что и у «чистых» силикатных, фосфатных и нитритных ингибиторов. Срок службы гибридных присадок – от трех до пяти лет.

Применение: гибридные антифризы используются в автомобилях марок Chrysler, Mercedes-Benz, BMW.

Лобридные присадки – самый новый вид подавителей коррозии и парового конденсата, которые можно отнести к подвиду гибридных. Их особенность — в распределении в смеси органических (90% карбоксилатов) и неорганических (10% силикатов) веществ, что приводит к улучшению технических характеристик таких антифризов по сравнению с гибридными.

Применение: используется в автомобилях марок Peugeot, Citroen, Volkswagen, Skoda, Seat.

Маркировка антифризов от Volkswagen

Концерн Volkswagen разработал для карбоксилатных, гибридных и лобридных антифризов свою маркировку допуска охлаждающей жидкости, которую сегодня применяют множество производителей «незамерзайки». Так, карбоксилатные антифризы имеют маркировку G12 и G12+ (соответствуют спецификации VW TL 774-D/VW TL 774-F), гибридные – G11 (соответствуют спецификации VW TL 774-C), лобридные – G12++, G13 (соответствуют спецификации VW TL 774-G).

Оригинальный антифриз Volkswagen Оригинальный антифриз Volkswagen

Особенностью этих спецификаций является запрет на использование в составе охлаждающих жидкостей боратов, нитритов, аминов, фосфатов и силикатов (кроме G11 и G12++, где содержание этого вещества допускается в пределах до 680 мг/л и до 500 мг/л соответственно). Фольксваген допускал использование антифризов G11 в своих автомобилях, произведенных до 1996 года, G12 и G12+ — в моделях, выпущенных с 1997 по 2008 годы. Незамерзающие жидкости G12++ и G13 применяются сегодня в системах охлаждения двигателей автомобилей, произведенных концерном с 2008 года.

Фольксвагеновцы тщательно следят за тем, чтобы их допуски соблюдались производителями антифризов, которые маркируют свою продукцию в соответствии со спецификациями G. Если в составе охлаждающей жидкости, помеченной, например, G12+, имеется хотя бы одно из запрещенных веществ, то такой антифриз не соответствует стандартам Volkswagen и может считаться подделкой, так как такая «незамерзайка» не будет выполнять всех функций, может преждевременно «состариться» и нанести вред двигателю.

В чем разница между тосолом и антифризом?

Разницы между Тосолом и Антифризом нет.

Никакой разницы тут быть не может, так как привычный российским автолюбителям «Тосол» – тот же самый антифриз, относящийся к традиционным охлаждающим жидкостям. Он содержит в своем составе этиленгликоль, воду и неорганические присадки. Различают, к примеру, «Тосол 40» и «Тосол 65», первый – голубого цвета, второй – красного. «Тосол 40» разработан для эксплуатации при температурах не ниже -40°С, а «Тосол 65» — для работы незамерзающей охлаждающей жидкости при температурах не ниже -65°С.

Можно ли смешивать разные по составу охлаждающие жидкости?

Как и в случае с моторными маслами и трансмиссионными жидкостями, смешивать охлаждающие жидкости разных типов и классов не рекомендуется ввиду различий в их химических составах. Так, при смешении карбоксилатных и традиционных присадок их химические вещества могут выпасть в осадок, что приведет к засорению системы охлаждения. Если даже этого не произойдет, то разные по химическому составу присадки могут вступить в реакцию, в результате которой их полезные свойства в значительной мере ослабятся.

Совет: если нет возможности пополнить запас «охлаждайки» немедленно, лучше добавить в расширительный бачок системы охлаждения дистиллированную воду.

Каковы сроки замены охлаждающей жидкости?

Замена в системе охлаждения рабочей жидкости производится в трех случаях: планово, досрочно и в аварийной ситуации.

Планово охлаждающую жидкость заменять в зависимости от сроков, установленных производителем автомобиля. Эту информацию можно почерпнуть их руководств по эксплуатации к каждой конкретной модели. Повторимся: антифризы с традиционными присадками меняют через каждые два года, ОЖ с карбоксилатными присадками – через пять – семь лет, «охлаждайки» с гибридными присадками – через три – пять лет, антифризы с лобридными присадками – через пять – шесть лет.

По истечении этих сроков эксплуатационные характеристики охлаждающих жидкостей меняются: они теряют способность противостоять коррозии, начинают закипать при сравнительно низких температурах, хуже отводят тепло от узлов и деталей силовых установок.

Досрочно менять охлаждающую жидкость нужно, если произошла конструктивная поломка двигателя, например, в антифриз начали поступать выхлопные газы из прохудившейся прокладки блока цилиндров либо при разгерметизации системы охлаждения и поступления в нее воздуха. Взаимодействие ОЖ с выхлопными газами или воздухом приводит к тому, что жидкость преждевременно теряет свои основные эксплуатационные свойства. Понять, что нарушена работа охлаждающей системы можно, если вы заметили, что чаще стал включаться вентилятор радиатора, на стенках расширительного бачка появились похожие на желе отложения либо в бачке появился осадок (зачастую обнаруживается при температуре воздуха -15°С).

Возможная поломка системы охлаждения двигателяВозможная поломка системы охлаждения двигателя

К аварийным ситуациям, во время которых водителю пришлось доливать воду в систему охлаждения, можно отнести лопнувший шланг. Шланг поменяли, недостающее количество «охлаждайки» дополнили водой, взятой из-под крана. Что происходит дальше? Обычная водопроводная вода не обладает свойствами дистиллированной, поэтому содержание в ней солей – повышенное. Эти соли, взаимодействуя с химическими веществами, входящими в состав ОЖ, образовывают осадок, который негативно влияет на металлические детали системы – проще говоря, активизируются коррозионные процессы. Выпавшие в осадок вещества затрудняют циркуляцию антифриза в системе, что приводит к ненадлежащему отведению тепла от узлов двигателя, в результате чего может произойти перегрев мотора. Если вам все-таки пришлось залить в систему охлаждения двигателя воду из-под крана, то при первой же возможности полностью замените «охлаждайку», предварительно промыв систему дистиллированной водой.

Читайте также: Как заменить охлаждающую жидкость своими руками

ТОСОЛ или антифриз. В чем разница. Что лучше. Можно ли мешать.

На чтение 12 мин.

Что лучше, ТОСОЛ или антифриз – такой вопрос часто возникает у автомобилистов и не только. И вообще, чем они отличаются? Нередко можно встретить мнение, что это вообще-то одно и то же. И резко противоположное пренебрежительное отношение к тосолу, с подчеркиванием того, что антифриз однозначно лучше. Кто прав и где находится истина? Попробуем разобраться.

Для чего нужны охлаждающие жидкости в автомобиле

Охлаждающая жидкость в расширительном бачке автомобиля

В процессе работы двигателя он неизменно перегревается, особенно при повышенных мощностях, при работе на высокой скорости или при минусовых температурах зимой. Перегрев вредит мотору и автомобилю в целом, приводит к поломкам и выходу из строя. Поэтому работающий двигатель необходимо охлаждать.

Когда-то существовали системы воздушного охлаждения – с обдувом, но более совершенной и используемой во всех современных транспортных средствах является жидкостная система охлаждения. Жидкость, заливаемая в нее, омывает нагревающийся двигатель, при этом охлаждает его и нагревается сама. Поступая в радиатор, она отдает тепло его пластинам и охлаждается.

Охлаждающие жидкости – это не вода. Вода закипает уже при 100 градусах Цельсия, расширяется при застывании, что приводит к разрыву патрубков и другим повреждениям системы. Неизбежным последствием ее использования будет и коррозия – попросту говоря, ржавчина и разрушение металлических частей системы.

В составе антифризов есть и вода, но основной компонент – спирт (этиленгликоль, пропиленгликоль, моноэтиленгликоль и др.), плюс присадки в виде различных химических соединений, которые обладают антикоррозийными, смазывающими свойствами, продлевают срок службы такой жидкости и выполняют ряд других полезных функций.

Интересно! Принято различать тосол и антифриз. По идее, последним можно назвать любую охлаждающую жидкость. Английское слово antifreeze переводится как «незамерзающий». То есть не так уж не правы те, кто утверждает, что это одно и то же. А тосол – это имя собственное, давно ставшее нарицательным. Однако в нашей стране принято отделять одно от другого. Далее рассмотрим подробно, что это такое и чем они отличаются.

Что такое ТОСОЛ

Тосол А-40М и ОЖ-40

Многие автомобилисты считают тосол примитивным антифризом и даже не догадываются, что означает это название и откуда оно пошло. Так что же все-таки такое тосол?

История создания ТОСОЛа

ТОСОЛ – это охлаждающая жидкость, изобретенная в середине 20 века советскими учеными. До этого существовала единственная отечественная ОЖ – антифриз по ГОСТ 159, так его называли (в некоторых случаях пользовались и водой). У этого продукта было низкое качество. Если со своими охлаждающими обязанностями он еще как-то справлялся, то в остальном оставлял желать лучшего: пенился, быстро приходил в негодность, вызывал возникновение коррозии.

А вот отечественный автопром не стоял на месте. Новая модель «Жигулей» подтолкнула ученых к мысли, что необходимо и совершенно новое качество охлаждения. К разработкам приступил Государственный Союзный НИИ органической химии и технологии. Работа шла три года. Наконец, ученым из отдела Технологии органического синтеза (сокращенно ТОС) удалось создать совершенно новый антифриз для «Жигулей». Он получил название ТОСОЛ. Эта аббревиатура состоит из двух частей: ТОС – по названию отдела-создателя, и ОЛ – по химической номенклатуре это окончание показывает, что в состав вещества входит спирт.

Состав ТОСОЛа

В советское время существовал один-единственный ТОСОЛ, состав которого был строго регламентирован государственным стандартом. В настоящее время это название широко используется различными производителями на территории России и стран СНГ, состав которых различается и регламентируется собственными ТУ. Поэтому и качество таких жидкостей различается.

Однако в основе жидкости, называемой тосолом, всегда лежит этиленгликоль и дистиллированная вода. Также часто используется глицерин. Разница, преимущественно, состоит в присадках. Используются силикаты, бензоат натрия, буры (бораты), бензоат натрия, нитрит натрия, каптакс, декстрин, бутанол, пеногаситель. Их наличие или отсутствие, а также процентное соотношение у разных производителей различны.

Другие особенности ТОСОЛа

Окрашивают тосолы, как правило, в голубой или синий цвет – как тот самый первый, советский. Однако выбор красителя – дело произвольное и на характеристики и свойства жидкости никак не влияет. Поэтому, по идее, изготовитель может придать ему любой оттенок – например, красный (используется для тосолов-65), зеленый или желтый.

Классический тосол обеспечивает защиту от замерзания до -40 градусов, а защиту от закипания – в среднем до +110 градусов Цельсия. Однако существуют и концентрированные варианты этого хладагента (как у антифризов), а также состав с пометкой -65, то есть, обеспечивающий защиту до минус 65 градусов Цельсия и подходящий для северных регионов.

Первый ТОСОЛ был разработан специально для марки «Жигули». Выпускаемые сегодня его потомки тоже, как правило, имеют одобрения и рекомендации для отечественных автомобилей, как легковых, так и грузовых, специализированной техники. Тосол с пометкой -65 рекомендуется использовать в тяжелой промышленной, грузовой, строительной технике, вынужденной работать в условиях Крайнего Севера. Подходят большинство тосолов для ВАЗ, УАЗ, КАМАЗ и других машин российского производства.

Тосол имеет небольшой ресурс – до двух лет, или 50-60 тысяч километров пробега.

Что такое антифриз

Антифриз G12+ и G11

Антифриз, как уже было сказано, происходит от английского слова «незамерзающий». То есть, это жидкость, не замерзающая в морозы. Попробуем разобраться, какие жидкости распространены сегодня под этим названием.

Антифриз – это охлаждающая жидкость для современных ДВС, в состав которой входит спиртовая (глицериновая) основа и присадки. Собственно, в присадках, отличающихся от использованных в тосоле и друг от друга, и есть вся суть.

Какие антифризы бывают

Все существующие на сегодняшний день антифризы в зависимости от состава и технологии производства можно разделить на две большие группы – силикатные, произведенные по традиционной технологии, и карбоксилатные – произведенные по технологии органических кислот. Есть также варианты, где задействована и та, и другая, и во всех этих отличиях легко запутаться.

Какой-то международной классификации антифризов не существует. Поэтому многими производителями была негласно принята за эталон система стандартов, которая первоначально была придумана и использовалась концерном Фольксваген для собственных ОЖ. Ее заимствование позволяет разложить все виды по полочкам.

На сегодняшний день используются следующие стандарты антифризов:

  1. G11. Традиционный, или силикатный антифриз. В его состав входят этиленгликоль, силикаты и другие неорганические вещества: фосфаты, бораты, нитриты, нитраты, амины. В этом антифриз схож с тосолом – в нем, как было написано выше, тоже присутствуют различные соединения. Такие ОЖ покрывают детали системы охлаждения изнутри ровным слоем, который обеспечивает им смазывание и защищает от износа и коррозии. Однако этот же слой значительно ухудшает теплообмен, а от вибрации и перепадов температур выпадает в осадок. Поэтому менять такую жидкость лучше не реже чем раз в два года.
  2. G12. Хладагенты этого стандарта – следующее поколение. В их основе лежит технология органических (карбоновых) кислот. Поэтому называются они карбоксилатными. В их составе отсутствуют силикаты, а также вся их компания в лице боратов, аминов, нитратов и других соединений. Такие жидкости не создают никакого слоя на поверхности деталей, благодаря чему получается превосходный теплообмен. А вот от коррозии они действуют точечно – то есть, направляя ингибиторы туда, где эта коррозии уже началась. К сожалению, сделать так, чтобы она не начиналась, карбоксилатные антифризы не могут.
  3. G12+. Так называемый гибридный антифриз. Создавая его, производители решили соединить все лучшее, что есть в традиционных и карбоксилатных технологиях и смешали органические присадки с неорганическими. В результате такой состав одновременно и создает защитный слой, и уничтожает уже зародившиеся очаги коррозии.
  4. G12++. Еще более усовершенствованный карбоксилатный хладагент. В нем к органической основе добавлены минеральные присадки.
  5. G13. Это самое новое поколение ОЖ. Лобридный антифриз производится на основе не этиленгликоля (и его вариаций), а пропиленгликоля. В отличие от своего предшественника, он не ядовит и считается экологически чистым. А еще у таких хладагентов практически неограниченный срок службы.

У каждого из этих стандартов есть свои преимущества и недостатки, поэтому каждый находит своего ценителя.

Цвет антифриза

Антифризы разных цветов

Антифриз можно встретить практически любого цвета. Существует распространенный миф, что одни и те же цвета означают одинаковые свойства, значит, зеленый можно смело доливать к зеленому, а красный к красному. Это ошибочное мнение.

На самом деле все охлаждающие жидкости (в том числе и тосол!) сами по себе прозрачные и бесцветные. Краситель к ним стали добавлять, потому что они ядовиты, чтобы не перепутать с водой. Кстати, по этой же причине во многие хладагенты иностранного производства добавляется горькая вкусовая добавка, чтобы, к примеру, ребенок не смог из любопытства выпить слишком много и в результате отравиться. Вторая причина добавки красителя – чтобы быстро находить и устранять места протечек. Многие производители добавляют с этой целью еще и флуоресцентный компонент.

Важно! Краситель никак не влияет на состав и свойства продукта, а стандартов, регламентирующих выбор оттенка, не существует. Поэтому выбор остается за производителем. Вот почему смешивать антифризы по цвету не стоит.

Однако хоть стандартов в этом плане и не существует, большинство производителей стараются придерживаться следующих правил:

  • ОЖ G11 – синие, голубые, зеленые, сине-зеленые, бирюзовые;
  • ОЖ G12 (с плюсами и без них) – все оттенки красного, оранжевого;
  • ОЖ G13 – розовые, фиолетовые.

Это приблизительно. На самом деле есть карбоксилатные жидкости зеленого цвета и лобридные – желтого. У некоторых производителей существуют целые линейки, в которых один и тот же по составу антифриз окрашен, к примеру, в четыре разных цвета.

Температурный диапазон

Температурный диапазон у современных охлаждающихся жидкостей также отличается. Температура закипания находится примерно на одном уровне – +110-115 градусов Цельсия. А вот температура замерзания варьируется. Большинство готовых к применению ОЖ работают до предела в минус 36-40 градусов Цельсия. Есть варианты и для северных регионов – минус 50 и 65.

Кроме того, есть концентраты охлаждающих жидкостей. Их нельзя использовать в чистом виде, нужно разводить дистиллированной или деминерализованной водой. Температура начала кристаллизации у них зависит как раз от процентного соотношения воды и основы.

Область применения и сроки использования

Антифризов на современном рынке большое разнообразие. Поэтому подобрать свой вариант можно для машины любой марки, отечественной и зарубежной, старой и новой, с разными типами двигателей и топлива, на котором она работает.

Сроки годности антифризов тоже варьируются в зависимости от их состава и технологии производства. У большинства традиционных он составляет 2-3 года, у карбоксилатных – 5 лет, у лобридных – от 5 лет и выше. Однако все это приблизительно. Кроме интервала замены самой ОЖ нужно учитывать еще и рекомендации производителя автомобиля.

Что лучше использовать, тосол или антифриз?


Такой вопрос не совсем корректен, поскольку, как было сказано выше, тосол – это тоже антифриз. Поэтому вопрос должен стоять не или-или, а какой из антифризов использовать лучше всего?

На этот вопрос однозначного ответа быть не может. Принципиальных отличий между тосолом и, к примеру, антифризом G11 – нет. У них схожий состав, свойства и срок действия, т.о. антифриз G11 по сути тот же ТОСОЛ.

Бытует мнение, что тосол подходит для стареньких отечественных машин, а антифризы – для иномарок. Отчасти это верно, поскольку система охлаждения тех же «Жигулей» менее требовательна. Однако есть люди, успешно использующие тосол и в иномарках.

Поэтому, задаваясь вопросом, как сделать правильный выбор, нужно руководствоваться тем, в каких условиях эксплуатируется автомобиль, при каких температурах, что рекомендует автопроизводитель. В плане выбора жидкости нужно помнить об интервале замены. Так, тосол придется часто менять, а, к примеру, лобридный антифриз – редко. Зато у первого и стоимость будет в несколько раз ниже. Особенно важны допуски и рекомендации, указанные на самой жидкости.

Ну и, конечно, качество. Сейчас существует немало плохо сделанных ОЖ, а еще подделок, использовать которые просто опасно. И некачественный карбоксилатный антифриз будет гораздо вреднее для двигателя, чем качественный тосол.

Поэтому определить, тосол или антифриз лучше использовать, можно, только решив для себя, что в приоритете, и выбрав по-настоящему качественный продукт.

Можно ли смешивать ТОСОЛ и антифриз


Еще часто встречается вопрос, а можно ли смешивать тосол и антифриз? Поскольку, опять же, мы выяснили, что тосол – это разновидность антифриза, то уместнее будет просить, можно ли смешивать антифризы между собой?

Важно! Стоит знать, что мешать между собой разные охлаждающие жидкости без острой необходимости не стоит. Даже имеющие аналогичный состав, они могут в чем-то не совпадать (к примеру качеством присадок), поэтому качество смеси будет хуже качества каждой из них в отдельности. Поэтому доливать другую ОЖ можно только в крайних случаях и по чуть-чуть. А вот заливать то, что под руку подвернется, не разобравшись, что находится в бачке, и вовсе опасно. Вступившие в конфликт присадки могут превратить жидкость в гель или образовать обильный осадок.

Также можно встретить вредный совет доливать антифриз по цвету. Это неправильно, так как цвет – всего лишь выбор производителя и не означает принадлежность к какой-либо категории. Единственное, чем нужно руководствоваться при выборе доливки, это технология и состав.

Антифриз G11 можно смешивать с таким же или тосолом, с гибридным. Карбокислатные – мешать с карбоксилатными. Ни в коем случае нельзя смешивать карбоксилатный антифриз с традиционным или тосолом!

Вывод

Подводя итог, можно сказать, что выбрать подходящую охлаждающую жидкость для своего автомобиля в наше время – не проблема, будь это хоть тосол, хоть дорогущий лобрид. Проблема в другом: их слишком много, и легко запутаться в разнообразии. Главное – учесть все рекомендации производителя и не гнаться за тем, что дешевле всего, а выбрать качественный состав, который точно не навредит машине. Тем более, что потратиться придется раз и на долгое время.

Видео

Тосол или антифриз что лучше — использовать, заливать в свой авто? Просто о сложном

Можно ли смешивать ТОСОЛ и АНТИФРИЗ. ЭКСПЕРИМЕНТ!

куда и как нужно доливать антифриза в систему охлаждения ДВС

Для поддержания температуры работающего двигателя водителю необходимо знать стоит о том, как доливать и заливать антифриз в систему охлаждении двигателя (СОД) правильно.

СОД предназначен для хранения охлаждающей жидкости (ОЖ) и ее прокачки через рубашку охлаждения мотора, большой радиатор и его меньший аналог, использующийся для обогрева салона. При недостаточном уровне антифриза или тосола силовой агрегат будет перегреваться, а в СОД будут образовываться воздушные пробки.

В зависимости от характеристик жидкости, она может использоваться в течение обозначенного производителем времени, а затем должна быть заменена. Доливку нужно осуществлять по мере необходимости, регулярно отслеживая уровень жидкости в системе.

Наличие в ОЖ определенных присадок, о чем нередко говорит цвет состава, препятствует развитию коррозийных процессов и образованию накипи. Важно помнить, что доливать тосол в антифриз и наоборот воспрещается, поскольку это приведет к нежелательным химическим реакциям, появлению осадка и ухудшению характеристик жидкости.

При покупке антифриза нужно учитывать, что некоторые производители подкрашивают свой продукт в маркетинговых целях.

Замена ОЖ

Хладагент необходимо заменять, если он отработал положенный срок, а также в случае, если автомобиль обслуживается после активной эксплуатации в летнее или зимнее время.

Для правильной заливки антифриза в систему охлаждения рекомендуется вначале полностью удалить старую жидкость, в том числе и с системы обогрева, выставив на максимум регулятор печки. Сделать процесс эффективнее поможет расположение автомобиля на склоне фронтальной частью кузова вверх. Далее надо открыть расширительный бачок и крышку радиатора. Затем выкрутить пробки на блоке цилиндров и радиаторе и слить ОЖ.

Если прежняя охлаждающая жидкость исправно выполняла свою функцию, стоит заливать такую же. Перед этим желательно промыть систему охлаждения водой, лучше дистиллированной, дав мотору прокачать ее через все патрубки и радиаторы, прогрев его до температуры, при достижении которой клапан пускает жидкость по большому кругу.

Если ОЖ серьезно загрязнилась, например, после использования герметиков, обычной воды или смешивания антифризов с кардинально разными составами для промывки потребуется использовать специальное промывочное средство, после которого система должна быть очищена дистиллированной водой. После этого можно наполнить систему новым антифризом.

Избавиться от излишков воздуха после заливки ОЖ можно благодаря его стравливанию через патрубок в верхней части блока цилиндров. При необходимости расширительный бачок дополнительно наполняется антифризом до нормального уровня.

Как доливать хладагент

Иногда требуется просто добавить охлаждающую жидкость. При этом крайне важно использовать ОЖ с таким же составом, желательно того же производителя. Лучше это делать на холодном или немного остывшем двигателе. Нужно открыть крышки системы, а затем наполнить радиатор почти под завязку. Если уровень ОЖ был слишком низок, и в системе образовались воздушные пробки, потребуется дать мотору поработать несколько минут с открытыми крышками для стравливания избыточного давления.

В летнюю жару к антифризу можно добавлять дистиллированную воду. Смешивать обычную воду, тосол или антифриз между собой не рекомендуется. Если этого не удалось избежать, придется в ближайшее время промыть систему и залить новую ОЖ.

Контроль уровня антифриза

Для этого прибегают к нескольким методам:

  • Наблюдение за индикатором на панели приборов.
  • Наблюдение за уровнем ОЖ непосредственно в расширительном бачке.

В стандартных условиях эксплуатации это нужно делать раз в месяц и всегда перед продолжительным путешествием. Если в пути на панели проборов появляется сигнал о перегреве, то эта проблема иногда возникает из-за недостаточного уровня антифриза в системе. Зимой об этом может говорить медленный прогрев и некачественная работа печки.

Заметив нестандартное поведение силового агрегата, касающееся температурного режима его работы, нужно посетить СТО для диагностики системы, поскольку работа при перегреве чревата деформацией многих деталей ДВС. Понимание того, как правильно заливать и доливать антифриз в систему охлаждению, поможет водителю защитить двигатель от перегрева.

Что нужно менять при замене масла в двигателе – Периодичность замены масла в двигателе. Через сколько тысяч км нужно менять масло

  • 20.06.2019

Какие фильтра менять при замене масла в двигателе

Для нормального и стабильного функционирования двигателя и автомобиля в целом нужно регулярно менять фильтры. Ведь даже самое качественное топливо все равно содержит некоторые примеси, которые нужно удержать от проникновения в камеру сгорания. Также важно чтобы воздух поступал в двигатель без различных примесей, чтобы не усложнять работу движка. Поэтому у многих автомобилистов возникает вопрос, какие фильтра менять при замене масла в двигателе.

Большинство специалистов утверждают, что при смене смазочного материала лучше поменять все фильтры. Это позволит четко знать, на каком определенном пробеге были сменены все фильтрующие элементы. 

Следить за работоспособностью автомобильных очищающих элементов желательно систематически. Несвоевременная замена этих элементов может привести к загрязнению движка инородными частицами, что в итоге вызовет поломку двигатели или нарушения нормального функционирования систем его обслуживания. Поэтому нужно четко уяснить, какие фильтра менять при замене масла в двигателе.

Основные технологические требования к выпускаемым фильтрам

В связи со значительной зависимостью нормальной работы движка от работоспособности к ним представляются такие требования:

  1. оптимальные параметры;
  2. качественный и долговечный материал;
  3. удобное расположение в корпусе автомобиля для быстрой и удобной замены;
  4. сохранение оптимального уровня работоспособности при различных погодно-климатических условиях;
  5. работоспособность при повышенных технических нагрузках.

Для приобретения определенной марки нужно использовать конкретный номер фильтрующего элемента, согласно каталога запасных частей определенной марки автомобиля. Чтобы не купить подделку плохого качества, лучше приобретать в сертифицированных магазинах или сервисных центрах.

Для чего устанавливается фильтр в автомобиле

В современных автомобилях установлено пять фильтров: сажевый, салонный, топливный, воздушный и масляный. Все они выполняют определенные функции:

  1. обеспечение нормального режима двигателя в критических режимах;
  2. пуск двигателя при пониженных температурах;
  3. снижение скорости потока смазочного материала и воздуха;
  4. выделение и утилизация вредных инородных элементов.

Механизм работы фильтра масляного

Он контролирует объем подачи смазывающего материала, в двигатель, одновременно очищая поступающее вещество от всех имеющихся грубых примесей. В корпусе фильтра размещена пористая бумага повышенной прочности. Поверхность бумаги обработана специальной водостойкой смолой. 

Заменять нужно одновременно с заменой смазочного материала. В основном такая замена осуществляется через 12-15 тыс. км. пробега. Такая цифра является усредненной, а точные параметры замены нужно узнать у разработчиков и производителей автомобиля. Простая конструкция спровоцировала такую ситуацию на рынке автомобильных запчастей, что этот фильтрующий элемент стали выпускать многие фирмы.

Но для правильного приобретения и надежной и долгой работы нужно покупать именно оригинальный продукт и исключительно по номеру в каталоге. Только так можно избежать приобретения подделки и возникновения последующих проблем с эксплуатацией автомобиля. Установка некачественного может привести к разрыву фильтрующей материи или корпуса что вызовет утечку смазывающего материала из двигателя.

Предназначение и механизм работы воздушного фильтра

Он функционирует для очистки поступающего из окружающей среды атмосферного воздуха, который по воздухопроводам попадает в силовой агрегат. Сам этот элемент выполнен из пористой и плотной бумаги зафиксированной в пластиковом корпусе. Заменять его нужно одновременно со сменой масла, но если автомобиль большую часть своего пробега передвигается по пыльным грунтовым дорогам, то замена его должна проводиться раньше. Заменить фильтр можно самостоятельно, так как он расположен в достаточно доступном месте и эту работу может выполнить даже начинающий автомобилист.

Некоторые автомобилисты не заменяют на новый, а пытаются очистить его при помощи пылесоса или других устройств. Это не совсем правильно и учитывая достаточно низкую цену все-таки предпочтительней поставить новый.

Функции и принцип действия салонного фильтра

Он сконструирован для очищения воздуха, который попадает в салон автомобиля. Фильтр собран из корпуса и расположенного в нем активированного угля, через который проходит поток воздуха, а инородные частицы остаются в нём. По мере накопления различного мусора он теряет свои функции и нуждается в замене.

Еще нужно помнить о том, что этот фильтр оберегает испаритель кондиционера от засорения. Замена фильтра рекомендует проводить одновременно с обновлением масла. Но если при влажной погоде происходит запотевание стекол, то это главный признак необходимости замены этого фильтра.[/stextbox

Характеристика топливного фильтра

Применяется для очистки поступающего в силовой агрегат топлива. Чистота используемого топлива напрямую зависит на длительность нормальной работы. В автомобилях установлены две разновидности топливных фильтров: магистральный и погружной.

Их надо заменять по рекомендациям автопроизводителя или первых признаках выхода его из строя. Если его не поменять, то это может привести к таким последствиям:

  • засорение и последующее снижение эффективности функционирования топливной системы;
  • поломка форсунок;
  • снижение мощности движка;
  • нестабильная работа агрегата в целом.

Принцип работы сажевого фильтра

Их устанавливают исключительно на автомобилях укомплектованных дизельными агрегатами для сбора сажи и различных твердых частиц. Заменяют их только в исключительных случаях, так как они способны выполнять свои функции в течении всего срока эксплуатации двигателя. Можно самостоятельно чистить фильтры с использованием процесса постинжекции.

Заключение

Автомобильные фильтры нуждаются в постоянном уходе и если необходимо замене. Ответ на вопрос о том, какие фильтра менять при замене масла в двигателе, остается открытым пока существует несколько точек зрений по данной тематике.

Чтобы знать, сколько проработал каждый фильтр желательно менять их одновременно с заменой масла. Можно руководствоваться рекомендациями различных фирм и менять их в разное время или в связи с выходом их из строя. Выбор всегда остается за автомобилистом.

Что Меняют При Замене Масла В Двигателе

Необходимо ли промывать движок при подмене масла с синтетики на синтетику, на полусинтетику, с минералки на синтетику?

Часто поменять масло в машине — это принципиальная процедура для неплохой работы мотора и его долговечности. Автомобилисты часто думают, необходимо ли промывать движок при подмене масла? В случае и продать, то всегда ли и как нередко это делать? Какие методы употребляются, какой из их числа избрать лучше? Попробуем дать ответы на все эти вопросы.

Промывать или не промывать

При подмене масла снизу мотора оно соединяется, а сверху заливается. Не смотря на это не нужно быть спецом, чтоб осознавать, что когда масло соединяется, какая-то часть все-же остается на стенах и в других частях мотора, безизбежно смешиваясь с вновь заливаемым маслом. Потому, не существует такого человека, вначале, при вопросе что, необходимо ли промывать движок при подмене масла, ответ навязывается положительный.

Что Меняют При Замене Масла В Двигателе

Но так ли все очень просто? Почему столько споров появляется на этот счет?

Эксперимент

В одном из интернет-изданий, специализирующихся на смазочных материалах, решили не полагаться на рекламные ходы компаний, а экспериментально узнать, необходимо ли промывать движок при подмене масла с минералки на полусинтетику, синтетику, с полусинтетики на синтетику и т.д..

Опыт происходил таким образом. В автомобиль заливали масло: после минералки — полусинтетику, после полусинтетики — синтетику, после синтетики — опять синтетику ну что же же в оборотном порядке. Были испробованы нашему клиенту остается вероятные варианты перехода с 1-го вида масла на другое. При всем этом всякий раз применяли два метода при подмене: с промывкой мотора и без такого. Всякий раз брали пробу отработавшего масла и ассоциировали характеристики, где мотор мыли и где не мыли.

Что Меняют При Замене Масла В Двигателе

Читайте так же

В итоге опыта выяснилось, что без промывки масло указывает себя лучше если, когда изменяется минералка на полусинтетику, полусинтетика на синтетику и один вид на таковой же самый. Потому при вопросе что, необходимо ли промывать движок при подмене масла с полусинтетики на синтетику, конечно ответить: нет, вы не будете. Но в оборотном порядке, другими словами при подмене с синтетики на полусинтетику и с полусинтетики на минералку, результаты проявили, что масло усугубляется если проход, если промывка мотора не делается.

Почему нужно промывать агрегат

Чтоб разобраться здесь, необходимо осознавать как работает в моторе масло. Ведь оно смазывает не только лишь те детали, которые двигаются, но и дополнительно очищает их. Вся грязюка смывается со стен и перемешивается с его помощью, по причине чего масло становится более темным, а его вязкость возрастает.

Что Меняют При Замене Масла В Двигателе

Понятно, что в его состав входят моющие присадки. Но у их после заправки сходу начинается процесс разложения, и с повышением пробега их характеристики ухудшаются. Под конец свои задачки они решать уже просто не имею возможности. Кроме этого, до 20 процентов масла при подмене остается в укрытых полостях. В нем, как все знают, содержится грязюка, которая сразу смешивается с новым. Именно по этой причине замена даже при неплохом качестве ведет к ухудшению работы агрегата, на вопрос что же на самом деле, необходимо ли промывать движок при подмене масла, ответ будет совершенно точно положительным.

Однако здесь бывают некие уточнения.

Когда

Из соображений проведенного выше опыта, конечно ответить на вопрос что, необходимо ли промывать движок при подмене масла. Ответ находится в зависимости от того, какое масло было и какое будет заливаться.

Что Меняют При Замене Масла В Двигателе

Читайте так же

Понятно, что при подмене с минералки на полусинтетику, с полусинтетики на синтетику и с синтетики на синтетику подмена не сделает лучше характеристики. Потому и тогда можно обойтись без промывки. Уже сегодня, если машину эксплуатирует один человек, он полностью может создавать промывку редкий раз. Но если таким макаром подмена делается уже пару раз, то промывку все таки сделать стоит.

Замена масла в двигателе, это должен знать каждый водитель

Как поменять масло в двигателе верно? Замена масла БМВ Х3 дизель. Как отличить моторное масло от подделк.

Одновременно конечно ситуации, когда поменять масло непременно:

  • при переходе с синтетики на полусинтетику либо минералку либо с полусинтетики на минералку, а кроме того масла разной вязкости;
  • при приобретении подержанной машины, потому что непонятно, какое масло залито и как нередко прежний владелец менял его;
  • при неизменной эксплуатации, когда много и стремительно ездят, смазки, чем, тоже требуется чем просто;
  • отремонтированное мотора;
  • при подозрении в попадании туда мусора либо других веществ;
  • на турбованных движках, которые в особенности чувствительны и требуют для себя незапятнанного и высококачественного масла.

Новые машины

Водители, купившие новый автомобиль, в особенности трепетно относятся к нему и стараются соблюдать нашему клиенту остается предписания производителя и чем просто. Нередко думают, необходимо ли промывать движок при подмене масла после обкатки. На Такой случай нет серьезных предписаний эксплуатации. Если тс использовалось по всем правилам, то в этой процедуре не требуется. Наряду с этим следует учесть, какое масло залито и какое планируется заливать.

Сейчас на вопрос, например, необходимо ли промывать движок при подмене масла с синтетики на синтетику, подайте верный ответ. Однако появляется другой вопрос. что, как помыть мотор верно.

Что Меняют При Замене Масла В Двигателе

Способы

Бывают несколько методов промывки мотора, большая часть где, если вникнуть, не делают собственной функции. Кратко разглядим их.

Промывочное масло сделает остаток грязищи не в такой мере очень концентрированным, как ранее. Но отложения не будут растворены и тем паче смыты.

Вакуумный насос употребляется в так именуемой экспресс-замене. При этом, молвят, что отработавшее масло будет выкачано полностью, однако это нереально по той просто причине, что достать до укрытых полостей ему при любом раскладе не получится.

Резвые промывки «пятиминутки» заливают на пару минут, включают мотор, и после сливают. Такие промывки, не считая бесполезности, являются дополнительно небезопасными. В ходе отложения не только лишь не растворяются, но и одновременно забивают каналы, по причине чего движок недополучает смазку в неких частях. В автосервисе на все это, это, бывают вариации сделать возражение и сказать, что если использовать более действующие средства, то они управятся с задачей. Вам больше понравятся это и так то, но какова цена ему? Существует, что так концентрированная химия может вкупе с растворением отложений разрушить и разъесть сальники коленвала из резины. По причине этого возникнет протекание и сальники придется поменять, что тяжело.

Если столько методов являются никчемными, то необходимо ли промывать движок при подмене масла на ВАЗ 2107, «Опеле», «Шкоде», «БМВ» как еще его называют другой машине вообщем?

Время от времени предлагают длинный метод промывки как более действующий. Ему будет нужно издержать незначительно не просто времени, заключается он в том факте, что в движок заливается жидкость, с какой} {занимается ездят от пятидесяти до пятисот км, после этого делается подмена. За этот период грязюка и отложения успевают смыться и раствориться, не нанося вреда агрегату. Российского} автопрома представляют для этой цели вам особые комбинированные составы, которые, по их словам, способны не только лишь вымыть снутри мотор, даже в некоторых границах вернуть структуру деталей, трущихся друг о друга.

Пятиминутки и долгоиграющие жидкости: что происходит на самом деле

Что Меняют При Замене Масла В Двигателе

Тем, кто очень торопится, в автосервисе предлагают жидкость для резвой промывки. Для «заботящихся» о собственном тс — комбинированный состав для возможности у него мало поездить, и дальше поменять на масло. Однако как они себя будут вести по сути?

Читайте так же

На упаковках обычно пишут, что такие средства неопасны для сальников и уплотнителей. Но если рассуждать здраво, то это нереально, потому что промывки подразумевают брутальную среду, чтоб совладать с отложениями. Потому когда малосъемные колпачки по причине их серьезно подпортятся.

Что меняют при замене масла в двигателе.

Также бывают отметку «для всех типов масел», что является тоже неописуемым, беря во внимание то, что приблизительно пятнадцать процентов масла каждого производителя имеет собственный уникальный состав. Потому идиентично повлиять на все они просто вы не сможете.

Обещание того, что подвижность поршневых колец будет восстановлена благодаря воды, не выдерживает никакой критики. Единственное, что и тогда может быть. это напыление изношенного механизма. Однако как реально это может вернуть металл? Вопрос, естественно, риторический.

Итог: как быть?

Задаваясь вопросом что, необходимо ли промывать движок при подмене масла с минералки на синтетику либо других определенных ситуациях, необходимо учесть сходу несколько моментов и только затем делать вывод. Но если и решить создавать промывку, то делать это необходимо не какими-то особыми средствами и приспособлениями, а только моторным маслом.

Происходит это таким образом:

масло соединяется и изменяется масляный фильтр;

заливается новое масло, вставляется фильтр на машине ездят пару дней на низких оборотах;

масло снова соединяется и заливается новое, а последующая подмена делается не через 10 тыщ км, а через семь.

Конкретно таким методом жизнь мотора будет продлена и вопросы наподобие того, необходимо ли промывать движок при подмене масла с синтетики на синтетику и другие виды, отпадут сами собой.

Читайте так же

Post Views: 2

Замена масла в двигателе авто

Если моторное масло не менять долгое время, то можно «убить» двигатель. Поэтому стоит обсудить, как заменить моторное масло, какой интервал замены и зачем ставят новый масляный фильтр.

Замена масла в двигателе различных марок авто не сильно отличается и проходит по одинаковой схеме. Сначала выбираем подходящее масло по типу и марке двигателя. Далее прогреваем мотор до рабочей температуры. Если прогрет, то подождать несколько минут, чтобы не обжечься. Потом находим подходящую емкость, куда будем сливать отработанную жидкость. Подойдет старая канистра, если отрезать ножиком боковую крышку. Далее откручиваем пробку на картере двигателя. Как правило, это самая нижняя точка на поддоне или для большей уверенности сверьтесь с инструкцией по эксплуатации. Откручиваем пробку гаечным ключом, а в конце руками, потому что масло польется сразу и быстро (заранее подставьте емкость для слива), иначе сливную пробку потеряете. Масло сливается быстро, обычно не больше пяти минут. Но на 100% слить не получится. Это не страшно, т.к. обычно в моторе остается не более 2-3% старой жидкости.

Старое масло сливается, оценивается цвет, наличие посторонних примесей. По этим факторам определяют, требуется ли промывка двигателя или необходима замена без промывки. После, заливается новое, меняют масляный фильтр. На этом работы завершены.

Когда заливаете масло, постоянно следите за уровнем при помощи масляного щупа — оно должно быть между отметками «min» и «max». Залейте 80% от общего объема и после доливайте, корректируя с помощью щупа.

Интервал замены
Следует ли придерживаться рекомендациям завода-изготовителя? Для современных моторов при повышении качества масел рекомендуют замену производить через 10—15 тысяч километров. Эта величина определяется производителем при нормальных условиях эксплуатации. Чем хуже условия, тем ранее нужно менять. Что считать тяжелыми условиями? Сюда относят: морозы, частую смену температур, влажный климат, большую запыленность воздуха. Частые перегрузки мотора (например, в горной местности или при перевозке тяжелых грузов) тоже не способствуют сохранению работоспособности. Обычно, если условия вождения определены как тяжелые, рекомендуют пробег до замены уменьшать на 25—30 процентов.

Эксплуатация автомобиля в городе приравнена к тяжелой — вяло текущая пробка убивает масло так же активно, как бездорожье, езда в горах или автоспорт. Средние сроки замены: 5000 — 7000 км для «минералки» и 10 000 — 12 000 км для «синтетики».

Нужно ли менять масляный фильтр
Да, обязательно. Работа с засоренным фильтром двигателя эквивалентна работе без него, т.к. масло пропускается мимо фильтрующего элемента. Это предусмотрено его конструкцией. При пробеге 10 000 км он будет забит, что приведёт к открытию перепускного клапана и масло пойдет неочищенным. Отсюда — интенсивный износ двигателя. Хотя лампочка аварийного давления гореть не будет.

Если меняете фильтр самостоятельно, не забудьте залить в него масла примерно до половины объема (для лучшего «первого» запуска) и смазать резинку на корпусе фильтра.

Советы
1. Тщательно выбирайте моторное масло. Покупайте те, которые соответствуют допускам и одобрениям авто концерном. Помните, вязкость – не самый важный параметр. В выборе поможет статья — «выбираем масло для двигателя».

2. Не злоупотребляйте «экспресс» заменами. Вакуумная замена плоха тем, что в двигателе остается намного больше отработанного масла, чем при традиционной замене методом слива. Поэтому, такой способ чередуем с традиционным, сократив при этом сервисный интервал или вовсе от него отказаться.

3. Меняйте масло чаще! Ни один воздушный фильтр не задержит всей пыли и грязи, которые присутствуют в воздухе. Соответственно, ни один топливный фильтр не задержит примеси, которые продаются на заправках вместе с топливом в виде бесплатного бонуса.

4. Не пользуйтесь никакими присадками и добавками в моторное масло! Присадки могут навредить, положительный эффект от таких примесей бывает кратковременным (какие бывают присадки).

5. Следите за уровнем масла по меткам на щупе. Недолив до нижней метки способен привести к масляному голоданию трущихся деталей, что приведет к их быстрому износу. Перелив также отрицательно сказывается на работе трущихся деталей. Что делать, если залили масла больше уровня.

6. Не покупайте масло у сомнительных продавцов! Поддельная продукция 100% не будет соответствовать требованиям производителя, поэтому мотор достаточно быстро выйдет из строя. Покупайте только оригинальное на фирменных АЗС или найдите ближайший магазин, где торгуют надёжной продукцией. Также защитой от подделки служат металлические канистры.

Что еще нужно менять при замене масла в двигателе


полезные советы когда и как менять масло

Регулярная замена масла – процедура необходимая, рекомендуется проводить ее хотя бы 2 раза в год. Многие автомобилисты делают замену осенью, ведь в холода машина подвержена большим нагрузкам. Если ваш автомобиль часто «пылится» без дела, вы ездите по «бездорожью», в сильные морозы или при повышенной влажности, часто используете прицеп или перевозите грузы, то увеличивается и нагрузка на мотор, а значит, масло сгущается и окисляется быстрее, менять его нужно с большей периодичностью.

Когда нужна замена масла в двигателе?

Сроки замены варьируются в зависимости от типа масла:

  • минеральные масла меняют каждые 6000-7000 км. пробега,
  • полусинтетические – 9-12 тысяч км,
  • синтетические смеси  выдерживают до 15 тыс.км.

Не последнюю роль играет и тип двигателя:

  • на дизеле меняют масло чаще (каждые 7-9 тыс.км),
  • на бензиновых агрегатах – реже (примерно каждые 12-15 тыс.км).

Что касается коробок передач, интервал замены таков: автомат – 50-70 тыс.км, механика – 60-90 тыс.км.

Как поменять масло в двигателе?

  • Прогреваем двигатель, ждем минут 5-7, чтобы находящееся в нем масло остыло, и сливаем остатки в емкость. Для этого на картере двигателя торцевым ключом откручиваем пробку и сразу подставляем тару для масла. На пол под баком кладем тряпки или газеты;
  • Сам процесс слива займет не более 5 минут, 2-3% масла останется на стенках двигателя – это не страшно, однако если вы планируете сменить производителя, придется мотор промывать;
  • Посмотрите, нет ли в масле посторонних примесей – если есть ржавчина, осадок и прочее – нужно делать промывку двигателя, после этого можно залить новое масло. Обратите внимание на цвет: светлое масло пригодно к использованию, коричневая жидкость, похожая на цвет кока-колы требует срочной замены;
  • Заливая масло в мотор, контролируйте уровень, используя щуп: сначала залейте 80% от объема, а потом доливайте, сверяясь с отметками на щупе. Помните, что недолив чреват быстрым износом рабочих деталей, а при переливе оно начнет вспениваться (из-за работы коленчатого вала), и также будет нарушать работу трущихся деталей;
  • Масляный фильтр меняют обязательно, поскольку если он засорен, масло пропускается мимо него. По статистике, после 10 тысяч км пробега фильтр забит, неочищенное масло идет напрямую, и двигатель будет изнашиваться быстрее. Желательно сразу долить масло в фильтр и смазать (а лучше заменить) уплотнительную резинку;

Советы бывалых автомобилистов

  • Берите только качественное масло от проверенных производителей, оно должно соответствовать типу двигателя и топливной системе автомобиля;
  • Вакуумная замена масла – вещь быстрая и доступная, но такой «экспресс слив» не должен быть постоянным, поскольку в двигателе остается больше старого масла, чем при ручной системе слива;
  • Не ленитесь делать замену масла, даже самые качественные фильтры не смогут задержать все примеси и частицы грязи и пыли, в итоге пострадает двигатель – а менять его будет куда накладнее!;
  • Не экспериментируйте с присадками и добавками – чаще всего их действие недолговременно, а вот вступить в химическую реакцию с основным маслом они могут, потом придется перебирать всю топливную систему;
  • Проверяйте при замене и ходовую часть – на СТО все равно автомобиль поднимают на подъемнике, зато вы будете уверены в полной безопасности своего транспортного средства.

Со временем любой мотор будет потреблять больше масла, и замену придется производить чаще. После 80-100 км пробега проверяйте уровень масла и доливайте по необходимости. Многие современные модели оснащены датчиками, оповещающими о том, что состав пора менять – эти системы вычисляют время по характеру езды и пробегу.

Колодийчук Андрей, специально для ByCars.ru

bycars.ru

Как правильно поменять масло в двигателе

Рано или поздно наступает время, когда необходимо поменять масло в двигателе автомобиля на новое. Процесс этот не очень сложный и мало отличается для разных моделях автомобилей. Поэтому эта инструкция будет полезна и понятна всем, кто хочет заменить масло своими руками.

Порядок замены масла

Сначала вам нужно, следуя рекомендиции из руководства к автомобилю подобрать и купить нужное вам масло, после чего можно приступать к самому процессу, который заключается в следующем:

Необходимо завести автомобиль и дать ему поработать на холостом ходу, чтобы его мотор нагрелся до своей рабочей температуры. Когда двигатель прогреется, то глушим его и ждем 5 минут, чтобы масло в двигателе успело немного остыть и мы не обожглись, когда будем его сливать.

Приготавливаем емкость, в которую мы сольем старое масло. Ее можно изготовить например из уже ненужной канистры, у которой можно срезать горловину или боковую часть ножом.

Далее необходимо найти пробку для слива масла на картере двигателя. Обычно она располагается в самой нижней точке двигателя. Но, если вы не уверены, что точно ее определили, то лучше уточните в инструкции к автомобилю.

Когда пробка найдена, подставляем под нее приготовленную емкость под сливаемое масло, берем гаечный ключ и откручиваем пробку. Последние движения лучше делать руками, т.к. масло будет выливаться быстро и сильно и пробка от струи масла может улететь в сторону и потеряться.

Из двигателя старое масло обычно сливается не долго, минуты 3-4. Все масло из двигателя конечно слить не выйдет, т.к. часть его всеравно останется на стенках, размазанное внутри двигателя тонким слоем, но это нормально и плохого в этом ничего нет.

Когда все масло слито, следует внимательно его осмотреть и присмотреться, нет ли в нем каких-либо примесей, грязи или окалины. Также стоит обратить внимание на цвет масла. По цвету масла и наличию примесей можно узнать, требуется ли двигателю промывка или пока ее можно не делать.

Теперь можно заливать в двигатель новое масло и также необходимо поменять масляный фильтр.

В процессе заливки масла нужно проверять уровень масла, используя масляный щуп.Уровень, на который необходимо залить масло должен быть между двумя отметками «mix» «max» на щупе. Для ускорения процесса можно сначала залить 70% от требуемого объема, а потом потихоньку доливать малыми порциями, постоянно контролирую уровень щупом уже до полного объема.

Как часто нужна замена масла для двигателя?

Практически для всех моделей авто, выпускающихся сегодня производители советуют менять масло каждые 10000-15000 км. Это данные для тех случаев, когда машина эксплуатируется в нормальных условиях. Для более жестких условий замена масла потребуется чаще.

Что означают более жесткие условия эксплуатации?​

Обычно это любые погодные условия, которые пагубно влияют на ресурс двигателя: сильные морозы, или жара, большая влажность или большое содержание пыли в воздухе. Т.е. когда условия сильно отличаются от типичных довольно долгое время.

Также к жестким условиям эксплуатации относятся и чрезмерные нагрузки на двигатель, при транспортировке грузов, на которые не рассчитан автомобиль, частая езда в гористой местности.

Если авто часто

Что нужно для замены масла в двигателе

Если автомобиле сломался двигатель и требуется его полная замена? Это целая проблема но не такая как вам кажется. Купить двигатель с навесным оборудованием рекомендуем в одном из лучших интернет магазинов контрактных двигателей \»Motorbor\» Ну а что бы таких бед было меньше мы расскажем в нашей статье как правильно заменить масло в двигателе. 

Если автомобиле сломался двигатель и требуется его полная замена? Это целая проблема но не такая как вам кажется. Купить двигатель с навесным оборудованием рекомендуем в одном из лучших интернет магазинов контрактных двигателей \»Motorbor\» Ну а что бы таких бед было меньше мы расскажем в нашей статье как правильно заменить масло в двигателе. 

Как сменить масло в двигателе

Процесс смены масла в двигателе несложный. Если нет желания обращаться по такому пустяку к профессионалам, можно попробовать сделать это самостоятельно.

 

Для начала нужно купить подходящее масло. Покупать масло лучше в фирменном магазине, где качество будет гарантировано и при необходимости продавец сможет дать консультацию. Желательно приобретать качественное масло известных брендов.

 

Замена масла собственными силами осуществляется следующим образом:

 

Перед началом потребуется загнать автомобиль на яму или поставить на эстакаду.

Заранее заготовьте инвентарь: ведро для слива старого масла, гаечные ключи, ветошь, перчатки.

 

Для повышения текучести масла необходимо прогреть двигатель. После прогрева выждать несколько минут, иначе при сливе масла можно получить ожог. Забравшись в яму, осматриваем днище автомобиля. Может потребоваться снять защиту двигателя. Затем находим на картере двигателя нужную крышку и аккуратно откручиваем ее вначале ключом, затем руками, ведро держим наготове. 

 

У некоторых марок автомобилей, слив происходит под углом, так что поток масла может попасть на одежду. Слив происходит быстро, около пяти минут, после чего в двигателе остается немного старого масла, это допустимо. 

Замена масляного фильтра

Одновременно со сменой масла, необходимо менять масляный фильтр. Если фильтр не менять, то забившись, он перестанет работать, а масло будет проходить через перепускной клапан без очистки, что приведет к дополнительному износу двигателя.

 

У различных моделей автомобилей фильтры расположены в разных местах. Желательно заранее изучить руководство к своему автомобилю. Обычно для снятия масляного фильтра достаточно усилия рук, но может потребоваться специальный ключ.

 

Крышка фильтра скручивается, старый фильтр извлекается. Устанавливаемый фильтр необходимо пропитать, для этого нужно наполовину залить его маслом, также не забывайте смазать маслом резинку на корпусе фильтра.

Установите фильтр и плотно закрутите крышку.

Заливка нового масла

Закрутите крышку картера. Можно приступать к заливке масла. При заливке следите за уровнем масла в картере. Уровень масла на измерительном щупе должен быть между верхней и нижней отметкой. 

 

Всего на заливку расходуется около 80% масла, имеющегося в канистре, остальное остается на случай, если в ходе эксплуатации автомобиля потребуется доливать масло.

 

Заведите двигатель, прогрейте, убедитесь в отсутствие подтеков масла, затем установите на место защиту двигателя, если ее требовалось снять.

Какая периодичность смены масла для двигателя

Современные синтетические масла могут сохранять свои свойства очень длительное время. Заменять масло обычно рекомендуется через интервалы 10–15 тысяч километров пробега. 

 

Однако промежутки замены сокращаются на 25–30% при воздействии неблагоприятных факторов, таких как: работа двигателя с перегрузками, сильные и многократные перепады температур, повышенная запыленность или влажность воздуха.

 

полезные советы когда и как менять масло

Регулярная замена масла – процедура необходимая, рекомендуется проводить ее хотя бы 2 раза в год. Многие автомобилисты делают замену осенью, ведь в холода машина подвержена большим нагрузкам. Если ваш автомобиль часто «пылится» без дела, вы ездите по «бездорожью», в сильные морозы или при повышенной влажности, часто используете прицеп или перевозите грузы, то увеличивается и нагрузка на мотор, а значит, масло сгущается и окисляется быстрее, менять его нужно с большей периодичностью.

Когда нужна замена масла в двигателе?

Сроки замены варьируются в зависимости от типа масла:

  • минеральные масла меняют каждые 6000-7000 км. пробега,
  • полусинтетические – 9-12 тысяч км,
  • синтетические смеси  выдерживают до 15 тыс.км.

Не последнюю роль играет и тип двигателя:

  • на дизеле меняют масло чаще (каждые 7-9 тыс.км),
  • на бензиновых агрегатах – реже (примерно каждые 12-15 тыс.км).

Что касается коробок передач, интервал замены таков: автомат – 50-70 тыс.км, механика – 60-90 тыс.км.

Как поменять масло в двигателе?

  • Прогреваем двигатель, ждем минут 5-7, чтобы находящееся в нем масло остыло, и сливаем остатки в емкость. Для этого на картере двигателя торцевым ключом откручиваем пробку и сразу подставляем тару для масла. На пол под баком кладем тряпки или газеты;
  • Сам процесс слива займет не более 5 минут, 2-3% масла останется на стенках двигателя – это не страшно, однако если вы планируете сменить производителя, придется мотор промывать;
  • Посмотрите, нет ли в масле посторонних примесей – если есть ржавчина, осадок и прочее – нужно делать промывку двигателя, после этого можно залить новое масло. Обратите внимание на цвет: светлое масло пригодно к использованию, коричневая жидкость, похожая на цвет кока-колы требует срочной замены;
  • Заливая масло в мотор, контролируйте уровень, используя щуп: сначала залейте 80% от объема, а потом доливайте, сверяясь с отметками на щупе. Помните, что недолив чреват быстрым износом рабочих деталей, а при переливе оно начнет вспениваться (из-за работы коленчатого вала), и также будет нарушать работу трущихся деталей;
  • Масляный фильтр меняют обязательно, поскольку если он засорен, масло пропускается мимо него. По статистике, после 10 тысяч км пробега фильтр забит, неочищенное масло идет напрямую, и двигатель будет изнашиваться быстрее. Желательно сразу долить масло в фильтр и смазать (а лучше заменить) уплотнительную резинку;

Советы бывалых автомобилистов

  • Берите только качественное масло от проверенных производителей, оно должно соответствовать типу двигателя и топливной системе автомобиля;
  • Вакуумная замена масла – вещь быстрая и доступная, но такой «экспресс слив» не должен быть постоянным, поскольку в двигателе остается больше старого масла, чем при ручной системе слива;
  • Не ленитесь делать замену масла, даже самые качественные фильтры не смогут задержать все примеси и частицы грязи и пыли, в итоге пострадает двигатель – а менять его будет куда накладнее!;
  • Не экспериментируйте с присадками и добавками – чаще всего их действие недолговременно, а вот вступить в химическую реакцию с основным маслом они могут, потом придется перебирать всю топливную систему;
  • Проверяйте при замене и ходовую часть – на СТО все равно автомобиль поднимают на подъемнике, зато вы будете уверены в полной безопасности своего транспортного средства.

Со временем любой мотор будет потреблять больше масла, и замену придется производить чаще. После 80-100 км пробега проверяйте уровень масла и доливайте по необходимости. Многие современные модели оснащены датчиками, оповещающими о том, что состав пора менять – эти системы вычисляют время по характеру езды и пробегу.

Колодийчук Андрей, специально для ByCars.ru

Почему двигатель при смене масла обязательно нужно промывать

Замена моторного масла все привыкли делать регулярно. Раз в 10-15 тысяч мы сливаем грязное и заливаем чистое, не подозревая, что тем самым медленно убиваем двигатель. Впрочем, далеко не любой вид промывки полезен мотору.

Почему двигателю нужна промывка?

Давайте сначала разберемся, как работает масло в двигателе. Оно не только смазывает движущиеся детали, но и очищает их от различных загрязнений: микропыли, несгоревших частиц топлива, лаков и продуктов износа. Вся эта грязь смывается со стенок двигателя и смешивается с маслом, делая его цвет темнее, а вязкость — выше.

На первый взгляд, если есть моющие присадки, зачем тут еще и промывка? Причин две:

  • моющие присадки сразу же после заправки свежим маслом начинают разлагаться, и чем дольше автомобиль ездит, тем хуже они работают. Под конец межсервисного пробега они уже не справляются со своими задачами;
  • около 15-20% масла при замене всегда остается в скрытых полостях двигателя. Грязь, которая в нем содержится, перемешается с новым маслом и сразу же ухудшит его исходные смазочные и моющие свойства.

Таким образом, с каждой заменой масло работает хуже и хуже, даже если вы используете качественную продукцию известных производителей. Впрочем, будем честны: если регламент соблюдается неукоснительно, то ухудшение свойств (а следовательно, и сокращение ресурса двигателя) происходит достаточно медленно.

Поэтому при условии, что машину обслуживает один владелец, промывать мотор имеет смысл не при каждой замене, а через одну-две.

Depositphotos_39339999_s.jpg  

В каких случаях мотор нужно промывать обязательно?

  • При переходе с одного масла на другое. Это касается и типа (синтетика, полусинтетика, минералка), и вязкости (5w30, 5w40, 10w40…), и производителя. Каждое масло имеет свой уникальный состав присадок, которые лучше не смешивать.
  • При покупке подержанного автомобиля. Вы никогда наверняка не узнаете, какое масло заливал прежний хозяин, как часто его менял, как давно мыл и когда была последняя замена. Промывка двигателя позволит «начать жизнь с чистого лица».
  • При интенсивной эксплуатации. Если вы любите ездить быстро и много, учитывайте, что мотору необходима более интенсивная смазка. Следовательно, продукты износа придется удалять часто.
  • На турбомоторах. Турбины «любят» качественное и чистое масло, а оставшаяся грязь очень быстро «убивает» их.

Какие бывают способы промывки и какой из них правильный?

  • Промывочное масло. Практически бесполезный способ. Оно просто делает остаток масла с грязью чуть менее концентрированным. Отложения оно не смывает и не растворяет.
  • Вакуумный насос. Также практически бесполезен. Применяется на автосервисах при «экспресс-замене масла». Сервисмены говорят о том, что насос может выкачать все 100%, то есть никакого грязного остатка не будет. Это далеко не так, потому что никакой насос не в состоянии очистить скрытые полости, не говоря уже о смыве и растворении грязи со стенок мотора.
  • «Пятиминутки» — промывки, которые заливают в старое масло на пять-десять минут, дают мотору поработать, а потом сливают. Они не столько бесполезны, сколько опасны. Слабо концентрированная «пятиминутка» не способна смыть грязь, а если и способна, то растворить ее за такой короткий срок она не успевает. Как следствие, отложения забивают масляные каналы, что приводит к масляному голоданию двигателя, задирам на стенках цилиндров и капитальному ремонту. Сильно концентрированная «пятиминутка» грязь смывает, однако растворяет плохо, поэтому риск загрязнения масляных каналов остается высоким. Самые «мощные» быстрые промывки с задачей растворителя справляются, однако вместе с этим разъедают резиновые сальники коленвала. Как следствие, протекание их и довольно трудоемкая замена.
  • «Долгоиграющие» промывки. Этот вид промывочных составов наиболее эффективен. Перед заменой масла жидкость заливают в двигатель и ездят в среднем от 50 до 500 километров, после чего масло можно сливать и заливать свежее. Отложения на стенках за это время смываются и растворяются, не вредя двигателю.
Depositphotos_24276235_s.jpg

Состав RVS MF5 моет, восстанавливает и диагностирует

Наиболее прогрессивным видом «долгих» промывок сейчас являются комбинированные составы, которые не только моют мотор изнутри, но также и частично восстанавливают структуру металлических трущихся поверхностей.

Как работает состав RVS MF5?

  1. За счет применения в нем ремонтно-восстановительных компонентов, происходит восстановление износа стенок цилиндра. А это уменьшает попадание масла в камеру сгорания и снижает вероятность засорения и выгорания катализатора выхлопных газов.
  2. Происходит восстановление эластичности резиновых уплотнителей, что снижает риск протечки масла.
  3. Поскольку RVS MF5 не содержит химических растворителей, то он совершенно безопасен для резиновых прокладок и сальников.
  4. Происходит «полезная утилизация» оксидов тяжелых металлов в результате реакций с компонентами промывки.
  5. Несгоревшие углеводороды, попавшие из камеры сгорания или из самого масла на поверхности, являются хорошим строительным материалом для восстановления поверхностей трения. Компоненты RVS в промывке используют эти продукты распада для строительства новых поверхностных слоев в зоне трения. Таким образом происходит переработка «отходов в доходы».
  6. Сам продукт RVS вступает в реакцию только с чистыми поверхностями. Потому его компоненты сначала очищают поверхности трения от нагаров и отложений, а потом уже формируют металло-керамический слой. Остатки отложений попадают в масло и выводятся вместе с ним при замене.
  7. В масле присутствует и вода, которая при нагреве двигателя тоже оставляет свой «след» в виде нерастворимых в масле оксидов. Такие оксиды также вымываются RVS MF5 с поверхностей.

Использование комбинированного моюще-восстановительного состава не только замедляет процесс износа двигателя, но и омолаживает его, формируя защитный метало-керамический слой на трущихся поверхностях.

RVS MF5 диагностирует двигатель

Когда из глушителя идет сизый «масляный» дым, это может означать две вещи. Либо закоксовались маслосъемные кольца, то есть прикипели к поршням, либо износ между цилиндрами и поршнями стал слишком велик. Cостав RVS MF5 позволяет однозначно определить причину без вскрытия двигателя, поскольку препарат, помимо промывки и восстановления поверхностей, дополнительно работает как раскоксовыватель колец. Если автомобиль прошел 100-300 километров после промывки, а дымность не уменьшилась, то вывод один: износ деталей мотора — критический. В таком случае ему не помогут никакие присадки, и единственный выход — капитальный ремонт. mf.jpg

Так всё-таки мыть или не мыть?

От промывки, при условии, что промывка делается правильным способом, мотору хуже не станет. В случае сомнения лучше промойте. Ну а если вы регулярно и в срок обслуживаете автомобиль, то промывка необходима через одну-две замены, в зависимости от режима эксплуатации.

Depositphotos_8805160_original.jpg

Читайте также:


Что такое двигатель внутреннего сгорания – Бензиновый двигатель внутреннего сгорания — это… Что такое Бензиновый двигатель внутреннего сгорания?

  • 02.06.2019

Двигатель внутреннего сгорания — Википедия. Что такое Двигатель внутреннего сгорания

ДВС, работающий по циклу Отто: 1 — такт впуска топливо-воздушной смеси; 2 — такт сжатия и воспламенения смеси; 3 — такт расширения сгорающей смеси; 4 — такт выпуска продуктов горения

Дви́гатель вну́треннего сгора́ния (ДВС) — двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. ДВС преобразует тепловую энергию от сгорания топлива в механическую работу.

По сравнению с двигателями внешнего сгорания ДВС:

  • не имеет дополнительных элементов теплопередачи — топливо само образует рабочее тело;
  • компактнее, так как не имеет целого ряда дополнительных агрегатов;
  • легче;
  • экономичнее;
  • потребляет топливо, обладающее весьма жёстко заданными параметрами (испаряемостью, температурой вспышки паров, плотностью, теплотой сгорания, октановым или цетановым числом), так как от этих свойств зависит сама работоспособность ДВС.

История создания

В 1807 г. французско-швейцарский изобретатель Франсуа Исаак де Риваз построил первый поршневой двигатель, называемый часто двигателем де Риваза[en]. Двигатель работал на газообразном водороде, имея элементы конструкции, с тех пор вошедшие в последующие прототипы ДВС: поршневую группу и искровое зажигание. Кривошипно-шатунного механизма в конструкции двигателя ещё не было.

Первый практически пригодный двухтактный газовый ДВС был сконструирован французским механиком Этьеном Ленуаром в 1860 году. Мощность составляла 8,8 кВт (11,97 л. с.). Двигатель представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника. В конструкции двигателя появился кривошипно-шатунный механизм. КПД двигателя не превышал 4,65 %. Несмотря на недостатки, двигатель Ленуара получил некоторое распространение. Использовался как лодочный двигатель.

Познакомившись с двигателем Ленуара, осенью 1860 года выдающийся немецкий конструктор Николаус Аугуст Отто с братом построили копию газового двигателя Ленуара и в январе 1861 года подали заявку на патент на двигатель с жидким топливом на основе газового двигателя Ленуара в Министерство коммерции Пруссии, но заявка была отклонена. В 1863 году создал двухтактный атмосферный двигатель внутреннего сгорания. Двигатель имел вертикальное расположение цилиндра, зажигание открытым пламенем и КПД до 15 %. Вытеснил двигатель Ленуара.

В 1876 г. Николаус Август Отто построил более совершенный четырёхтактный газовый двигатель внутреннего сгорания.

В 1880-х годах Огнеслав Степанович Костович в России построил первый бензиновый карбюраторный двигатель.

Мотоцикл Даймлера с ДВС 1885 года

В 1885 году немецкие инженеры Готтлиб Даймлер и Вильгельм Майбах разработали лёгкий бензиновый карбюраторный двигатель. Даймлер и Майбах использовали его для создания первого мотоцикла в 1885, а в 1886 году — на первом автомобиле.

Немецкий инженер Рудольф Дизель стремился повысить эффективность двигателя внутреннего сгорания и в 1897 предложил двигатель с воспламенением от сжатия. На заводе «Людвиг Нобель» Эммануила Людвиговича Нобеля в Петербурге в 1898—1899 Густав Васильевич Тринклер усовершенствовал этот двигатель, использовав бескомпрессорное распыливание топлива, что позволило применить в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с самовоспламенением стал наиболее экономичным стационарным тепловым двигателем. В 1899 на заводе «Людвиг Нобель» построили первый дизель в России и развернули массовое производство дизелей. Этот первый дизель имел мощность 20 л. с., один цилиндр диаметром 260 мм, ход поршня 410 мм и частоту вращения 180 об/мин. В Европе дизельный двигатель, усовершенствованный Густавом Васильевичем Тринклером, получил название «русский дизель» или «Тринклер-мотор». На всемирной выставке в Париже в 1900 двигатель Дизеля получил главный приз. В 1902 Коломенский завод купил у Эммануила Людвиговича Нобеля лицензию на производство дизелей и вскоре наладил массовое производство.

В 1908 году главный инженер Коломенского завода Р. А. Корейво строит и патентует во Франции двухтактный дизель с противоположно-движущимися поршнями и двумя коленвалами. Дизели Корейво стали широко использоваться на теплоходах Коломенского завода. Выпускались они и на заводах Нобелей.

В 1896 году Чарльз В. Харт и Чарльз Парр разработали двухцилиндровый бензиновый двигатель. В 1903 году их фирма построила 15 тракторов. Их шеститонный #3 является старейшим трактором с двигателем внутреннего сгорания в Соединенных Штатах и хранится в Смитсоновском Национальном музее американской истории в Вашингтоне, округ Колумбия. Бензиновый двухцилиндровый двигатель имел совершенно ненадёжную систему зажигания и мощность 30 л. с. на холостом ходу и 18 л. с. под нагрузкой[1].

Дэн Элбон с его прототипом сельскохозяйственного трактора Ivel

Первым практически пригодным трактором с двигателем внутреннего сгорания был американский трёхколёсный трактор lvel Дэна Элборна 1902 года. Было построено около 500 таких лёгких и мощных машин.

В 1903 году состоялся полёт первого самолёта братьев Орвила и Уилбура Райт. Двигатель самолёта изготовил механик Чарли Тэйлор. Основные части двигателя сделали из алюминия. Двигатель Райт-Тэйлора был примитивным вариантом бензинового инжекторного двигателя.

На первом в мире теплоходе — нефтеналивной барже «Вандал», построенной в 1903 году в России на Сормовском заводе для «Товарищества Братьев Нобель», были установлены три четырёхтактных двигателя Дизеля мощностью по 120 л. с. каждый. В 1904 году был построен теплоход «Сармат».

В 1924 по проекту Якова Модестовича Гаккеля на Балтийском судостроительном заводе в Ленинграде был создан тепловоз ЮЭ2 (ЩЭЛ1).

Практически одновременно в Германии по заказу СССР и по проекту профессора Ю. В. Ломоносова по личному указанию В. И. Ленина в 1924 году на немецком заводе Эсслинген (бывш. Кесслер) близ Штутгарта построен тепловоз Ээл2 (первоначально Юэ001).

Виды двигателей внутреннего сгорания

Поршневой ДВС Газотурбинный ДВС
  • Газовая турбина — преобразование энергии осуществляется ротором с клиновидными лопатками.
  • Роторно-поршневые двигатели — в них преобразование энергии осуществляется за счёт вращения рабочими газами ротора специального профиля (двигатель Ванкеля).

ДВС классифицируют:

  • по назначению — на транспортные, стационарные и специальные.
  • по роду применяемого топлива — лёгкие жидкие (бензин, газ), тяжёлые жидкие (дизельное топливо, судовые мазуты).
  • по способу образования горючей смеси — внешнее (карбюратор) и внутреннее (в цилиндре ДВС).
  • по объёму рабочих полостей и весогабаритным характеристикам — лёгкие, средние, тяжёлые, специальные.

Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма, по направлению и частоте вращения коленчатого вала, по отношению диаметра цилиндра к ходу поршня, по степени быстроходности (средней скорости поршня).

Октановое число топлива

Энергия передаётся на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля.

Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это, в свою очередь, заставит поршень провернуть коленвал в обратном направлении — такое явление называют обратной вспышкой.

Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры. Топливо с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.

Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.

Отношение диаметра цилиндра к ходу поршня

Одним из основополагающих конструктивных параметров ДВС является отношение хода поршня к диаметру цилиндра (или наоборот). Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, тем больше диаметра цилиндра, чем больше двигатель. Оптимальным с точки зрения газодинамики и охлаждения поршня является соотношение 1 : 1. Чем больше ход поршня, тем больший крутящий момент развивает двигатель и тем ниже его рабочий диапазон оборотов. Наоборот, чем больше диаметр цилиндра, тем выше рабочие обороты двигателя и тем ниже его крутящий момент на низких оборотах. Как правило, короткоходные ДВС (особенно гоночные) имеют больший крутящий момент на единицу рабочего объема, но на относительно высоких оборотах (больше 5000 об/мин.). При большем диаметре цилиндра/поршня сложнее обеспечить должный теплоотвод от донышка поршня ввиду его больших линейных размеров, но при высоких рабочих оборотах скорость поршня в цилиндре не превышает скорости поршня более длинноходного на его рабочих оборотах.

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного (моновпрыск), и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно-рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется с помощью электронного блока управления (ЭБУ), управляющего электрическими бензиновыми форсунками.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела. Так как дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что, в сочетании с длительным горением, обеспечивающим постоянное давление рабочего тела, благотворно сказывается на КПД данного типа двигателей, который может превышать 50 % в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера — Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые двигатели

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

Газодизельные

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой

Предложен изобретателем Ванкелем в начале XX века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), Маздой в Японии (Mazda RX-7, Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

В Германии в конце 70-х годов XX века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

  • RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

Комбинированный двигатель внутреннего сгорания

  •  — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внёс советский инженер, профессор А. Н. Шелест.

Турбонагнетание

Наиболее распространённым типом комбинированных двигателей является поршневой с турбонагнетателем. Турбонагнетатель или турбокомпрессор (ТК, ТН) — это нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На валу, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет нагнетать воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем воздуха (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор — это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.

На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.

Турбонагнетание позволяет двигателю работать более эффективно, поскольку тому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.

Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами — маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших — большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры или при использованием турбины с изменяемой геометрией, в автоспорте также применяется принудительный разгон турбины с помощью системы рекуперации энергии[2]). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).

Циклы работы поршневых ДВС

Двухтактный цикл Схема работы четырёхтактного двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа или 720 градусов поворота коленчатого вала (ПКВ), состоящий из четырёх отдельных тактов:

  1. впуска,
  2. сжатия заряда,
  3. рабочего хода и
  4. выпуска (выхлопа).

Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики — инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения. Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (SAAB AB), обладающие большей гибкостью характеристики.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя — исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20—30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20—30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания — дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Корейво, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100 и танковыми дизелями ХЗТМ. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20—30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х — 40х годах XX века были предложены схемы с парами расходящихся поршней — ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один — выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки — петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы — изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки,, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки — относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

Дополнительные агрегаты, требующиеся для ДВС

Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки (предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения (для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламенения топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

Технологические особенности изготовления

К обработке отверстий в различных деталях, в том числе в деталях двигателя (отверстий головки блоков цилиндров (ГБЦ), гильз цилиндров, отверстий кривошипной и поршневой головок шатунов, отверстий шестерён) и т. д., предъявляются высокие требования. Используются высокоточные технологии шлифования и хонингования.

См. также

Примечания

Ссылки

Бензиновый двигатель внутреннего сгорания — это… Что такое Бензиновый двигатель внутреннего сгорания?

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже.
3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу.
4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

См. также: «Два такта и четыре. В чем отличия?»

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405.24 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Ссылки

Сайт о скутерах с 2х тактными двигателями

двигатель внутреннего сгорания — это… Что такое двигатель внутреннего сгорания?

(ДВС), тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые ДВС; по рабочему циклу – непрерывного действия, двух – и четырёхтактные; по способу приготовления горючей смеси – с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии – поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0.4–0.5. Первый поршневой двигатель внутреннего сгорания сконструирован французским изобретателем Э. Ленуаром в 1860 г. Традиционно термин «двигатели внутреннего сгорания» применяют преимущественно к поршневым двигателям. Во всех тепловых двигателях сжигают топливо и преобразуют выделившееся тепло в механическую работу. Для сжигания топлива необходим окислитель – кислород. Поставщиком кислорода во всех двигателях внутреннего сгорания, кроме ракетных, служит сжатый воздух. Рабочим телом в них являются продукты сгорания топлива. Для сжигания топлива в двигателе готовят рабочую смесь, смешивая топливо с воздухом. В двигателях с внешним смесеобразованием рабочую смесь готовят в смесителе и подают в цилиндр, где её принудительно поджигают электрической искрой. Такие двигатели работают с низкой степенью сжатия рабочей смеси. В двигателях с внутренним смесеобразованием топливо и воздух не смешивают заранее, а отдельно подают в рабочий цилиндр. Там они смешиваются и образуют рабочую смесь.

В четырёхтактных двигателях каждый рабочий цикл совершается один раз за четыре такта (или за два оборота вала), а в двухтактных – один раз за два такта (или за один оборот вала).

Рис. 1. Четырёхтактный карбюраторный двигатель внутреннего сгорания:

Рис. 1. Четырёхтактный карбюраторный двигатель внутреннего сгорания:

Главная деталь четырёхтактного двигателя внутреннего сгорания (рис. 1) – цилиндр 7, в головке которого расположены впускной 3 и выпускной 5 клапаны и свеча 4 для зажигания рабочей смеси. В цилиндре движется поршень 6. Его возвратно-поступательное движение преобразуется во вращательное движение коленчатого вала 1 с помощью кривошипно-шатунного механизма 2. Для обеспечения наиболее полного сгорания топлива его перемешивают с воздухом в пропорции 1: 15 (на одну часть паров бензина должно приходиться 15 частей воздуха). В такте I рабочего цикла происходит всасывание рабочей смеси в цилиндр (рис. 2). В такте II рабочая смесь сжимается. В такте III сгорает рабочая смесь и образующиеся при этом газы давят на поршень и совершают механическую работу, перемещая его сверху вниз. Движение поршня передаётся валу двигателя через кривошипно-шатунный механизм. В такте IV продукты сгорания выталкиваются в атмосферу через выпускной клапан. Работу четырёхтактного карбюраторного двигателя обеспечивает система газораспределения, состоящая из впускных и выпускных клапанов, открывающих их кулачков и закрывающих пружин.

Рис. 2. Работа четырёхтактного карбюраторного двигателя внутреннего сгорания:

Рис. 2. Работа четырёхтактного карбюраторного двигателя внутреннего сгорания:

I – всасывание; II – сжатие; III – зажигание, рабочий ход; IV – выпуск

Двухтактные двигатели устроены проще (рис. 3). В них всасывание горючей смеси и предварительное её сжатие до небольшого давления происходит вне цилиндра двигателя.

Рис. 3. Двухтактный карбюраторный двигатель внутреннего сгорания:

Рис. 3. Двухтактный карбюраторный двигатель внутреннего сгорания:

1 – коленчатый вал; 2 – кривошипно-шатунный механизм; 3 – цилиндр; 4 – насос; 5 – топливо, воздух; 6 – впускные окна; 7 – свеча зажигания; 8 – продувочные окна; 9 – продукты сгорания; 10 – поршень

Сложную систему газораспределения в этих двигателях заменяют три ряда окон 6.8 на боковой поверхности цилиндра 3. Через эти окна выпускаются отработанные газы, всасывается рабочая смесь в картер двигателя и продувается цилиндр от остатков продуктов сгорания. Окна открывает и закрывает сам поршень 10 (своей образующей поверхностью) при движении в цилиндре. В такте I (рис. 4) при движении поршня снизу вверх сначала происходит сжатие порции горючей смеси в цилиндре, а затем и засасывание свежей порции горючей смеси из карбюратора в картер двигателя. Когда сжатие рабочей смеси заканчивается, её воспламеняют электрической искрой. В такте II происходит расширение продуктов сгорания 9. Они толкают поршень вниз, т. е. происходит рабочий ход. В конце хода поршня сверху вниз отработанные газы выпускают в атмосферу. В карбюраторных двигателях, работающих на лёгком жидком топливе (бензине), смесеобразование осуществляется в специальном устройстве – карбюраторе. Двигатели внутреннего сгорания широко применяются в промышленности, на автомобильном, авиационном, морском и железнодорожном транспорте. Рис. 4. Работа двухтактного карбюраторного двигателя внутреннего сгорания:

Рис. 4. Работа двухтактного карбюраторного двигателя внутреннего сгорания:

I – сжатие; II – зажигание, рабочий ход

Энциклопедия «Техника». — М.: Росмэн. 2006.

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ — это… Что такое ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ?


ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, широко используемый в машинах и мотоциклах двигатель, внутри которого горючее сгорает так, что выделяемые при этом газы могут производить движение. Бывает двух видов — ДВУХТАКТНЫЙ или ЧЕТЫРЕХТАКТНЫЙ. В наиболее распространенном типе смесь паров бензина и воздуха воспламеняется искрой от СВЕЧИ ЗАЖИГАНИЯ. Газы, получаемые в результате взрыва, опускают поршень в ЦИЛИНДРЕ. Коленчатый вал изменяет возвратно-поступательное (взад-вперед) движение поршней на вращательное. В РОТАЦИОННОМ ДВИГАТЕЛЕ газы, получаемые в результате взрыва, приводят в движение трехгранный ротор. ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ также относятся к двигателям внутреннего сгорания.



4-х цилиндровый рядный бензиновый двигатель — самый обычный двигатель внутреннего сгорания, который используется в автомобилях. Через фильтр (1) воздух всасывается в карбюратор (2), где смешивается с бензином. Затем смесь поступает в цилиндры через двойные впускные клапаны (3), расположенные на каждом из цилиндров (4). Свеча зажигания (5) воспламеняет смесь, заставляя поршень быстро двигаться вниз Выхлопные газы выбрасываются через выпускные клапаны (6) Коленчатый вал (7) изменяет возвратно-поступательное движение поршней на вращательное, а также вращает зубчатый ремень привода (8), контролирующего открытие клапанов, через кулачки (9), расположенные на распредвале (10). Зубчатый ремень привода контролирует воспламенение свечей зажигания.

Научно-технический энциклопедический словарь.

  • ДВИГАТЕЛЬ ВАНКЕЛЯ
  • ДВИГАТЕЛЬ ВОЗВРАТНО-ПОСТУПАТЕЛЬНОГО ДЕЙСТВИЯ

Смотреть что такое «ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ» в других словарях:

  • ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ — ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую работу. По роду топлива различают двигатели внутреннего сгорания жидкостные и газовые; по… …   Современная энциклопедия

  • Двигатель внутреннего сгорания — ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую работу. По роду топлива различают двигатели внутреннего сгорания жидкостные и газовые; по… …   Иллюстрированный энциклопедический словарь

  • ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ — тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2 и 4 тактные; по способу …   Большой Энциклопедический словарь

  • ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ — двигатель внутреннего горения (Internal Combustion engine) поршневая машина, у которой сгорание топлива, вводимого совместно с воздухом, совершается внутри самих рабочих цилиндров. Расширяющиеся продукты горения двигают поршни, и движение это… …   Морской словарь

  • Двигатель внутреннего сгорания — (ДВС) бензиновый – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу. В качестве топлива при этом используется бензин – легко воспламеняющаяся горючая жидкость …   Нефтегазовая микроэнциклопедия

  • ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ — двигатель, превращающий тепловую энергию топлива в механ. работу. В Д. в. с. топливо подается непосредственно внутрь цилиндра, где оно воспламеняется и сгорает, образуя газы, давление к рых приводит в движение поршень двигателя. Д. в. с. получили …   Технический железнодорожный словарь

  • Двигатель внутреннего сгорания — тепловой двигатель, внутри которого происходит сжигание топлива и преобразование части выделившегося тепла в механическую работу… Источник: Методические рекомендации по проведению независимой технической экспертизы транспортного средства при… …   Официальная терминология

  • двигатель внутреннего сгорания — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN combustion engine An engine that operates by the energy of combustion of a fuel. (Source: MGH) [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] Тематики охрана… …   Справочник технического переводчика

  • Двигатель внутреннего сгорания — Схема: Двухтактный двигатель внутреннего сгорания с глушителем …   Википедия

  • двигатель внутреннего сгорания — (ДВС), тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые ДВС; по рабочему циклу – непрерывного действия, двух – и… …   Энциклопедия техники

Книги

  • Совершенствование системы подачи газообразного топлива в двигатель, Евгений Бебенин, Алена Королевская. Современный мир переживает бум развития альтернативных видов топлива. Если двигатели внутреннего сгорания на жидком топливе доведены до своего совершенства, то сприменением газообразного… Подробнее  Купить за 3779 руб
  • Автомобили и транспорт. Аудиоэнциклопедия (CDmp3), Качур Елена, Манушкина Наталья. Веселый музыкальный спектакль познакомит ребят с историей развития наземного транспорта. Маленькие слушатели узнают, когда было изобретено колесо, почему пар движет паровоз, кто создал первый… Подробнее  Купить за 392 руб
  • Автомобили и транспорт, Детское издательство Елена. Веселый музыкальный спектакль в легкой и доступной форме познакомит ребят с историей развития наземного транспорта. Маленькие слушатели узнают, когда было изобретено колесо, почему пар движет… Подробнее  Купить за 126 руб аудиокнига
Другие книги по запросу «ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ» >>

Обсуждение:Двигатель внутреннего сгорания — Википедия

Вообще-то про дизельный двигатель написан полнейший бред! Никакого воспламенения СМЕСИ в цилиндре нет, так как смесь топлива с воздухом не образуется. В цилиндре сжимается чистый ВОЗДУХ, распыливание толива происходит в конце такта сжатия через форсунки, при этом струя топлива загорается от воздействия температуры сжатого в цилинре воздуха. Это классический дизель (как 2-х тактный, так и 4-х тактный). В предкамерных дизелях сгорание топлива происходит аналогично, только не в самом цилиндре, а в камере, установленной перед цилиндром.

Воздух, знаете ли, не горит. Он-то перед рабочим тактом сжимается, а вот горит всё же смесь (топливо само по себе тоже гореть бы не стало, без воздуха). DL24 06:24, 28 ноября 2009 (UTC)

Специально для DL24. Разумеется, любое топливо в любых условиях сгорает при взаимодействии с окислителем. Но это совсем не означает, что они должны смешиваться. Отнюдь! Кусок угла сгорает, даже не переставая быть твердым, то же самое можно сказать о сгорании куска серы, цум байшпиль. В дизеле топливо впрыскивается в нагретый до ТИ воздух в виде более или менее крупных капель, чем мельче, разумеется, тем лучше, каждая капля, инициируясь, сгорает в воздухе, ни с чем не смешиваясь. Заряд топлива горит постепенно по мере впрыскивания, поэтому, кстати, так важно для качества работы дизеля качество исполнения ТНВД — именно он обеспечивает плавность и равномерность впрыска и, стало быть, качество работы дизеля. Известно, что при проектировании В-2 обеспечить нормальную работу в целом весьма удачного двигателя удалось только после переработки некоторых элементов конструкции ТНВД. Насосы Аршаулова в итоге сошли со сцены и потому, в частности, что не могли обеспечить стабильности топливоподачи. 31.181.110.152 19:01, 2 июля 2012 (UTC)мАлекс Кстати, любое пламменное горение возникает именно там, где происходит горение газа или паровой фракции топлива в виде струи, выходящей в среду окислителя. Вспомните: химия, 7 класс, зонирование пламени и его происхождение. Факел горения в дизеле — типичное пламя со всеми атрибутами. Сгорание же топливо-воздушной смеси имеет в принципе иную и физику, и химию — оно ближе к цепным реакциям, протекает гораздо быстрее, фронт прохождения горения скорее похож на фронт объемного взрыва (а при детонации таковым и является). 31.181.110.152 19:12, 2 июля 2012 (UTC)мАлекс

Почитал, знаете ли, этот бред и решил исправить. Ссылок, извиняюсь, не привел, но то, что я написал, содержится в любом букваре по ДВС. Описывать калоризаторный дизель я не стал, тк это по нашим временам полная экзотика.46.158.162.204 10:15, 26 мая 2012 (UTC)мАлекс

Господа, тем не менее в разделе про дизельный двигатель по-прежнему был написан бред.

  1. Топливо-воздушная смесь, разумеется, образуется, т. к. иначе горение невозможно. Другой вопрос — что она образуется локально, и в каждом очаге сгорания присутствует свой градиент концентрации воздуха.
  2. Я не знаю, откуда были взяты термины «время инициации топлива» и подобные. В общей теории ДВС это называется «время задержки воспламенения».
  3. Позволю себе в ближайшее время переписать по крайней мере раздел этой статьи про дизели, т. к. написанное в нем сейчас только вводит в заблуждение тех, кто пытается что-либо понять.

Alexander.a.denisov 07:11, 8 сентября 2012 (UTC)

Горит только твёрдое топливо и смесь топлива с воздухом, отдельно ни воздух, ни жидкое топливо не горят. И смесь там образуется, но не в карбюраторе, или инжекторе, а непосредственно в цилиндре. В цилиндр с горячим воздухом впрыскивается жидкое топливо, потом оно испаряется, смешиваясь с воздухом. А бред несёшь ты. Не всякое взаимодействие с воздухом – химический процесс. Взаимодействие жидкости с газом может приводить к её окислению, но медленному. Например, маляныая краска «сохнет» в результате окисления жидкого масла кислородом воздуха. Но в двигателе толиво должно сгореть, а не полимеризоваться с участием кислорода и не истлеть. 31.135.45.53 09:46, 14 октября 2018 (UTC)

Двигатель внутреннего сгорания[править код]

Предлагаю идею ДВС роторного типа- в отличие от существующих-может работать на нескольких видах топлива и имеет ряд неоспоримых преимуществ… Смотреть на сайте http://iturup.okis.ru/195.39.233.21 09:08, 9 августа 2008 (UTC)

«На рисунке 4-тактного двигателя впускной клапан больше выпускного, на самом деле всё с точностью до наоборот — выпускной больше впускного, т. к. объём и давление отработанных газов гораздо выше, чем рабочей смеси (исходя из рисунка — это карбюраторный ДВС).» — чушь полная! —79.104.194.49 11:07, 26 февраля 2009 (UTC)

Четырехтактный поршневой ДВС ВСЕГДА имеет большую пропускную способность именно ВПУСКНОГО (и, как следствие, больший диаметр ВПУСКНОГО клапана) канала. Это делается потому, что насосные потери на впуске намного выше чем на выпуске, и скорость протекаия смеси (воздуха) через впускной канал ниже, к тому же покинуть цилиндр отработанным газам помогает поршень, двигаясь вверх. Поэтому впускной клапан имеет больший диаметр. Исключением является только ПЯТИКЛАПАННЫЙ двигатель: в нем впускные клапана почти такого же диаметра как и выпускные, но при этом их(впускных) ТРИ, т.е. закон большей пропускной способности впускного тракта сохраняется.
P.S. Нет никакой разницы по клапанам в карбюраторном или инжекторном двигателях. —Александр Красноярск—79.104.194.49 11:02, 26 февраля 2009 (UTC)
А в некоторых конструкциях и два впускных клапана с одним выхлопным.46.158.162.204 10:17, 26 мая 2012 (UTC)мАлекс

Слушайте, это просто несерьёзно. Турбина отродясь считалась разновидностью ДВС. Вот хотя бы навскидку — выдержка из учебника какого-то:

Двигатели внутреннего сгорания условно классифицируются по месту установки, конструктивным и иным признакам. Так, по способу установки на маломерном судне они подразделяются на стационарные двигатели (на катерах) и подвесные лодочные моторы (на мотолодках), по способу преобразования энергии они могут быть поршневыми и беспоршневыми (газотурбинными, реактивными, комбинированными).

И никого не трогает где там происходит сгорание. Если внутри двигателя — значит двигатель внутреннего сгорания. Если в отдельной топке — то внешнего. Аноним, вы считаете что вы умнее всех ? В том числе авторов учебников для ВУЗов и техникумов, а т.ж. справочной литературы ?

Есть правда такие газовые турбины внешнего сгорания, например — в автомашине, которая наддув делает. Но это ж редкая экзотика. —DL24 09:37, 3 сентября 2010 (UTC)

  • К слову, на наддуве, не «газовая турбина», а просто турбина, как и паровая, и водяная. Газовой по-русски, называют ту, что сама в себе жжёт, то есть тот же ДВС. —Bilderling 09:44, 3 сентября 2010 (UTC)
Ну а что тогда такое газовые турбины внешнего сгорания ? Это из соответствующей статьи взята между прочим фраза. Понимаю конечно — не АИ. Но там вроде ссылка на академический.DL24 09:47, 3 сентября 2010 (UTC)
Значит, я ошибся. ОК, в любом случае консенсус есть, а аноним неправ. Не продолжил бы откатывать… —Bilderling 09:49, 3 сентября 2010 (UTC)
Да он мне уже вроде отписал на СО, извинился. DL24 09:51, 3 сентября 2010 (UTC)

ДВС без кривошипно-шатунного механизма.[править код]

Сделаю. Nechi 1 Rambler. И автомобиль без коробки передач.

А мощность как снимается? Зубчатой рейкой? Или использующей поставляемый двигателем со свободными поршнями горячий газ турбиной? С линейного синхронного генератора со свободными поршнями? Или там вообще турбовальный двигатель вместо поршневого? 31.135.45.53 10:04, 14 октября 2018 (UTC)

Мощность на холостом ходу[править код]

«Бензиновый двухцилиндровый двигатель имел совершенно ненадежную систему зажигания и мощность 30 л. с. на холостом ходу и 18 л. с. под нагрузкой.[1]«
Мощность на холостом ходу, кажется, по определению нулевая, поскольку механическая работа не совершается.
«The two-cylinder engine has a unique hit-and-miss firing cycle that produced 30 horsepower at the belt and 18 at the drawbar»
Если не путаю, речь о мощности на валу и на крюке. Т.е. 12 л.с. терялось в трансмиссии. (Сам не правлю, поскольку не до конца уверен в техническом английском, а в общеязыковых словарях навскидку ‘at the belt’ не нашёл.)
37.190.63.23 10:30, 12 апреля 2013 (UTC)MichaelMM

Если нечто движется само, имея трение, то механическая работа совершается. По преодолению трения в самом двигателе. Но если на преодоление трения расходуется некоторая мощность, то при меньшей мощности двигатель гарантировано заглохнет, так как эту мощность надо расходовать до самой остановки. Более того, под нагрузкой двигатель по той же причине гарантированно заглохнет при не большей мощности, чем мощность на холостом ходу. Единственно, во что можно поверить при таком соотношении, так это в то, что 30 лошадиных сил – полная мощность на холостом ходу, а 18 лошадиных сил – полезная мощность под нагрузкой (полная не менее 48-ми). 31.135.45.53 10:10, 14 октября 2018 (UTC)

КПД поршневого ДВС и автомобиля[править код]

«КПД двигателя не превышал 4,65 %. Несмотря на недостатки получил некоторое распространение… и КПД до 15 %» — Как указано в статье, именно эти цифры до сих пор остаются правильными, если не для поршневого ДВС, то для всего автомобиля в целом. Чтобы понять достаточно сравнить мощность лобового сопротивления с мощностью из расхода топлива. Невероятно, но факт. 93.181.255.20 13:26, 24 октября 2015 (UTC)

недостатки (общие)
  • для запуска двигателя обязательно нужен стартер
  • для охлаждения двигателя нужна система охлаждения
  • для трогания с места нужен механизм сцепления
  • для разных режимов движения нужна коробка передач,
  • для понижения шума от выхлопа отработанных газов нужна система шумопонижения
  • высокие обороты двигателя приводят к недолговечности конструкции
  • во время остановок двигатель продолжает работать, что также сказывается на долговечности.
  • самые эффективные легковые электромобили тратят из разных источников 0.55 МДж на километр пути.Легковой автомобиль с ДВС тратит 10л бензина на 100км это 3.3 МДж на километр. Отсюда видно что бензиновый двигатель в шесть раз менее эффективен чем электрический. Если принять кпд электромобиля 95 процентов, то кпд машины с ДВС будет 16 процентов, не 20-30 как пишут в разных источниках. 109.161.12.15 13:19, 15 ноября 2017 (UTC)Tmaker

Можно добавить. О возможностях ДВС.[править код]

Повышение удельной мощности (макс. мощности при том же весе)[править код]

1. Удвоение количества рабочих тактов.

Т.к. вам известны 2х-тактные двигатели — вы знаете, что подавать ТВС можно одновременно с выпуском отработавших газов. Минусом 2х-тактников является то, что сложно вытолкать впускными газами выпускные так, чтобы и выпускных вытолкалось побольше, и впускных с ними вылетело поменьше. Я полагаю, что лучшим расположением впускных и выпускных отверстий является круговое, в разных концах камеры сгорания: как в анимации. — Думаю, что при этом достижим уровень снижения удельного расхода топлива по сравнению с 4х-тактниками менее чем на 10%.
Минусом наличия таких отверстий является более быстрый износ поршневых колец.
Кроме цилиндрических существуют ещё роторные ДВС — их суть заключается в непосредственном вращении вала самим поршнем, вместо толкания им коленвала. — В них реализовано одновременное осуществление четырёх тактов: анимация с 1:53 (2 такта по мере хода одной половины поршня в другую треть камеры, 2 такта по мере вращения другой половины поршня внутри своей трети камеры) — и эти 4 такта осуществляются за треть оборота ротора.

2. Сжигание большего количества ТВС.

Для сгорания большего количества ТВС нужно больше кислорода, его можно впихнуть под давлением — для этого используются нагнетатели.
Также используют кислородосодержащих смеси — например, закись азота, которая при сгорании ТВС распадается на кислород и азот (чтоб кислорода не было слишком много). Азота и кислорода, из которых состоит закись азота, полно в воздухе, вопрос о безотходном получении её из воздуха пока открыт.
Чистый кислород в ТВС не используется, вроде, только потому, что это слишком сильно повышает темп. сгорания, что устранимо внутр. охлаждением (см. пункт про КПД).
Обычно воздуха в ТВС в 15 раз больше, чем топлива, т.е. потенциал для увеличение кислорода в ТВС весьма велик.

3. Отказ от коленвала (и, соответственно, всего, что с ним связано).

Он имеет смысл когда от ДВС нужна только выработка электричества. А этом случае можно использовать магнитный поршень в качестве ротора, а вокруг камеры сгорания сделать обмотку. Поршень должен ходить от одного конца камеры к другому, сжимая ТВС в их концах от её взрыва в другом конце.

4. Отказ от стартера.

Предложенный в предыдущем пункте ДВС мог бы разгонятся в режиме электродвигателя.
В двигателе с коленвалом можно объединить функции стартера и генератора в одном агрегате. В режиме электродвигателя он и играл бы функцию стартера, и помогал бы разгонятся (от конденсаторов, которые заряжались бы от ДВС на крейсерской скорости и светофорах, и, возможно, торможением).

5. Овальность поршней.

Если сделать поршень овальным, с прежней шириной но такой длиной, при которой площадь в 2 раза больше — объём «цилиндра» удвоится, но размер двигателя — нет.
Минусом овальных поршней является то, что при расширении металла (от нагрева) длина цилиндра будет увеличиваться больше, чем ширина, что плохо скажется на кольцах, но нагрев можно существенно снизить — см. пункт про КПД.

6. Повышение макс. оборотов.

Главным ограничивающим обороты фактором является количество вырабатываемого тепла, которое при большом уровне приводит к прогоранию деталей. Охлаждать цилиндры можно изнутри после каждого рабочего такта — см. пункт про КПД.
Повышение КПД.[править код]

1. Тепло нагретой камеры сгорания можно превращать в энергию движения путём подачи капель воды в камеру после 4го такта — она испарится (расширяясь в 1600 раз) и пар будет толкать поршень, а на следующем такте пар можно выпустить как отработанный газ. — Такой 6-тактный двигатель описан по ссылке. Испарение (5й такт) существенно охлаждает двигатель.
2. Хорошо охлаждаемая камера сгорания позволяет сжимать топливо сильней (не будет рано детонировать), что также повышает КПД.

Снижение уровня шума.[править код]

Шум — «вибрационные» волны воздуха, образуются они от вибрации от взрывов ТВС, и больше всего ей подвержена головка блока цилиндров. От взрыва у головки можно избавиться разместив ещё один оппозитный тянущий поршень (ОТП) (сверху), т.о. взрыв двигал бы 1 поршень вниз, а другой вверх, 1й толкал бы коленвал, а второй (верхний) тянул бы его на себя. (см. анимацию)
Минусом такого дополнительного поршня является дополнительный вес двух его шатунов, но если двигатель 2х-тактный (см. анимацию) — их вес существенно ниже, т.к. они не подвергаются нагрузке на сжатие (только на растяг). К тому же, коленвал, который не только толкается, но и тянется весит меньше, чем обычный (только толкаемый).

Roma.rr (обс) 11:26, 19 сентября 2016 (UTC)

Оппозитное расположение поршней[править код]

Оно пример даёт:
1. Уменьшение размеров за счёт общего для для пар(ы) цилиндров пространства для коленвала, которое
2. Снижение веса за счёт общей для для пар(ы) цилиндров части коленвала, пространства для него, а также отсутствия нижнего крепления каждого шатуна к коленвалу (там противоположный шатун) и общего подшипника.
3. Снижение центра тяжести: с оппозитным расположением поршней двигатель предлагается располагать лёжа, его центр тяжести в таком случае на много ниже обычного двигателя.
4. В лежачем положении низ двигателя (т.е. одну из сторон всех поршней) можно охлаждать потоком воздуха под машиной.
5. Отсутствие нагрузки на шейку, которая в обычном двигателе создаётся разогнанным вниз поршнем с шатуном. В оппозитном двигателе энергия разгона поршня от толчка поршень преобразуется в сжатие ТВС другим поршнем (если двигатель 2-тактный, хотя это возможно и при 4х-тактности) и лишь немного этой энергии разгона направляется в стороны от противоположного поршня. — При этом, в некоторых оппозитных двигателях (как в анимации по ссылке) оппозитные поршни движутся на встречу друг другу, а шатуны помимо движения навстречу друг другу движутся в противоположные стороны (один вверх, другой вниз), что исключает вибрации, которые являются главной причиной ограничения макс. оборотов (помимо нагрева, который устраним 6-тактностью).

Roma.rr (обс) 15:49, 11 октября 2016 (UTC)

Косноязычно местами до бессмыслицы («Турбонагнетание позволяет двигателю работать более эффективно, поскольку тому что турбонагнетатель использует энергию выхлопных газов»). А прежде всего — НЕТ ТЕРМИНА «турбонагнетание», есть турбонаддув. —KVK2005 (обс.) 09:00, 7 мая 2018 (UTC)

Переведите «поскольку тому что турбонагнетатель использует энергию выхлопных газов» на русский. 31.135.45.53 09:41, 14 октября 2018 (UTC)

Двигатель внешнего сгорания — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 июня 2019; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 июня 2019; проверки требуют 2 правки.

Дви́гатели вне́шнего сгора́ния — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела.

К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей.

Двигатели внешнего сгорания были изобретены 203 года тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырёхтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале XIX века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.

Значительный рынок для двигателей внешнего сгорания сформировался во второй половине XIX века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.

После изобретения двигателя внутреннего сгорания, в конце XIX века, рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания ниже по сравнению со стоимостью производства двигателя внешнего сгорания.

Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2. Однако до недавнего времени выбросам СО2 не уделялось должного внимания.

  • «Двигатели внешнего сгорания», Г. В. Смирнов. Новое в жизни, науке, технике: Серия: Промышленность, 1967, М. — Знание. [1]

Двигатель внешнего сгорания — это… Что такое Двигатель внешнего сгорания?

Проблемы с содержанием статьиСтатья состоит из словарного определения термина. Пожалуйста, доработайте статью, приведя ее в соответствие с правилами. Подробности могут быть на странице обсуждения. В Википедии статьи, состоящие только из словарного определения, не приветствуются, их следует попытаться улучшить или выставить к удалению.
Кроме того, статью можно перенести в Викисловарь. Информация о самом слове, его значении, этимологии и употреблении, будет весьма ценным дополнением для Викисловаря.

Дви́гатели вне́шнего сгора́ния — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела.

К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей. Двигатели внешнего сгорания были изобретены почти 200 лет тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырехтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале 19-го века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.

Значительный рынок для двигателей внешнего сгорания сформировался во второй половине 19-го века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.

После изобретения двигателя внутреннего сгорания в конце 19-го века рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания в сравнении со стоимостью производства внешнего сгорания ниже. Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2, топливо. Однако, до недавнего времени стоимость ископаемого топлива была низкой, а выбросам СО2 не уделялось должного внимания. Принцип работы двигателя внешнего сгорания

В отличие от широко известного процесса внутреннего сгорания, при котором топливо сжигается внутри двигателя, двигатель внешнего сгорания, приводится в действие внешним источником тепла. Или, точнее говоря, она приводится в действие разностями температур, создаваемыми внешними источниками нагревания и охлаждения.

Этими внешними источниками нагревания и охлаждения могут служить отработанные газы биомассы и охлаждающая вода соответственно. Процесс приводит к вращению генератора, монтированного на двигателе, посредством чего производится энергия.

Все двигатели внутреннего сгорания приводятся в действие разностями температур. Бензиновые, дизельные двигатели и двигатели внешнего сгорания основаны на той особенности, что для сжатия холодного воздуха необходимо меньше усилий, чем для сжатия горячего воздуха.

Бензиновые и дизельные двигатели всасывают холодный воздух и сжимают этот воздух, прежде чем он подогревается в процессе внутреннего сгорания, который происходит внутри цилиндра. После подогревания воздуха над поршнем поршень перемещается вниз, посредством чего воздух расширяется. Так как воздух горячий, сила, действующая на шток поршня, велика. Когда поршень доходит до низа, клапаны открываются и горячие выхлопы заменяются новым, свежим, холодным воздухом. При движении поршня вверх холодный воздух сжимается, причем сила, действующая на шток поршня, меньше, чем при его движении вниз.

Двигатель внешнего сгорания работает в соответствии с немного другим принципом. В нем нет клапанов, он герметически запаян, а воздух подогревается и охлаждается при помощи теплообменных аппаратов горячего и холодного контура. Встроенный насос, приводимый в действие движением поршня, обеспечивает движение воздуха туда и обратно между этими двумя теплообменными аппаратами. Во время охлаждения воздуха в теплообменном аппарате холодного контура поршень сжимает воздух.

После сжатия воздух затем подогревается в теплообменном аппарате горячего контура, прежде чем поршень начинает двигаться в обратном направлении и использовать расширение горячего воздуха для приведения в действие двигателя.

Литература

  • «Двигатели внешнего сгорания», Г. В. Смирнов. Новое в жизни, науке, технике: Серия: Промышленность, 1967, М. — Знание. [1]

Системы двигателя – Основные механизмы и системы двс. Основные механизмы и системы двигателя. Двигатели внутреннего сгорания

  • 06.05.2019

Основные механизмы и системы двигателя — Общее устройство и работа двигателя — Двигатель — Автомобиль

10 июня 2011г.

Двигатель внутреннего сгорания состоит из двух основных механизмов — кривошипно-шатунного и газораспределительного — и систем охлаждения, смазки, питания. У карбюраторных двигателей имеется и система зажигания.

Кривошипно-шатунный механизм воспринимает силу давления газов и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Газораспределительный механизм
предназначен для своевременного впуска в цилиндр свежей горючей смеси (карбюраторные двигатели) или воздуха (дизели) и выпуска из него отработавших газов.

Система охлаждения
отводит теплоту от нагревающихся деталей двигателя. Она может быть жидкостной (у большинства отечественных двигателей) или воздушной (МеМЗ-968).

Система смазки служит для уменьшения трения между деталями двигателя, охлаждения их и отвода продуктов износа.

Система питания обеспечивает приготовление горючей смеси и подачу ее в цилиндры двигателя (карбюраторные и газовые двигатели) или же раздельную подачу в цилиндры топлива и воздуха (дизели), а также удаление из цилиндров продуктов сгорания.

Система зажигания служит для воспламенения рабочей смеси в цилиндрах двигателя при помощи электрической искры.

Основные данные двигателей, установленных на автомобилях ГАЭ-53А, ГАЗ-51А, ЗИЛ-130, «Москвич-412» и ГАЗ-24 «Волга», приведены в таблице:

Основные данные двигателей

Основные данные двигателей

Контрольные вопросы

  1. Что называется тактом и из каких тактов состоит рабочий цикл четырехтактного двигателя?
  2. Что называется степенью сжатия и как она влияет на мощность и экономичность работы двигателя?
  3. Назовите величину степени сжатия и литраж изучаемых двигателей.
  4. Какова степень сжатия дизелей и на каком топливе они работают?
  5. Как происходит рабочий цикл четырехтактного дизеля?

«Автомобиль», под. ред. И.П.Плеханова

Двигатель. Классификация, механизмы и системы ДВС

На современных тракторах и автомобилях в основном применяют поршневые двигатели внутреннего сгорания. Внутри этих двигателей сгорает горючая смесь (смесь топлива с воздухом в определенных соотношениях и количествах). Часть выделяющейся при этом теплоты преобразуется в механическую работу.

Классификация двигателей

Поршневые двигатели классифицируют по следующим признакам:

  • по способу воспламенения горючей смеси — от сжатия (дизели) и от электрической искры
  • по способу смесеобразования — с внешним (карбюраторные и газовые) и внутренним (дизели) смесеобразованием
  • по способу осуществления рабочего цикла — четырех- и двухтактные;
  • по виду применяемого топлива — работающие на жидком (бензин или дизельное топливо), газообразном (сжатый или сжиженный газ) топливе и мно­готопливные
  • по числу цилиндров — одно- и многоцилиндровые (двух-, трех-, четырех-, шестицилиндровые и т.д.)
  • по расположению цилиндров — однорядные, или линейные (цилиндры расположены в один ряд), и двухрядные, или V-образные (один ряд цилиндров размещен под углом к другому)

На тракторах и автомобилях большой грузоподъемности применяют четырехтактные многоцилиндровые дизели, на автомобилях легковых, малой и средней грузоподъемности — четырехтактные многоцилиндровые карбюра­торные и дизельные двигатели, а также двигатели, работающие на сжатом и сжиженном газе.

Основные механизмы и системы двигателя

Поршневой двигатель внутреннего сгорания состоит из:

  • корпусных деталей
  • кривошипно-шатунного механизма
  • газораспределительного механизма
  • системы питания
  • системы охлаждения
  • смазочной системы
  • системы зажигания и пуска
  • регулятора частоты вращения

Устройство четырехтактного одноцилиндрового карбюраторного двигателя показано на рисунке:

Устройство одноцилиндрового четырехтактного карбюра­торного двигателя

Рисунок. Устройство одноцилиндрового четырехтактного карбюра­торного двигателя:
1 — шестерни приводи распределительного вала; 2 — распределительный вал; 3 — толкатель; 4 — пружина; 5 — выпускная труба; 6 — впускная труба; 7 — карбюратор; 8 — выпускной кла­пан; 9 — провод к свече; 10 — искровая зажигательная свеча; 11 — впускной клапан; 12 — го­ловка цилиндра; 13 — цилиндр: 14 — водяная рубашка; 15 — поршень; 16 — поршневой палец; 17 — шатун; 18 — маховик; 19 — коленчатый вал; 20 — резервуар для масла (поддон картера).

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение ко­ленчатого вала и наоборот.

Механизм газораспределения (ГРМ) предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и вы­пуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (в карбюраторном и газовом двигателях) или наполнения ци­линдра воздухом и подачи в него топлива под высоким давлением (в дизеле). Кроме того, эта система отводит наружу выхлопные газы.

Система охлаждения необходима для поддержания оптимального теп­лового режима двигателя. Вещество, отводящее от деталей двигателя избы­ток теплоты, — теплоноситель может быть жидкостью или воздухом.

Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлажде­ния, защиты от коррозии и вымывания продуктов изнашивания.

Система зажигания служит для своевременного зажигания рабочей смеси электрической искрой в цилиндрах карбюраторного и газового двига­телей.

Система пуска — это комплекс взаимодействующих механизмов и сис­тем, обеспечивающих устойчивое начало протекания рабочего цикла в ци­линдрах двигателя.

Регулятор частоты вращения — это автоматически действующий меха­низм, предназначенный для изменения подачи топлива или горючей смеси в зависимости от нагрузки двигателя.

У дизеля в отличие от карбюраторного и газового двигателей нет сис­темы зажигания и в системе питания вместо карбюратора или смесителя ус­тановлена топливная аппаратура (топливный насос высокого давления, топ­ливопроводы высокого давления и форсунки).

1.2 Механизмы, системы и их назначение

 

Двигатель внутреннего сгорания состоит из корпусных деталей, кривошипно-шатунного и газораспределительного механизмов, систем питания, охлаждения, смазки и пуска (рис.1а). Дополнительно для облегчения запуска у дизелей предусмотрен декомпрессионный механизм, а карбюраторных двигателей имеется система зажигания для принудительного зажигания смеси при помощи электрической искры.

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала, и наоборот. Он состоит из цилиндра 6, поршня 7 с кольцами, поршневого пальца 8, шатуна 9, коленчатого вала 12 и маховика 10. Сверху цилиндр закрыт головкой 1.

Механизм газораспределения предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и выпуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Он состоит из распределительного вала 14, зубчатых колес 13 привода распределительного вала, толкателей и штанг 16, коромысел 2, клапанов 4 и 5, пружин.

Система питания служит для приготовления горючей смеси и подвода ее е цилиндру (в карбюраторном и газовом двигателе) или наполнения цилиндра воздухом и подачи в него топлива под высоким давлением (в дизеле).

Система охлаждения необходима для поддержания оптимального теплового режима двигателя. Вещество, отводящее от деталей двигателя избыток теплоты, — теплоноситель, может быть жидкостью или воздухом.

Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлаждения, защиты от коррозии и вымывания продуктов изнашивания.

Система пуска – это комплекс взаимодействующих механизмов и систем, обеспечивающих устойчивое начало протекания рабочего цикла в цилиндрах двигателя.

1.3 Рабочий цикл двигателя

 

Рассмотрим рабочий цикл четырехтактного дизеля и, что происходит в одном из цилиндров работающего дизеля (рис. 2).

 

 

 

Рисунок 2 – Схема работы четырехтактного одноцилиндрового двигателя.

 

Такт впуска (рис. 2а). Поршень движется от в.м.т. к н.м.т., впускной клапан открыт, в цилиндр поступает воздух. Давление в конце такта 0,08…0,09 МПа, температура воздуха 30…500С.

Такт сжатия (рис. 2б). Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т., сжимая воздух.. Вследствие большой степени сжатия (порядка 14…18) давление воздуха в конце этого такта достигает 3,5…4,0 МПа, а температура — (550…7500С) превышая температуру самовоспламенения топлива. При положении поршня, близком к  в.м.т., в цилиндр через форсунку начинается впрыскивание жидкого топлива, подаваемого насосом высокого давления.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и остаточными газами, образуя рабочую смесь. Большая часть топлива воспламеняется и сгорает. Давление газов достигает 5,5…9,0 МПа, а температура 20000С.

Такт расширения. Оба клапана закрыты. Поршень под давлением расширяющихся газов движется от  в.м.т.  к  н.м.т. (рис. 2в). В начале такта расширения сгорает остальная часть топлива. К концу такта расширения давление газов уменьшается до 0,2…0,3 МПа, температура до 3000С.

Такт выпуска. Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рис. 2в) и через открытый выпускной клапан выталкивает отработавшие газы из цилиндра в атмосферу. К концу такта давление газов 0,11…0,12 МПа, температура 65…900С.

Далее рабочий цикл повторяется.

Теперь, рассмотрим рабочий цикл двухтактного двигателя. Схема устройства и работы двухтактного карбюраторного двигателя с кривошипно-камерной продувкой изображены на рисунке 3.

 

 

1 – свеча зажигания; 2 – поршень; 3 – выпускное окно; 4 – карбюра- 

 тор; 5 – впускное окно; 6 – кривошипная камера; 7 —  продувочный

 канал; 8 – цилиндр; 9 – выхлопная труба; 10 – картер.

 

Рисунок 3 – Схема работы двухтактного двигателя.

В стенке цилиндра 8 двигателей этого типа выполнены три окна: впускное 5, продувочное 7 и выпускное 3. Картер (кривошипная камера 6) двигателя непосредственно с атмосферой не сообщен. Впускное окно 5 соединено с карбюратором 4, продувочное окно – через канал 7 с кривошипной камерой 6 двигателя.

Рабочий цикл двухтактного карбюраторного двигателя происходит следующим образом. Поршень 2  движется от н.м.т. к в.м.т. (рис. 3а), перекрывая в начале хода продувочное окно 7, а затем выпускное 3. После этого в цилиндре 8 начинается сжатие находящейся в нем рабочей смеси. В то же время в кривошипной камере 6 создается разрежение, и как только нижняя кромка поршня откроет впускное окно 5, через него из карбюратора 4 в кривошипную камеру будет засасываться горючая смесь.

При положении поршня 2, близком к в.м.т., сжатая рабочая смесь воспламеняется электрической искрой от свечи 1. При сгорании смеси давление газов резко возрастает. Под давлением газов поршень перемещается к н.м.т. (рис. 3б). Как только он закроет впускное окно 5, в кривошипной камере 6 начнется сжатие ранее поступившей сюда горючей смеси.

В конце хода поршень открывает выпускное 3 (рис. 3в), а затем и продувочное 7 окна. Через открытое выпускное окно отработавшие газы с большой скоростью выходят в атмосферу. Давление газов в цилиндре быстро понижается. К моменту открытия продувочного окна давление сжатой горючей смеси в кривошипной камере становится выше, чем давление отработавших газов в цилиндре. Поэтому горючая смесь из кривошипной камеры по каналу 7 поступает в цилиндр и, заполняя его, выталкивает остатки отработавших газов через выпускное окно наружу.

В дальнейшем все процессы повторяются в такой же последовательности.

Механизмы и системы двигателя

Категория:

   Двигатели кранов на железнодорожном ходу

Публикация:

   Механизмы и системы двигателя

Читать далее:



Механизмы и системы двигателя

Основными механизмами двигателя внутреннего сгорания являются шатунно-кривошипный и распределительный, а основными системами— системы питания, зажигания, смазки и охлаждения.

Шатунно-кривошипный механизм предназначен для преобразования прямолинейного возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

Этот механизм состоит из цилиндра, поршня с кольцами, поршневого пальца, шатуна, коленчатого вала.

Рекламные предложения на основе ваших интересов:

Ход поршня зависит от величины радиуса кривошипа коленчатого вала и равен двойной величине радиуса кривошипа.

Крайние положения поршня, как верхнее, так и нижнее, соответствуют положениям, когда ось кривошипа вала, осевая линия шатуна и ось пальца поршня располагаются на одной прямой линии. Эти положения называются мертвыми положениями поршня, потому что усилием на поршень нельзя заставить повернуться коленчатый вал. Вся система может быть выведена из этого положения лишь внешними силами — силой инерции маховика или движением поршней других цилиндров, если двигатель многоцилиндровый.

Цилиндры большинства двигателей выполняются в виде отдельных отливаемых из специального чугуна гильз, вставленных в отверстия блока цилиндра.

Блок цилиндра — одна из основных частей двигателя. Верхняя часть блока закрыта головкой, в которой расположены впускные и выпускные клапаны, форсунки или запальные свечи.

Нижняя часть блока соединена с картером, служащим у некоторых двигателей основанием для коренных подшипников коленчатого вала, и камерой, в которой у четырехтактного двигателя помещается масло для смазки всех деталей.

Блок цилиндра (а также и головка) обычно делают двухстенным; в пространстве между стенками циркулирует вода, охлаждающая двигатель.

Поршень, воспринимающий на себя давление газов, отливают из специального чугуна или алюминия. Он имеет цилиндрическую форму. Верхняя его часть (донышко) может быть плоской, выпуклой или вогнутой.

В средней части поршень имеет с внутренней стороны приливы, называемые бобышками, в отверстиях которых помещается палец, соединяющий поршень с шатуном. Нижняя, наиболее тонкостенная часть поршня называется юбкой. Диаметр поршня обычно меньше диаметра цилиндра, и между поршнем и цилиндром имеется необходимый температурный зазор, в котором образуется тонкая масляная пленка, смазывающая трущиеся поверхности цилиндра.

На наружной боковой поверхности поршня имеются кольцевые канавки, в которые заводятся поршневые кольца. Часть колец служит для создания уплотнения между стенками цилиндра и поршня (так называемые компрессионные кольца), часть же колец (маслосбрасывающих) служит для удаления со стенок цилиндра излишков смазки.

Маслосбрасывающие кольца обыкновенно имеют на своей поверхности проточку, этим порышается удельное давление кольца на стенки цилиндра, в результате чего оно лучше снимает излишки масла с поверхности цилиндра.

Поршневой палец представляет собой полый стержень, изготовленный из легированной стали. Для уменьшения износа рабочую поверхность пальца обычно цементируют, калят и шлифуют. Во многих двигателях поршневой палец закрепляется лишь от продольного перемещения пружинными замками с тем, чтобы исключить возможность трения его о стенки цилиндра. При таком закреплении палец может проворачиваться как в бобышках поршня, так и во втулке шатуна. Такая посадка свободно плавающего пальца дает более равномерный его износ.

Шатун шарнирно соединяет поршень с коленчатым валом и передает воспринимаемые поршнем усилия валу. Шатун двигателей внутреннего сгорания в большинстве своем штампован из стали. Он состоит из стержня и двух головок: верхней с впрессованной в нее бронзовой втулкой и нижней, называемой кривошипной и снабженной вкладышами. Сечение стержня обычно двутавровое, что придает ему необходимую прочность при небольшом весе.

Кривошипная головка шатуна выполняется разъемной; отъемная часть называется крышкой и крепится к основной части болтами. Болты эти испытывают весьма большие нагрузки и изготовляются из прочной хромистой стали.

Вкладыши шатуна, как и вкладыши коренных подшипников, делают в виде тонкостенных стальных широких полуколец. Внутреннюю рабочую поверхность этих вкладышей заливают антифрикционным сплавом, баббитом или свинцовистой бронзой.

Коленчатый вал — наиболее ответственная деталь двигателя. Он имеет несколько коренных опорных шеек и несколько кривошипных шеек или просто кривошипов, число которых соответствует числу цилиндров.

Для уравновешивания коленчатый вал снабжают противовесами, прикрепляемыми к щекам кривошипа со стороны, противоположной кривошипной шейке. На конце вала обычно крепится маховик.

Газораспределительный механизм предназначен для подачи в цилиндр воздуха или горючей смеси в строго определенные моменты и для удаления из цилиндра продуктов сгорания также в определенные моменты.

В четырехтактных двигателях газораспределение осуществляется механизмом, состоящим из клапанов, перекрывающих отверстия в головке блока, пружин, удерживающих клапаны в закрытом состоянии, распределительного вала и передаточных деталей: толкателей, втулок, коромысел и т. д.

Распределительный вал, имеющий кулачки, приводится во вращение от коленчатого вала через шестеренчатую передачу.

Кулачки на валу расположены в определенной последовательности. При вращении распределительного вала кулачки, набегая на толкатели, поднимают их. Это движение толкателей передается на концы качающихся коромысел, вторые концы которых нажимают на стержни клапанов и, сжимая пружины, открывают их в строго установленном порядке.

Клапаны работают при высоких температурах, поэтому их изготовляют из специальных жаростойких сталей.

Система питания предназначена для подачи в цилиндры двигателя топлива или горючей смеси, необходимых для совершения рабочего процесса. Системы питания дизелей и карбюраторных двигателей различные

Общая схема питания дизеля показана на рис. 1. Топливо из бака через расходный кран попадает в фильтр грубой очистки и, пройдя через него, поступает к подкачивающей помпе. Эта помпа, действующая от привода топливного насоса, прогоняет топливо через фильтр тонкой очистки, откуда оно поступает к топливному насосу. Насос под большим давлением подает топливо в форсунки, расположенные в головке блока двигателя.

Рис. 1. Общая схема питания дизеля

Система питания карбюраторного двигателя включает в себя бак для топлива, отстойник карбюратор, воздухопровод и регулятор числа оборотов двигателя. Наиболее ответственной частью в этой системе является карбюратор. Он предназначен для приготовления горючей смеси, т. е. смеси паров топлива с вполне определенным количеством воздуха, необходимого для его сгорания

Существует несколько конструкций карбюраторов. На рис. 2 показана схема устройства простейшего карбюратора, состоящего из смесительной камеры, диффузора, распылителя, жиклера, поплавковой камеры, заслонок (дроссельной и воздушной), поплавка, иглы, канала и кнопки.

Смесительная камера представляет собой отрезок трубы, в которой смешивается распыленное топливо с воздухом. Эта камера имеет местное сужение, называемое диффузором, к которому проведен распылитель, подающий в камеру топливо.

Воздух, проходя через камеру смешения, повышает свою скорость в диффузоре, и над распылителем создается разрежение, способствующее лучшему всасыванию топлива, которое увлекается затем быстро движущейся струей воздуха, испаряется, хорошо перемешивается с воздухом и поступает в цилиндры.

Рис. 2. Схема устройства простейшего карбюратора

Топливо в распылитель подается через поплавковую камеру, предназначенную поддерживать одинаковый напор топлива в распылителе, что обеспечивается поддержанием постоянного уровня топлива в камере.

В канале на пути от поплавковой камеры к распылителю установлен жиклер, сделанный в виде пробки с точно калиброванным отверстием, через которое пропускается ограниченное количество топлива.

Дроссельная заслонка служит для регулирования количества смеси, подаваемой в цилиндр: при большем открытии дроссельной заслонки в цилиндры двигателя поступает больше смеси, поэтому двигатель развивает большую мощность. Наоборот, прикрывая дроссельную заслонку, уменьшают доступ смеси в цилиндры, в результате чего мощность двигателя снижается.

Горючая смесь, подаваемая в цилиндры, может быть «бедной» или «богатой» в зависимости от соотношения долей воздуха и топлива в ней. Чем больший процентный состав топлива, тем богаче смесь.

Воздушная заслонка служит для временного обогащения смеси, главным образом в момент пуска двигателя и установления режима его работы. Это обогащение достигается поворотом воздушной заслонки, уменьшающим живое сечение канала, вследствие чего скорость потока воздуха возрастает, создается большее разрежение и увеличивается, подача топлива.

Для нормальной работы двигателя важно иметь постоянное качество смеси, определяемое соотношением количества топлива и воздуха. Простейший карбюратор не обеспечивает этого постоянства. При прикрытии дроссельной заслонки уменьшается число оборотов двигателя и над распылителем создается меньшее разрежение, в результате чего истечение топлива будет слабее и смесь в цилиндры станет поступать обедненной. Наоборот, с полным открытием дроссельной заслонки истечение топлива повышается и смесь обогащается.

Устранение этого недостатка в карбюраторах достигается постановкой дополнительного устройства, называемого компенсационным жиклером. Его размещают между поплавковой камерой и компенсационным колодцем, через который топливные каналы соединены с атмосферой. Благодаря этому через компенсационный жиклер подается постоянное количество топлива независимо от величины разрежения в диффузоре, т. е. независимо от режима работы двигателя.

С увеличением числа оборотов двигателя подача топлива через основной главный жиклер увеличится и смесь обогатится, в то же время увеличится поступление воздуха, но так как компенсационный жиклер подаст прежнее количество топлива, качество смеси не изменится.

При снижении оборотов двигателя главный жиклер станет объединять смесь, в то же время компенсационный жиклер, подавая одно и то же количество топлива при меньшем поступлении воздуха, будет обогащать смесь, в итоге ее качество сохранится.

Система зажигания предназначена для воспламенения рабочей смеси в карбюраторных двигателях и состоит из магнето, запальных свечей и проводов высокого напряжения.

Магнето предназначено для получения электрического тока высокого напряжения (15 000—20 000 б) и состоит из сердечника, вращающегося магнита, двух обмоток (первичной и вторичной), конденсатора и прерывателя.

При вращении магнето силовые линии магнитного поля наводят в обмотке э. д. с, которая изменяется как по величине, так и по направлению. В моменты прохода полюсов магнита против колодок сердечника магнитный поток достигает максимального своего значения, а в моменты нахождения полюсов между колодками поток силовых линий изменяет свое направление. В результате изменения магнитного потока силовые линии пересекают витки обмотки из толстой изолированной проволоки, возбуждая в ней переменный ток низкого напряжения, называемый током первичной обмотки. В возникновении первичного тока можно легко убедиться, если в цепь первичной обмотки включить гальванометр. Однако ток, возникающий в первичной обмотке, недостаточен для того, чтобы получить искру в запальной свече. Поэтому в магнето поверх первичной обмотки намотана вторичная обмотка из тонкой проволоки и с большим количеством витков.

Когда в первичной обмотке возникает и исчезает электрический ток, вокруг нее возникает магнитное поле. Его силовые линии пересекают витки вторичной обмотки, вследствие чего в ней образуется ток высокого напряжения, способный дать искру в запальной свече.

Для резкого изменения магнитного поля вокруг первичной обмотки в ее цепь включен прерыватель с контактами, прерывающий первичный ток в моменты, когда он достигает наибольшей величины. Для уменьшения искрения, подгорания контактов прерывателя и увеличения резкости разрыва цепи параллельно контактам прерывателя включен конденсатор.

Рис. 3. Схема устройства элементов системы зажигания: 1—сердечник; 2 —магнит; 3 — стойка; 4 —первичная обмотка; 5 —вторичная обмотка; 5~свеча запальная; 7 —кулачок прерывателя; 8 — рычажок прерывателя; 9 — контакты прерывателя; 10 — пружина; 11 — искровой промежуток; 12 — провод высокого напряжения; 13 — конденсатор; 14 — кнопка замыкания первичной цепи

Замыкая первичную обмотку специальной кнопкой, выключают магнето, так как в этом случае разрыва в цепи не происходит, а следовательно, во вторичной обмотке не будет возникать ток высокого напряжения.

Как отмечалось ранее, чтобы получить наиболее полное сгорание рабочей смеси, воспламенение ее осуществляется с некоторым опережением. Степень опережения на различных режимах работы двигателя должна быть различной, поэтому в магнетосделан специальный автомат, изменяющий величину опережения в зависимости от числа оборотов коленчатого вала двигателя и увеличивающий опережение зажигания с повышением числа оборотов.

Запальная свеча состоит из стального корпуса, ввертываемого в гнездо головки блока, сердечника из изоляционного материала, тонкого стального стержня 3, выполняющего роль центрального электрода. Против нижнего конца центрального электрода расположен боковой электрод, закрепленный в корпусе свечи. Зазор между этими электродами образует искровой промежуток в 0,5—0,7 мм, через который проскакивает электрическая искра.

Корпус и сердечник свечи в собранном виде разделяются прокладкой. В верхней части свечи имеется гайка 6 с шайбой. Во избежание просачивания газов из цилиндров свеча завинчивается в гнездо на медно-асбестовой прокладке.

К верхнему концу центрального стержня присоединяется провод тока высокого напряжения, закрепляемый гайкой.

Смазка трущихся поверхностей двигателя имеет большое значение для его работы. Как бы хорошо ни были обработаны трущиеся поверхности, при скольжении их друг по Другу с большим усилием нажатия между ними возникает трение, на которое бесполезно затрачивается энергия и в результате которого повышается износ поверхностей и перегрев трущихся деталей.

Смазка трущихся поверхностей представляет собой не что иное, как разделение этих поверхностей друг от друга тонким слоем смазки. Вследствие того, что сила сцепления частиц смазки между собой меньше, чем сила сцепления частиц смазки с поверхностью трущихся деталей, возникнет трение не металла о металл, а трение в жидкостном слое. Непрерывно подаваемая на поверхности трения смазка уносит, кроме того, мельчайшие частицы сработанного металла и охлаждает трущиеся поверхности.

Рис. 4. Запальная свеча

Масло, применяемое для смазки трущихся поверхностей, в зависимости от характера смазываемых поверхностей и режима их работы должно обладать определенными качествами. Так, оно должно иметь необходимую вязкость, чтобы не выжиматься из зазора между поверхностями, обладать достаточной стойкостью против воспламенения, не содержать кислот, щелочей и твердых примесей.

Трущиеся поверхности двигателя смазывают следующими способами: разбрызгиванием, принудительной подачей масла, а также комбинированным способом.

Наиболее простым способом смазки является разбрызгивание. В этом случае быстро движущиеся детали, главным образом шатунно-кривошипного механизма, захватывают масло из нижней части картера и разбрызгивают его по всей поверхности в виде мельчайших капелек. Избыток смазки стекает обратно в масляную ванну картера. Это большое преимущество способа разбрызгивания, однако он не обеспечивает должной смазки деталей в труднодоступных местах. Более надежно смазка осуществляется принудительным способом, когда подача масла к трущимся поверхностям происходит под давлением специальным масляным насосом обычно шестеренчатого типа, приводимым в движение от коленчатого вала двигателя.

Система принудительной смазки включает в себя манометр, показывающий давление масла в магистрали, и термометр для измерения температуры масла, а также радиатор для охлаждения отработавшего масла, отстойник и фильтры.

В двигателях применяется преимущественно комбинированная система смазки, при которой отдельные поверхности смазываются разбрызгиванием, а наиболее ответственные места — под давлением.

Система охлаждения двигателя. При работе двигателя выделяется большое количество тепла, вследствие чего повышается температура нагрева деталей, и если не принять мер к охлаждению их, то двигатель перегреется и его работа нарушится.

При перегреве масло теряет свою вязкость, условия смазки ухудшаются, масло начинает выгорать, наступает ускоренный износ деталей и на рабочих поверхностях могут появиться задиры, приводящие к авариям.

Охлаждение в двигателях достигается главным образом за счет пропуска охлаждающей воды через полости между двойными стенками деталей цилиндра и головки блока. Вода, омывая горячие стенки деталей, отнимает часть тепла от них, предотвращает чрезмерный их нагрев. Система охлаждения включает в себя полости охлаждаемых деталей, магистрали, радиатор, насос, вентилятор.

Если вода в системе охлаждения циркулирует за счет разности в плотности нагретой и холодной воды, то такая система называется термосифонной. В этом случае вода, отнявшая часть тепла от стенок охлаждаемых деталей, поднимается вверх и поступает в радиатор, уступая место более холодной воде, выходящей из радиатора. Радиатор при этой системе обязательно должен быть расположен выше охлаждаемых деталей.

Термосифонная система недостаточно эффективно охлаждает детали, поэтому в современных двигателях используется система охлаждения с принудительной циркуляцией воды от водяного насоса преимущественно центробежного действия.

Радиатор представляет собой два бачка (верхний и нижний), соединенных между собой боковыми стойками и сердцевиной, состоящей из ряда вертикальных трубочек, пропущенных через горизонтальные пластинки, которые увеличивают поверхность охлаждения. Для большей эффективности радиатор охлаждается потоком воздуха, создаваемым вентилятором.

Чтобы облегчить пуск двигателя, в особенности в зимнее время, в систему охлаждения заливают горячую воду. В некоторых мощных двигателях используют пусковой двигатель, система охлаждения которого соединена с системой охлаждения основного двигателя. Работая, пусковой двигатель нагревает воду в общей системе охлаждения, чем облегчает пуск основного двигателя.

При изучении принципа работы двигателя была рассмотрена его упрощенная схема. В действительности же двигатель трактора или автомобиля имеет сложное устройство.

Он состоит из кривошипно-шатунного и распределительного механизмов, а также следующих систем: охлаждения, смазочной, питания и регулирования, пуска. Карбюраторный двигатель, кроме того, оборудован системой зажигания.

С помощью кривошипно-шатунного механизма возвратно-поступательное движение поршней в цилиндрах преобразуется во вращательное коленчатого вала.

Распределительный механизм открывает и закрывает клапаны, которые пропускают в цилиндры воздух или горячую смесь и выпускают из цилиндров отработавшие газы.

Система охлаждения поддерживает требуемый тепловой режим двигателя.

Смазочная система подает масло к трущимся деталям двигателя для уменьшения трения и их изнашивания.

Система питания очищает и подает в цилиндры воздух и топливо или горючую смесь, а с помощью регулятора автоматически регулируется требуемое количество топлива или смеси в зависимости от нагрузки двигателя.

Система пуска дизеля необходима для проворачивания коленчатого вала при пуске.

Система зажигания карбюраторного двигателя нужна для воспламенения рабочей смеси в его цилиндрах.

Поршневой двигатель внутреннего сгорания состоит из следующих механизмов и систем: кривошипно-шатунного и газораспределительного механизмов, а также систем — питания, охлаждения, смазки, зажигания и пуска.

Кривошипно-шатунный механизм воспринимает давление газов и преобразует прямолинейное возвратно-поступательное – движение поршня во вращательное движение коленчатого вала.

Газораспределительный механизм предназначен для впуска в цилиндр горючей смеси (карбюраторные и газовые двигатели) или воздуха (дизели) и выпуска отработавших газов.

Система охлаждения обеспечивает нормальный температурный режим двигателя, при котором он не перегревается и не переохлаждается.

Система смазки необходима для уменьшения трения, между деталями, снижения их износа и отвода тепла от трущихся поверхностей.

Систем.а питания служит для подачи отдельно топлива и воздуха в цилиндры дизеля или для приготовления горючей смеси из мелкораспыленного топлива и воздуха и для подвода смеси к цилиндрам карбюраторного или газового двигателей и отвода отработавших газов.

Система зажигания обеспечивает воспламенение рабочей смеси в.карбюраторных и газовых двигателях (в дизелях топливо воспламеняется от соприкосновения с раскаленным воздухом, поэтому они не имеют специальной системы зажигания).

Система пуска служит для пуска двигателя.

Рекламные предложения:


Читать далее: Краткое описание дизеля КДМ-46

Категория: — Двигатели кранов на железнодорожном ходу

Главная → Справочник → Статьи → Форум


Основные механизмы и системы двигателя внутреннего сгорания автотракторов

Категория:

   Автомобили и трактора

Публикация:

   Основные механизмы и системы двигателя внутреннего сгорания автотракторов

Читать далее:



Основные механизмы и системы двигателя внутреннего сгорания автотракторов

Двигатель внутреннего сгорания (рис. 4) состоит из следующих механизмов и систем, выполняющих определенные функции.

Кривошипно-шатунный механизм осуществляет рабочий цикл двигателя и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Механизм состоит из цилиндра с головкой, поршня с кольцами, поршневого пальца, шатуна, коленчатого вала, маховика. Механизм установлен в блок-картере, закрытом снизу поддоном (резервуаром для масла).

Механизм газораспределения предназначен для своевременного впуска в цилиндр горючей смеси или воздуха и своевременного удаления отработавших газов. Он состоит из клапанов с направляющими втулками, пружин с деталями их крепления, штанг 4, коромысел, толкателей, распределительного вала и шестерен привода распределительного вала.

Рекламные предложения на основе ваших интересов:

Система охлаждения служит для отвода избыточного тепла от нагретых деталей двигателя. Она бывает жидкостной или воздушной. Если система охлаж— дения жидкостная, то она состоит из рубашки охлаждения, радиатора, водяного насоса, вентилятора, термостата и патрубков. Система воздушного охлаждения состоит из теплоотводящих ребер, вентилятора, кожуха и щитков, направляющих воздушный поток для отвода тепла.

Система смазки обеспечивает подачу масла к трущимся деталям двигателя с целью уменьшения трения между ними и отвода тепла. Она состоит из резервуара для масла, масляного насоса, фильтров и маслопроводов.

Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (карбюраторные двигатели) или подачи топлива в цилиндр и напол-’ нения его воздухом (дизельные двигатели).

Рис. 4. Устройство одноцилиндрового карбюраторного двигателя

У карбюраторных двигателей эта система состоит из топливного бака, топливопроводов, топливного и воздушного фильтров, топливного насоса, карбюратора (или смесителя), впускного и выпускного трубопроводов, глушителя.

У дизельных двигателей система питания состоит из тех же деталей и приборов, с той лишь разницей, что вместо карбюратора установлены топливный насос высокого давления и форсунка.

Система зажигания предназначена для принудительного воспламенения рабочей смеси от электрической искры. В нее входят приборы, обеспечивающие получение электрического тока высокого напряжения, провода и свечи.

У дизельных двигателей приборы системы зажигания отсутствуют, так как топливо воспламеняется от соприкосновения со сжатым воздухом, имеющим высокую температуру.

Система пуска предназначена для пуска двигателя. К ней относятся: пусковой бензиновый двигатель с механизмом передачи (на тракторе), электрический стартер на автомобиле и иногда на тракторе, декомпрессионный механизм, приборы подогрева воды и воздуха.

Двухтактные двигатели имеют те же основные механизмы и системы, что и четырехтактные, но отличаются по устройству и действию механизма газорас-. пределения.

Рекламные предложения:


Читать далее: Основные понятия и определения по двигателем автотрактора

Категория: — Автомобили и трактора

Главная → Справочник → Статьи → Форум


Двигатель. Основные системы впрыска топлива. Вредные выбросы

В качестве источника энергии в подавляющем большинстве эксплуатируемых в настоящее время транспортных средств используется двигатель внутреннего сгорания, преобразующий химическую энергию топлива в механическую работу. Следует отметить, что при работе такого двигателя образуется большое количество различных вредных выбросов и излучений. Кроме того, топливо и эксплуатационные жидкости, применяемые в двигателе, обладают высокой токсичностью и пожароопасностью.

По типу применяемого топлива двигатели внутреннего сгорания подразделяются на:

  • бензиновые
  • дизельные
  • работающие с использованием горючих газов

dvsdvs_s

Рис. Устройство и принцип работы двигателя

Основные системы впрыска топлива

Рассмотрим элементы топливных систем основных видов.

Простейшим бензиновым двигателем является карбюраторный. Вследствие низкой экономичности такой двигатель применяется в основном в устаревших моделях автомобилей западно-европейского, а также в части современных автомобилей российского производства.

В современных двигателях все большее распространение находят системы впрыска топлива, обеспечивающие более точное регулирование процессов смесеобразования и, как следствие, большую экономичность и пониженную токсичность.

В качестве переходной системы между карбюраторной системой питания и системой впрыска в ряде автомобилей применяется центральный впрыск. Данная система вместо карбюратора имеет корпус с дроссельной заслонкой и установленной в нем единственной форсункой. Остальная система топливоподачи такого двигателя практически ничем не отличается от системы топливоподачи карбюраторного двигателя, за исключением наличия топливного насоса с электрическим приводом.

Центральный впрыск

Дальнейшее развитие систем впрыска привело к необходимости подавать топливо отдельно в каждый из цилиндров двигателя.

Механический впрыск

В результате появилась так называемая система механического впрыска топлива, которая сейчас практически не применяется. Однако существует еще достаточно автомобилей 1980-1990 гг. выпуска, оснащенных такой системой, один из вариантов которой представлен на рисунке. Эта система имеет в своем составе дополнительный накопителя топлива и дозатор-распределитель, с помощью которого топливо распределяется между цилиндрами.

Электронный впрыск

В настоящее время самое широкое распространение имеют электронные системы впрыска топлива разнесенного типа. Большинство современных систем впрыска являются вариантами такой системы, схема которой приведена на рисунке. В данной системе топливо подается к форсункам посредством специального топливного коллектора.

Общие элементы всех приведенных выше систем — топливный бак, топливный насос, топливный фильтр и топливопроводы. Следует иметь в виду, что электрические топливные насосы на современных автомобилях располагаются, как правило, внутри топливного бака и омываются топливом для обеспечения более интенсивного охлаждения. Кроме фильтров тонкой очистки в системе топливоподачи могут устанавливаться фильтры-отстойники для обеспечения более эффективного отделения от топлива воды и твердых примесей.

Для газобаллонных автомобилей используются, как правило, обычные двигатели, работающие на бензине. На таком двигателе устанавливается система питания, предназначенная для работы как на газообразном топливе, так и на бензине. Топливом для таких двигателей служит сжатый или сжиженный газ.

Схема системы питания автомобиля, работающего на сжатом газе, представлена на рисунке:

Система питания двигателя, работающего на сжатом газе

Рис. Система питания двигателя, работающего на сжатом газе:
1 — баллоны для сжатого газа; 2 — вентили групп баллонов; 3 — наполнительный вентиль; 4 — основной расходный вентиль; 5 — редуктор высокого давления; 6 — электромагнитный клапан; 7 — редуктор низкого давления; 8 — пусковой клапан; 9 — карбюратор-смеситель

Система питания автомобиля, работающего на сжиженном газе, имеет один или два баллона, заполненных сжиженным газом. При необходимости превращения жидкой фазы в газообразную в системе предусмотрен испаритель и одноступенчатый редуктор.

В современных двигателях иностранного производства в настоящее время начинают внедрять газовую систему питания, основанную на использовании сжиженного газа непосредственно (в виде жидкой фазы), без испарителя.

В целях снижения дымности и повышения экономичности дизельных двигателей для них также разрабатываются установки для использования газового топлива. Наиболее широкое распространение получила установка, в которой в качестве источника зажигания газовоздушной смеси используется факел жидкого топлива, самовоспламеняющегося от сжатия.

Цилиндры двигателя в течение впуска заполняются газовоздушной смесью обедненного состава. Для этого на впускном трубопроводе двигателя или нагнетателя устанавливается смесительное устройство для перемешивания газа с воздухом, регулирования качества и количества газовоздушной смеси, поступающей в двигатель. Схема такой установки представлена на рисунке. Следует отметить, что в данных установках могут одновременно применяться баллоны для сжатого и сжиженного газа.

Система питания газодизельного двигателя

Рис. Система питания газодизельного двигателя: 1 — баллоны для сжатого газа; 2 — баллон для сжиженного газа; 3 — расходный вентиль для сжиженного газа; 4 — наполнительный вентиль для сжиженного газа; 5 — расходный вентиль для сжатого газа; 6 — наполнительный вентиль для сжатого газа; 7 — подогреватель-испаритель; 8 — магистральный вентиль; 9 — газовый фильтр; 10 — газовый редуктор; 11 — газовый смеситель

Топливная система дизельного двигателя, имеющего в своем составе топливный насос высокого давления (ТНВД), показана на рисунке. В такой системе может применяться также дополнительный фильтр-отстойник топлива, расположенный на всасывающей магистрали между топливным баком и подкачивающим насосом. Кроме того, транспортные средства с большим расстоянием между топливным баком и двигателем (преимущественно автобусы) могут снабжаться несколькими ручными подкачивающими насосами для облегчения заполнения топливом трубопроводов низкого давления.

Система питания дизельного двигателя

Рис. Система питания дизельного двигателя:
1 — топливный бак; 2 — топливный фильтр тонкой очистки; 3 — топливо провод низкого давления; 4 — топливный насос высокого давления; 5 — топливоподкачивающий насос; 6 — регулятор подачи топлива; 7 — педаль подачи топлива; 8 — топливопровод высокого давления; 9 — топливная форсунка; 10 — топливопровод слива; 11 — двигатель

В настоящее время на дизельных двигателях большой мощности получили распространение системы, в которых нагнетание топлива под высоким давлением происходит непосредственно в форсунках. Такой двигатель не имеет ТНВД, а снабжен насос-форсунками, имеющими электрическое или гидравлическое управление. Характерными особенностями этих двигателей является отдельный привод подкачивающего насоса, осуществляемый от распредвала, привода компрессора, насоса гидроусилителя и т.п., наличие топливного коллектора, распределяющего топливо между насос-форсунками, а также отсутствие топливопроводов высокого давления.

Основные компоненты вредных выбросов отработавших газов двигателя

Основные компоненты вредных выбросов отработавших газов бензинового двигателя и двигателя, работающего на газу, — оксид углерода (СО) и летучие углеводороды (СН), содержание которых подлежит контролю при проверке технического состояния двигателя.

Оксид углерода — это бесцветный, не имеющий запаха газ. Плотность СО меньше воздуха, поэтому он легко может распространяться в атмосфере. Поступая в организм человека с вдыхаемым воздухом, СО снижает функцию кислородного питания, выполняемую кровью. Усугубленный кислородным голоданием токсический эффект СО проявляется в непосредственном влиянии на клетки центральной нервной системы. Кроме того, в результате кислородного голодания организма ослабляется внимание, замедляется реакция, падает работоспособность водителя, что влияет на безопасность дорожного движения.

Углеводородные соединения служат исходными продуктами для образования фотооксидантов, обладающих сильным раздражающим и общетоксичным действием на организм человека. Особенно опасными из группы углеводородов являются канцерогенные вещества. Установлено, что в местах непосредственного контакта канцерогенных веществ с тканью появляются злокачественные опухоли. Токсичными веществами являются также пары бензина, попадающие в атмосферу из топливного бака и неплотностей в соединениях отдельных узлов и систем двигателя.

В дизельном двигателе подлежит контролю содержание сажи в отработавших газах, которое проявляется в виде дыма, выделяющегося при работе двигателя.

Сажа — это твердый углерод, который при попадании в организм задерживается в легких, дыхательных путях и вызывает аллергию. Кроме того, сажа, как любой аэрозоль, загрязняет воздух и ухудшает видимость на дорогах.

Классификация двигателей и их систем. Компоновка силовой установки машины

Двигатели могут быть классифицированы по различным признакам.

По назначению их подразделяют на стационарные и транспортные. К стационарным относятся двигатели генераторных, компрессорных, буровых и других установок. Они, как правило, работают в постоянном нагрузочном и скоростном режимах. К транспортным относятся двигатели автомобилей, тракторов, тепловозов, судов и других ТС.

По роду основного топлива для традиционных двигателей выделяют те, которые работают на тяжелом (дизельном) и легком (бензин, керосин) топливе, газовые, многотопливные и другие двигатели. Перспективным видом топлива для ТС в настоящее время считается водород.

По способу преобразования тепловой энергии в механическую различают двигатели внутреннего сгорания, у которых сгорание тогшивовоздушной смеси происходит внутри рабочего тела, и внешнего сгорания, у которых этот процесс осуществляется вне рабочего тела, и теплота передается через стенку.

По способу смесеобразования выделяют двигатели с внешним смесеобразованием (бензиновые карбюраторные и с впрыском топлива во впускной коллектор) и внутренним смесеобразованием (все дизели и бензиновые двигатели с непосредственным впрыском топлива в камеру сгорания).

По способу воспламенения рабочей жидкости различают двигатели с самовоспламенением и искровым зажиганием.

По способу осуществления рабочего цикла двигатели подразделяют на двух- и четырехтактные.

По способу регулирования мощности различают двигатели с количественным (изменяется количество смеси, поступающей в цилиндр), качественным (изменяется соотношение количества воздуха и топлива в смеси) и смешанным регулированием.

По конструкции традиционные двигатели подразделяют на поршневые, роторные, газотурбинные и другие, менее известные. На наземных ТС наиболее широкое распространение получили поршневые двигатели:

  • рядные
  • V-образные
  • а также опозитные с углом развала между поршнями, равным 180°

Различают двигатели без наддува и с наддувом, который может быть динамическим, с турбокомпрессором и приводным компрессором (нагнетателем), а также комбинированным.

В настоящее время на ТС применяют в основном дизели и бензиновые поршневые четырехтактные ДВС. Их отличают автономность, относительная экономичность и высокая удельная мощность. К недостаткам поршневых ДВС можно отнести неоптимальную скоростную, характеристику (изменение мощности и вращающего момента на коленчатом валу в зависимости от частоты его вращения), токсичность отработавших газов, трудность пуска при низких температурах, высокий уровень вибрации и шума.

На колесные и гусеничные тягачи, грузовые автомобили и другие ТС средней и большой грузоподъемности чаще всего устанавливают быстроходные рядные и V-образные дизели, поскольку они экономичнее по сравнению с бензиновыми двигателями, а используемое в них топливо более дешевое и менее пожароопасное. Кроме того, достоинством дизелей является возможность значительного увеличения их мощности за счет применения наддува. Вместе с тем следует отметить, что удельная мощность дизелей меньше, чем у бензиновых двигателей, их топливная аппаратура более сложная и дорогостоящая, а пусковые качества ниже.

Большинство легковых, а также некоторые грузовые автомобили малой и средней грузоподъемности имеют бензиновые двигатели, которые по сравнению с дизелями обладают облегченным пуском при низких температурах, большей компактностью, как правило, повышенной приемистостью и меньшей шумностью. Ранее применялись лишь карбюраторные бензиновые двигатели. В настоящее время наиболее широкое распространение получили двигатели с форсуночным (инжекторным) впрыском бензина.

Для некоторых тяжелых ТС перспективны газотурбинные двигатели. Их преимуществами являются высокая удельная мощность, многотопливность, малая токсичность отработавших газов, возможность выхода на режим максимальной мощности двигателя сразу после пуска, низкий расход смазочного масла, хорошие пусковые качества при низких температурах, автоматическое изменение вращающего момента на валу в довольно широких пределах, малая продолжительность обслуживания, более плавная работа, пониженный уровень вибрации и меньшая эксплуатационная стоимость. К основным недостаткам газотурбинного двигателя, которые ограничивают его использование, следует отнести относительно высокий расход топлива (особенно при малых нагрузках и на холостом ходу), значительный расход воздуха, невысокие динамические (разгонные) характеристики и низкую надежность, связанную с проблемой обеспечения прочности турбинного колеса, которое работает в очень тяжелых температурных условиях.

Агрегаты СУ, обслуживающие двигатель, входят в определенные системы. Различают системы питания топливом, питания воздухом, охлаждения, подогрева двигателя, пуска двигателя, выпуска отработавших газов и смазочную систему. Для бензиновых двигателей с внешним смесеобразованием обычно не разделяют системы питания топливом и воздухом, а говорят просто о системе питания.

Взаимное расположение двигателя и агрегатов его вспомогательных систем в силовом отделении ТС отличается многообразием. Наиболее существенное влияние на компоновку СУ оказывают расположение двигателя в машине, его связь с трансмиссией, тип системы охлаждения, размещение ее агрегатов, топливных и масляных баков.

Все виды компоновочных решений СУ подчиняются общим требованиям, основными из которых являются изоляция СУ от других отделений ТС, рациональное использование объема машины, обеспечение эффективной и надежной работы двигателя и обслуживающих его систем, удобство доступа к агрегатам СУ при обслуживании и ремонте, удобство установки и снятия двигателя и агрегатов его систем.

По взаимному расположению двигателя, кабины (салона, отделения управления) и грузовой платформы (кузова, десантного отделения) различают шесть схем компоновки СУ с двигателем, расположенным:

  1. перед кабиной
  2. под кабиной
  3. в кабине
  4. между кабиной и грузовым отделением
  5. в средней части машины, под грузовой платформой
  6. в задней части машины

На колесных машинах общетранспортного назначения чаще всего применяются первая и вторая схемы, реже — третья. Компоновка СУ с расположением двигателя за кабиной (четвертая схема) используется в основном на тяжелых колесных тягачах, гусеничных тягачах малой и средней грузоподъемности. Пятая схема компоновки (двигатель находится в средней части машины) характерна для специальных ТС, назначение которых не позволяет устанавливать двигатель в другом месте. Двигатель, размещенный в задней части ТС, имеют многие гусеничные машины, автобусы и некоторые колесные машины специального назначения.

Двигатель может устанавливаться как вдоль, так и поперек продольной оси ТС. При продольном расположении двигателя его связь с агрегатами трансмиссии, как правило, наиболее проста (в наибольшей мере это относится к полноприводным многоосным колесным машинам). Однако в этом случае силовое отделение часто имеет большую длину, а в трансмиссии обязательно при-меняются конические зубчатые колеса. При поперечном расположении двигателя значительно сокращается длина силового отделения, но в ряде случаев усложняется связь двигателя с трансмиссией.

В моторном отделении машины двигатель может располагаться вертикально (чаще всего), наклонно или горизонтально. Последний вариант осуществляется тогда, когда небольшая высота моторного отделения имеет решающее значение по компоновочным соображениям.

Все агрегаты систем СУ должны располагаться как можно ближе к двигателю с целью наиболее рационального использования объема силового отделения и сокращения длины соединительных трубопроводов. В случае применения коротких трубопроводов уменьшается вибрация, вызывающая поломки и нарушение герметичности соединений, и снижается гидравлическое сопротивление, что в конечном счете повышает надежность и КПД двигателя и его систем.

Агрегаты СУ, требующие в процессе эксплуатации ТС периодического обслуживания (топливные и масляные фильтры, воздухоочистители, насосы, краны и др.), следует размещать в доступных местах. Эта задача часто весьма сложна, особенно при плотной компоновке моторного отделения. В связи с этим стремятся создавать такие конструкции агрегатов, которые не требуют периодического обслуживания в течение гарантийного срока службы двигателя.

Топливные баки размещают на свободных местах после определения положения двигателя, трансмиссии и других крупных агрегатов.

Воздухоочистители необходимо располагать в верхней части моторного отделения, где запыленность воздуха минимальна, и как можно ближе к двигателю, что уменьшит сопротивление впускного трубопровода.

Особенности размещения в силовом отделении жидкостных и масляных радиаторов или теплообменников определяются типами системы охлаждения и вентилятора.

Основными оценочными параметрами СУ в целом являются масса и габаритные размеры двигателя, а также всех обслуживающих его агрегатов и систем.

У современных колесных и гусеничных ТС доля массы СУ в общей массе машины довольно велика (до 20… 30 %). Наиболее тяжелый агрегат — двигатель, однако суммарная масса вспомогательных агрегатов (топливные баки с горючим, радиаторы, воздухоочистители, топливные и масляные фильтры, пусковые устройства и др.) также значительна.

Как глушить турбированный бензиновый двигатель – Так ли страшна турбина? Как правильно ездить с турбомотором и сколько может стоить ремонт

  • 21.04.2019

Можно ли глушить двигатель сразу: как это сделать правильно

Начнем с того, что резкая остановка разогретого двигателя после активной езды на высоких оборотах или эксплуатации мотора в нагруженном режиме может стать причиной серьезных поломок силового агрегата.  Глушить двигатель сразу в подобной ситуации не рекомендуется как в случае с атмосферными ДВС, так и в случае необходимости быстрой остановки бензинового или дизельного двигателя с турбонаддувом.

Рекомендуем также прочитать статью о том, какой срок службы турбины на дизеле. Из этой статьи вы узнаете о том, от чего зависит ресурс турбины и какие поломки актуальны применительно к турбокомпрессору на дизелях и бензиновых турбомоторах.

Дело в том, что если резко заглушить горячий двигатель, значительно возрастает риск локального перегрева силовой установки. Давайте рассмотрим, как правильно заглушить двигатель с турбиной и атмосферный вариант, а также ответим на вопрос, можно ли глушить двигатель при работающем вентиляторе.

Читайте в этой статье

Почему нельзя сразу глушить мотор

Давайте представим стандартную ситуацию, когда поездка завершилась и водитель принял решение заглушить двигатель автомобиля. Общий алгоритм действий прост и понятен: после снижения скорости выжать сцепление на МКПП, перевести рычаг выбора передачи в нейтраль, нажать на педаль тормоза, дернуть «ручник». Все, теперь можно глушить двигатель. В случае с коробкой «автомат» достаточно нажать на тормоз и остановить машину, после чего перевести рычаг КПП в положение «P» и поставить авто на стояночный тормоз. Мотор теперь может быть остановлен. Данные действия у многих водителей доведены до автоматизма, на их выполнение требуется всего несколько секунд.

Если учесть, что двигатель испытывал до этого серьезные нагрузки и максимально разогрелся до рабочей температуры, тогда вполне очевидно, что пары секунд работы на «холостых» не достаточно. Другими словами, система охлаждения не успевает эффективно отвести избытки тепла от ДВС.

Достаточно вспомнить принцип работы системы охлаждения: ОЖ в каналах циркулирует тогда, когда мотор работает. Охлаждающая жидкость перемещается по каналам рубашки охлаждения благодаря работе водяного насоса (помпы), который, в свою очередь, приводится в действие от двигателя. По этой причине следует глушить атмосферный двигатель не ранее, чем через 10-30 секунд после работы на холостых.

Как правильно глушить дизельный двигатель с турбиной и бензиновый турбомотор

Если силовой агрегат оснащен системой турбонаддува, тогда глушить такой двигатель сразу крайне нежелательно. Данное требование справедливо как для дизелей, так и для бензиновых авто. Более того, режим нагрузок на ДВС не имеет большого значения.

Игнорирование данного правила приводит не только к локальным перегревам мотора, но и добавляются возможные поломки турбокомпрессора, значительное сокращение его ресурса и т.д. Проблема заключается в том, что турбина работает за счет потока выхлопных газов и сильно разогревается от контакта с ними. Если резко заглушить двигатель, произойдет остановка горячего турбокомпрессора. В результате подача моторного масла, которое смазывает и охлаждает подшипники турбины, полностью прекращается. Инерционного вращения турбокомпрессора после остановки мотора достаточно для работы практически «на сухую». Получается, температура турбины сильно повышается, смазка подшипников турбины происходит только за счет остаточного масла в самом турбокомпрессоре. Под воздействием высоких температур и нагрузок остаточное масло коксуется, страдают от износа механические элементы турбонагнетателя.

Рекомендуем также прочитать статью об устройстве турбины на дизеле. Из этой статьи вы узнаете о принципах работы и конструктивных особенностях турбокомпрессора на моторах данного типа.

С учетом вышесказанного турбомоторы нужно глушить только после того, как двигатель поработает в режиме холостого хода от 60 секунд до 2-3 минут. За это время температура турбины снижается, так как интенсивность и температура потока выхлопных газов на холостом ходу минимальна.  Любой автомобиль рекомендуют глушить не ранее десяти секунд после полной остановки транспортного средства, это относится к любым типам двигателей и автомобилям.

Защита двигателя и турбины от перегрева после остановки

На профильных автофорумах многие интересуются, почему на заглушенном двигателе работает вентилятор. Также новоиспеченные обладатели турбомоторов часто поднимают тему: «не могу заглушить двигатель ключом». Чтобы было понятно, большинство современных авто имеют штатную защиту. Например, если сразу остановить горячий двигатель, тогда:

  • после остановки ДВС возрастает риск локального перегрева ЦПГ и других элементов двигателя;
  • если на улице температура воздуха отрицательная, тогда на горячий двигатель будет воздействовать резкий температурный перепад;

Как перегрев, так и быстрое неравномерное охлаждение может привести к повреждениям различных деталей агрегата (поршни, кольца, ГБЦ и т.д.). По этой причине вентилятор системы охлаждения двигателя может работать некоторое время после остановки мотора, питаясь от АКБ. Данное решение позволяет охладить двигатель, минимизируя возможные последствия.

Что касается турбированных агрегатов, на многих автомобилях стоит так называемый турботаймер. Простыми словами, данное устройство позволяет автоматически глушить двигатель  с турбиной через заданный промежуток времени.

Если иначе, мотор будет остановлен не сразу после того, как ключ был вынут из замка зажигания. Такое решение является «страховкой» на тот случай, если водитель после езды забыл дать поработать дизельному мотору или бензиновому агрегату на холостых. Также установка турботаймера позволяет водителю сразу выйти из автомобиля и поставить его в режим охраны, не дожидаясь определенного времени, чтобы охладить турбину. Главным недостатком можно считать необходимость ставить автомобиль на «ручник» на авто с МКПП, что может привести к подмерзанию задних тормозных колодок в зимний период после длительной стоянки.

Полезные советы и рекомендации

Хотелось бы отметить, что различные производители могут усложнять описанные выше системы защиты, комбинируя тот или иной способ, дорабатывая охлаждение двигателя и турбокомпрессора. При этом нужно всегда помнить, что опасность после резкой остановки мотора присутствует всегда. По этой причине целесообразно не глушить агрегат сразу после остановки при такой возможности. Особенно это актуально для всех ДВС применительно к зимнему периоду эксплуатации, а также для агрегатов с турбиной без турботаймера. Также не рекомендуется глушить двигатель при работающем вентиляторе, так как это указывает на значительный нагрев и стремление системы охлаждения снизить температуру.Еще одним нюансом является аварийная остановка мотора в случае перегрева. Нельзя сразу глушить такой агрегат, так как это может привести к заклиниванию, деформации ГБЦ и т.д.

Если вы заметили в движении, что мотор перегрелся (температура выше нормы, но не на критической отметке), тогда автомобиль нужно остановить при помощи тормозной системы (крайне желательно избежать торможения двигателем в том случае, если позволяет дорожная ситуация) и позволить силовой установке поработать еще около 30 сек. на холостом ходу. Этого времени будет достаточно, чтобы снизить опасный нагрев ЦПГ перед полной остановкой ДВС.

Если этого не сделать, тогда возможными последствиями может стать ситуация, когда водитель остановил машину, заглушил двигатель, завелся и мотор заклинило. Еще одним вариантом является такой, когда после немедленной остановки перегретого двигателя мотор стартером больше не проворачивается.

Читайте также

6 советов по эксплуатации турбированного двигателя

6 советов по эксплуатации турбированного двигателя

6 советов по эксплуатации турбированного двигателя

Для многих автолюбителей покупка автомобиля с турбированным двигателем – это реализация давней мечты. Но здесь речь идет об особой конструкции системы впуска и смазки, поэтому счастливый обладатель должен проявлять большее внимание своему «железному коню» и правильно его эксплуатировать. В противном случае неисправности турбодвигателя станут очень частным явлением и испортят много нервов автолюбителю. В данной статье приведем шесть полезных рекомендаций, которые помогут с максимальной эффективностью использоваться возможности турбированного двигателя и избежать поломок.

Следите за фильтрами

Всегда держите на контроле исправное стояние масляного и воздушного фильтра автомобиля. Для такого двигателя эти моменты являются особенно важными. Кроме этого, при замене необходимо четко соблюдать требования производителя и производить установку деталей только рекомендованных марок.

Контроль за системой смазки

Если дело дошло до ремонта турбины вашего автомобиля, то в первую очередь необходимо проверять состояние масла и смазки. Никаких лишних примесей в составе быть не должно. Проверку коленвала желательно осуществлять при заглушенном двигателе. Если здесь все нормально, то необходимо завести мотор и дать ему поработать несколько минут, внимательно прислушиваясь к шуму. Важно убедиться, что подшипники турбины и система смазки работают правильно.

Правильный запуск турбированного мотора

Особого внимания требует запуск турбированного мотора. Здесь автолюбителю крайне не рекомендуется увлекаться подгазовкой. Некоторое время желательно дать двигателю поработать на холостых оборотах (минимум одну-две минуты). Конечно, турбодвигателю для достижения нужного давления достаточно всего лишь нескольких секунд, но этого времени явно будет недостаточно, чтобы все элементы двигателя хорошо смазались.

Если турбина поработает хотя бы несколько секунд без должной смазки на больших оборотах (в случае нажатия педали газа сразу же после запуска), она легко может выйти из строя. В лучшем случае ее срок эксплуатации просто уменьшится.

Правильная остановка турбированного двигателя

Глушить турбированный двигатель необходимо также с умом. Перед тем, как отключать зажигание необходимо дать хотя бы немного остыть мотору, которому при максимальных нагрузках приходится работать в режиме пиковых температур. Если сразу выключить зажигание, то это может привести к резкому перепаду температуры, а, значит, и к сокращению срока службы турбокомпрессора. Очень часто последний выходит из строя именно по причине неправильной эксплуатации. Вот почему нельзя глушить турбированный мотор сразу же после остановки автомобиля

Эксплуатация турбомотора при низких температурах

Турбированный двигатель необходимо правильно заводить при низких температурах. Если часто приходится эксплуатировать авто в мороз, то необходимо взять себе за правило сначала слегка проворачивать двигатель, а после этого производить запуск на холостых оборотах. В этом случае масло будет нормально циркулировать и постепенно заполнит систему. Перегрузки при таком запуске будут сведены к минимуму.

Начало движения

Никогда не начинайте движение на автомобиле с турбированным мотором пока последний не поработает на холостых оборотах хотя бы пару минут. Но здесь нужно знать меру. В холостом режиме двигатель должен работать не более получаса. В противном случае могут появиться протечки в наиболее слабых местах соединений из-за так называемого генерирования низкого давления. Да и выхлоп самого мотора в этом случае принимает синеватый оттенок.

Выводы

Эксплуатация турбированного двигателя требует особого подхода и об этом обязательно нужно помнить. Если все делать согласно рекомендаций в данной статье, можно избавиться от многих проблем и быть уверенным, что турбированный двигатель «проживет» очень долго.

6 советов по эксплуатации турбированного двигателя

4 (80%) 6 голос[а]

Почему турбированный мотор можно глушить сразу после остановки — Лайфхак

  • Лайфхак
  • Эксплуатация

Главная «страшилка» владельцев машин с наддувным мотором — выход из строя турбины — перестала, на самом деле, быть актуальной. Однако до сих пор встречаются знатоки, советующие после парковки какое-то время дать турбодвигателю какое-то время поработать на холостых оборотах для охлаждения системы наддува.

Одно время считалось чем-то вроде аксиомы: купил машину с турбированным мотором — обязательно оборудуй ее турботаймером, если не хочешь быстро «запороть» наддув. Это объяснялось просто. Турбинное колесо во время работы чаще всего вращается в масляной пленке, хотя иногда для этой цели используют подшипники. При полной нагрузке оно разогревается порой до 800º-900º С. Нагрев происходит как из-зи выхлопных газов, проходящих через приводящую крыльчатку, так и за счет трения колеса в опорах. Для сравнения, на холостом ходу мотора температура турбины падает до 100º.

Охлаждение турбоагрегата осуществляется преимущественно маслом, нагнетаемым из системы смазки мотора. Гораздо реже для снижения его температуры подводят антифриз от системы охлаждения двигателя. Как бы то ни было, но при выключении мотора останавливается прокачка масла и, соответственно, его поступление к требующим охлаждения частям турбокомпрессора. Когда они перегреты, контактирующая с ними в этот момент смазка «перегорает» и закоксовывается в виде твердого налета. При последующем пуск мотора эти частички перемалываются и превращаются в абразив, который разрушает высокопрецезионные поверхности трения турбокомпрессора.

Для предупреждения этого коксования масла и придумали такую штуку как турботаймер. После выключения водителем зажигания он заставляет двигатель работать еще несколько минут в режиме холостого хода. За это время прокачиваемое им масло охлаждает турбину до приемлемой температуры и кода мотор в конце концов глохнет, оставшееся в ней масло остается маслом. Мало того, что далеко не все водители в свое время обращали внимание на подобные технические тонкости и глушили свои турбодвигатели сразу после остановки. А вскоре приходили к дилеру марки с претензиями и гарантийным случаем — поломкой турбины.

Автопроизводителям это совершенно не нравилось. С другой стороны, наличие в машине системы турботаймера сильно облегчало задачу для автоугонщика. Разработчики систем турбонаддува разных автобрендов подумали-подумали, и нашли простейшее решение: в большинстве современных торбонагнетателей система подачи масла получила увеличенную мощность, прокачивая большие объемы смазки. Благодаря этому охлаждение узла стало намного эффективнее, чем у турбомоторов предыдущих поколений. А если в нем и появляются абразивные продукты коксования масла из-за местного перегрева, то увеличенный ток масла их мгновенно смывает и они ничего не успевают испортить. Таким образом, смысл не сразу глушить современный турбированный мотор отсутствует в принципе.

43688

43688

24 октября 2017

135712

Турбодвигатель: глушить сразу или дать поработать на холостых?

Всем привет. Сегодня по просьбе постоянных читателей www.autoposobie.ru решил высказать собственное мнение относительно турбовых движков (турбодвигателей), вернее относительно того, можно ли их глушить сразу после поездки или все-таки нужно дать им поработать.

Вопрос глушить или не глушить возник не на пустом месте, дело в том, что опытным путем, а также ценой собственных ошибок удалось выяснить, что если заглушить турбированный двигатель сразу после поездки, можно навредить турбине или как минимум сократить срок ее службы.

Почему? Попытаюсь коротко ввести в суть дела… В работе турбины принимает участие масло, которое во время работы двигателя порядком нагревается. Во время движения масло всячески охлаждается (система охлаждения, вентиляторы, радиаторы и т. д.). Однако, как только вы остановились и заглушили мотор, циркуляция и охлаждение масла прекращается. В этом собственно и заключается проблема. Дело в том, что во время интенсивной поездки турбина серьезно нагревается, и если во время движения она охлаждается, то после того как вы остановились и заглушили мотор, ни о каком охлаждении не может быть и речи.

Как выяснилось, когда горячий турбодвигатель сразу заглушить его турбина испытывает серьезный перегрев. Остатки масла, которые остались в ней попросту закипают, тем самым отлагаясь на ее стенках и закоксовывая ее каналы. Кроме того, страдают и другие детали горячей турбины лишенной охлаждения, подшипники, различные уплотнители и сами лопасти, которые нередко могут деформироваться.

Нельзя также не упомянуть о таком понятии как «масляное голодание». Как я уже говорил, на заглушенном моторе прекращается циркуляция масла, однако не прекращается вращение разогретой до красна турбины, которая вращается еще некоторое время по инерции, однако уже без масла, то есть «всухую». Это также имеет негативное влияние на «улитку» и приводит к ее преждевременному износу и выходу из строя.

С этим вроде все понятно!? Казалось бы, все определенно ясно, глушить турбомотор сразу нельзя, надо дать ему поработать некоторое время, чтобы понизить температуру турбины и минимизировать вероятность термоудара. Однако некоторые автомобилисты вопреки всему утверждают обратное и, по их мнению, нет необходимости ждать пока турбина остынет и вот их доводы.

Главным доводом против того, чтобы давать турбовому движку остыть, является отсутствие какой-либо информации автопроизводителей по этому поводу, а как известно, что не запрещено — то разрешено!

Действительно, как оказалось ни один производитель не дает четких указаний относительно того сколько нужно давать мотору поработать, эта ситуация похожа на ситуацию относительно прогрева мотора, где также нет единого мнения. И точно также производитель не дает никаких особых комментариев по поводу всех существующих между автомобилистами дискуссий. Хотя, в последнее время стали появляться рекомендации относительно прогрева и как оказалось производители советуют начинать движение, не дожидаясь, когда мотор прогреется до рабочей температуры. Почему? Это, как говорится, отдельная тема, если коротко, то причина, на мой взгляд, во «всемирном заговоре автопроизводителей», которым невыгодно, чтобы двигатели долго ходили, а также в состоянии экологии, которая интенсивно ухудшается во время ежедневных массовых прогревов…

С турбиной правда немного другая ситуация. Учитывая появление турботаймеров, устройств, которые созданы для продления жизни турбин, можно сделать вывод о том, что автопроизводители признали тот факт, что, если заглушить турбомотор сразу, срок эксплуатации турбонагнетателя сокращается. Турботаймер — это устройство, которое препятствует перегреву турбины и дает ей остыть даже после того, как вы вытащили ключ из замка зажигания. Не буду углублять в подробности, в общем есть такая фишка на многих современных автомобилях, скажу одно, обладателям таких моторов действительно можно не переживать и смело глушить мотор, турботаймер все сделает за вас. Ту же функцию выполняют и электронасосы систем охлаждения современных двигателей, которые продолжают циркуляцию ОЖ даже после того как мотор заглушили. Такое ноу-хау позволяет предотвратить термоудар, а также поломки вроде деформации ГБЦ со всеми вытекающими. Все это понятно, но как быть тем, у кого нет всех этих «фишек»?

Для таких лично я бы порекомендовал следующее. Если вы любитель полихачить или поездка была длительной, плюс за окном жара, я бы советовал после остановки не спешить глушить мотор, дайте ему поработать 1-3 минуты. Это позволит турбине снизить обороты и охладиться, в результате чего вы предотвратите термический удар и не допустите закоксовки и масляного голодания. Последнее даже если и возникнет, то на малых оборотах турбины оно вряд ли сможет причинить вред «улитке», к тому же внутри, как я уже говорил, есть остатки масла.

Если же поездка была не долгой, к тому же вы предпочитаете спокойный стиль езды, пожалуй, в таком случае вы смело можете глушить турбодвигатель сразу после остановки. В щадящем режиме мотор и турбина вряд ли успели «дойти до кондиции», поэтому ничего страшного, если вы сразу после остановки заглушите двигатель.

Что до современных авто, которым год-два от роду… Если вы обладатель нового авто оснащенного турбиной, то скорее всего, вам «париться» по поводу глушить турбомотор сразу или потом, вообще не стоит. Об этом, скорее всего, позаботился производитель. Современные турбины имеют более продвинутое охлаждение с дополнительным электронасосом. Когда вы заглушите мотор он либо продолжит работу, либо перейдет в режим «афтеркулинг» и позаботится о правильном охлаждении вашей турбины. Даже если вы захотите, чтобы мотор поработал после остановки, вам придется сидеть в салоне и ждать, когда это произойдет, так как современные охранные системы враз обнаружат ваше отсутствие или, что вы открыли дверь, тут же заглушат мотор принудительно, вместо вас. На таких авто все продумано и охлаждение турбины после остановки в том числе.

Что в итоге?

Как видите, на вопрос можно ли глушить турбированный двигатель сразу после остановки каждый получит свой ответ. Для владельцев старых иномарок, на которых нет ни турботаймера, ни продуманной производителем «умной» системы охлаждения турбины, пожалуй, стоит прислушаться и дать турбине остыть, особенно если перед этим она получали нехилую взбучку. Если же мотор оборудован специальной системой, которая не позволяет турбине перегреться, вам не стоит переживать о возможном термоударе и прочих неприятностях. Единственное, что хотелось бы посоветовать, это не злоупотреблять педалью «газа». Несмотря на кажущуюся безупречность и совершенность нынешних турбомоторов, они все еще уязвимы и все еще страдают от высоких скоростей и некачественного масла.

У меня все, берегите себя и свой турбодвигатель, и поверьте он отблагодарит вас в ответ безотказной ровной работой на протяжении многих лет. Спасибо за внимание, до новых встреч на Автопособие водителя! Пока.

Особенности эксплуатации двигателей с турбиной

Автолюбители часто спорят, какая турбина лучше и дольше прослужит. При этом совсем немногие уверены, что качество агрегата напрямую зависит от соответствующей эксплуатации двигателя с турбиной. А ведь простые правила о том, когда заглушить мотор и сколько прогревать двигатель, также важны, как выбор и замена масла.

Как правильно глушить двигатель с турбиной?

Опытные водители, которые бережно относятся к своему авто, стараются никогда не глушить движок сразу. Даже если это привычный бензиновый или дизельный агрегат атмосферного типа. Автолюбители со стажем знают: справляясь с существенными нагрузками, мотор нагрелся до максимально высокой рабочей температуры. Поэтому дают ему время охладиться, оставив работать на холостых оборотах. Обычно хватает 15 – 20 секунд.

Как же обстоит дело с турбо-версиями?

Турбированный двигатель — и дизель, и бензиновый — сразу глушить нельзя. И, в отличие от атмосферных моторов, это правило действует независимо от степени нагрузок и предпочтений владельца.

Вот что происходит с турбокомпрессором после резкой остановки движка:

  • предельно нагретый выхлопными газами ТКР также останавливается;
  • моторное масло, необходимое для охлаждения и смазки подшипников, не поступает;
  • элементы турбины продолжают двигаться по инерции без смазочного материала;
  • остатки закачанного масла внутри устройства остаются единственной смазкой для подшипников;
  • от перегрева и без кислорода масло между деталями затвердевает и повреждает их.

Результат — чрезмерный нагрев отдельных составляющих двигателя, преждевременный износ и поломки как компонентов турбины, так и ТКР в целом.

Чтобы избежать подобных неприятностей, следует дать мотору поработать на холостых оборотах одну-три минуты и только потом заглушить его. Это убережет и турбину, и движок.

Нужно ли прогревать дизельный двигатель с турбиной?

В 21 веке предварительный прогрев движка запрещен во многих государствах. Причина — забота об окружающей среде. Негативное влияние нагрева на ходу на сроки эксплуатации мотора, в целом, не ключевой показатель. Сменить авто на новую модель через пару-тройку лет в развитых странах — привычное явление.

Наши же водители, как правило, покупают личный транспорт, рассчитывая на более длительный термин использования. К тому же свою роль играет климат — низкие температуры могут держаться по 4-6 месяце. Поэтому прогрев дизеля — обязательный «ритуал» для долговечной работы агрегата. Он нормализует температуру топлива и масла и позволяет разжижить их до нужной консистенции, а также равномерно прогреть все детали двигателя.

Для турбированных дизельных и бензиновых моторов прогрев — важный и нужный этап в холодное время года. На исправную работу турбодизеля непосредственно влияет поступление высококачественного масла определенной температуры. Если смазочный материал холодный, его вязкость затрудняет прокачку в люфты. К тому же замерзшие элементы турбины нагреваются не одновременно.

Учитывая аналогичность конструкции турбокомпрессора для бензиновых агрегатов, в прогреве нуждаются и они. Поэтому 5-10 минут работы двигателя на холостых оборотах в мороз и 1,5-2 минуты в теплый сезон — это забота об авто, которой не стоит пренебрегать.

Срок службы бензиновой и дизельной турбины

Производители, как правило, позиционируют ресурс турбины как не уступающий моторесурсу. Действительно, изначально спрогнозированный инженерами график работы турбокомпрессора может даже превосходить ресурс движка. Тем не менее, при реальном использовании ТКР могут возникать неисправности, которые без должного внимания владельца приведут к выходу из строя.

В среднем ресурс бензиновых турбированных двигателей составляет от 200 до 250 тысяч километров пробега. Ориентировочный же срок службы турбины дизеля начинается со 150 тыс. км и достигает «потолка» на отметке 250 тыс. км.

Впрочем, заранее угадать, сколько ходит конкретная турбина на конкретном моторе — практически невозможно. Исправность турбоагрегата в большой мере зависит от правильного обращения, своевременной диагностики и качественных горюче-смазочных материалов. Поэтому основная ответственность — на владельце.

Основные причины поломок ТКР и их профилактика

Перед тем как озаботиться заменой деталей или капремонтом, нужно убедиться, что возможная неисправность в авто касается именно турбины. Разобраться поможет информация о наиболее часто встречающихся факторах, которые провоцируют нарушение работы ТКР. Их — четыре:

  • нехватка масла;
  • подача грязной смазочной жидкости;
  • износ или поломка деталей;
  • неумеренные нагрузки на агрегат.

Чтобы исправить ситуацию, придется заменить поврежденные элементы и масляный фильтр, залить новую смазку. При значительных поломках компрессора сменой запчастей можно не обойтись — возможно, понадобится новый.

Предупредить возникновение поломок поможет правильный уход за турбиной:

  • Следует заливать в движок только то масло, которое рекомендует производитель. Экономия на смазке хуже всего отражается на ТКР.
  • Менять масло нужно регулярно, особенно в случае частой езды по дорогам, сильно пыльным или загрязненным.
  • Замена масляного и воздушного фильтров также должна быть своевременной.
  • Агрессивное вождение и постоянные перегрузки двигателя — путь к капремонту или замене агрегата. Его службу продлит разумное распределение нагрузок и аккуратное вождение.
  • Несколько минут на прогрев перед выездом и на холостой ход перед тем, как заглушить мотор, продлят ресурс турбины.

Турбодвигатель станет надежным помощником на долгие годы или — игрушкой на пару месяцев. Все зависит от того, как ездить и заботиться о турбокомпрессоре.

Правда, что машины с турбиной нельзя сразу глушить после остановки???

Да правда, надо дать поработать пару минут хотяб, чтоб турбина остыла (закоксовываются маслянные каналы, вследствие выкипания охл жидкости, перенапряг металла и проч). Представь что с движком будет если без тосола поработает. На современных авто стоит турбо таймер.

Можно, но лучше поставить сигналку с турботаймером. Это значительно продлит срок службы турбины

А ты почитай руководство по эксплуатации. Это правило относится даже к автобусам с турбодизелем.

Правда, судя по аналогии с «перегетым» движком. Тот сразу тоже нельзя глушить, надо 2-3 мин. дать поработать на холостых, чтобы оч. горячий тосол равномерно распредилился по двигателю и радиатору.

Да, труботаймер решает, выключаешь машину идешь домой закрываешь ее а она будет работать столько, сколько ей надо чтоб не повредить чего. у друга такая система стоит. напоминает сигнализацию, в который есть функция автозапуск для разогрева, а тут обратное действие

нельзя глушить сразу только после интенсивной езды на высоких оборотах, в остальном нестрашно

Да, если поездил относительно резво (где-то более 2500 оборотов) . Иначе ресурс улитки будет стремительно сокращаться с каждым глушением. Проще поставить турботаймер или сигналку с турботаймером. Ротор турбины очень горячий и висит на масляном клине в подшипниках, при раскрученной и разогретой улитке давление масла уходит и ротор как-бы падает, без этого масла, а так-же прекращается циркуляция ОЖ, в итоге локальные перегревы, а лопатки у улитки очень нежные, между прочим и геометрия их крайне важна. Лёгкий дисбаланс разобьёт подшипники в улитке и всё… можно даже гидроудар хапануть от масла, текущего из подшипников улитки во впуск. Производители не ставят турботаймер по той причине, что обычно после интенсивной езду хотя-бы минут уходит на медленно-городскую езду и парковку на низких обротах, турба более-менее успевает остыть и остановиться за это время, поэтому за срок гарантии она не сдохнет. А вот если она сдохнет сразу после окончания гарантии — для производителя это просто отлично, ведь стоит то улитка вкусных денег. ЗЫ: некоторые произодители ещё рекомендуют менять тормозные диски каждые 3 зщамены колодок, так-что не стоит дословно руководствоваться их словами. Для них — главное бабла зашибить на запчастях. А сигналка с турботаймером — отличный вариант, всё в одном, за те 2-3 минуты, что она подержит работающий движок на холостых оборотах, горючки много он не съест, особенно дизель, зато совесть спокойна и 100% улитке лучше. А есть ещё отдельные адаптивные турботаймеры, они сами расчитывают сколько времени держать движок работающим в зависимости от оборотов, на которых ездили, времени, и базового времени работы, зависящего от размеров улитки и типа двигателя. Вот такие турботаймеры вообще лапочки.

производители не ставят турбо таймер еще по нескольким причинам в основном заботясь осохраности всего двигателя аварийная ситуация ваш авто на боку если вы не заглушите двигател дизель разнос бензинка гидроудар

Что вы там перегреете?! Как, и самое интересное, до какой t охладить работающий двигатель))) Вал с подшипниками охлаждается и смазывается маслом, сам корпус антифризом. Подача масла к валу прекращается после того как глушится двигатель! И вообще! Есть понятие рабочая t. Двигло греем (перед поездкой), но не перегреваем (при эксплуатации). Про стиль вождения и качество ГСМ, помним!

Как правильно эксплуатировать турбодизельный двигатель

Прогресс уже давно не стоит на месте: прежние тихоходные, но шумные дизельные моторы стали работать тише, а мощи, и, соответственно, динамики у них прибавилось. Причем, заметный прорыв в этом направлении случился тогда, когда на дизельные силовые установки начали устанавливать турбонаддув. Сегодня множество автомобилей, оснащенных дизельными двигателями, имеют в конструкции турбину. Однако не все владельцы машин с такими агрегатами знают, как правильно эксплуатировать турбодизельный двигатель так, чтобы он прослужил как можно дольше. Мы подготовили восемь простых советов, которые помогут нынешним или потенциальным владельцам машин с подобными агрегатами не допускать просчетов в эксплуатации турбины.

На фото: Турбодизельный двигатель 2.1 MercedesНа фото: Турбодизельный двигатель 2.1 Mercedes

Совет №1. Держите уровень масла под контролем.

Всем двигателям вообще, а рассматриваемому нами турбированному дизельному мотору в частности, не рекомендуется масляное голодание. Ведь масло в таком агрегате играет особую роль, смазывая подшипники скольжения и качения турбокомпрессора. Когда уровень моторного масла падает, подшипники не получают нужного количества смазки, что приводит к их скорому износу и выходу из строя.

Поэтому рекомендуем как можно чаще проверять уровень масла в картере двигателя и при обнаружении дефицита смазки, немедленно доливать нужно количество. Кроме того, необходимо выяснить причину, по которой в системе падает уровень масла (это может быть загрязнение либо не герметичность масляной системы, выход из строя масляного насоса и прочее) и незамедлительно ее устранить.

Совет №2. Используйте только качественное моторное масло.

Раз уж приобрели автомобиль с турбодизельным двигателем, не скупитесь на заправку его качественным и рекомендованным производителем моторным маслом. Тут как в известной поговорке: сэкономите на рыбке, получите плохую юшку. Выше мы уже указали, какую роль играет моторное масло для турбины, поэтому заливать в двигатель абы какое масло – значит, заранее обрекать турбокомпрессор силовой установки своей машины на медленную смерть. Важно помнить: масла, рекомендованные для турбированных агрегатов, отличны по составу от обычных масел ввиду того, что при работе в турбине они подвержены воздействию куда больших температур и нагрузок, чем в атмосферном моторе. Еще один немаловажный аспект: крайне не рекомендуется смешивать разные по коэффициенту вязкости масла, например, доливать в двигатель масло 5w-30, если там уже было залито 10w-40.

Поэтому советуем: заливайте масло одного коэффициента вязкости и желательно одной и той же марки.

Совет №3. Следите за качеством дизельного топлива.

Турбина дизельного двигателя чувствительна не только к качеству моторного масла, но и к качеству топлива, которым вы «кормите» свой автомобиль. При использовании горючего низкого качества вероятно засорение топливной системы двигателя, что, в свою очередь, сказывается на потере мощности двигателя, из-за чего турбина, чтобы восполнить этот пробел в оборотах, вынуждена работать на пределе мощности. А это может привести к сокращению срока ее эксплуатации.

Поэтому рекомендуем по возможности заправляться только на проверенных АЗС. Если не уверены в качестве горючего, его лучше дополнительно отфильтровать.

Совет №4. Избегайте перегазовок в момент запуска турбированного двигателя.

Следовать этому совету нужно, прежде всего, тем владельцам машин, у которых не установлена система запуска/остановки двигателя Start&Stop. Дело в том, что при запуске двигателя масляные каналы еще не заполнены моторным маслом, при нажатии на педаль акселератора вы даете нагрузку на турбину, которая вращается практически без масла, вследствие чего быстро изнашиваются ее узлы (бронзо-графитовые подшипники скольжения и качения), что в конечном итоге приводит к выходу из строя турбокомпрессора.

Поэтому настоятельно рекомендуем подавать газ плавно, и некоторое время (в течение 5 минут максимум) после запуска дать двигателю поработать на холостых оборотах, а затем начать движение на низких оборотах, постепенно увеличивая нагрузку. Оговоримся, что это важно для двигателей, не оснащенных системой Start&Stop.

Совет №5. Держите при езде средние обороты.

Турбина двигателя – это агрегат, постоянно работающий при высоких нагрузках, поэтому ездить на автомобиле с таким агрегатом длительное время на низких оборотах нельзя. Вообще же рекомендуется несколько раз в неделю давать турбине мотора поработать на предельно высоких оборотах: таким образом, вы активируете процесс очистки системы наддува турбокомпрессора, что в дальнейшем поможет продлить срок эксплуатации агрегата. Важно избегать «перекручивания» турбины, то есть длительной езды на высоких оборотах. При этом ротор турбокомпрессора испытывает повышенные нагрузки, что приводит к дисбалансу в его работе и, как следствие, выходу из строя его узлов.

Поэтому при езде на автомобиле с подобным типом мотора лучше всего придерживаться средних оборотов.

Совет №6. Не глушите двигатель сразу после остановки автомобиля.

Этот совет особенно важен для автолюбителей, чьи турбодизельные моторы не оснащены системой Start&Stop. Дело в том, что при незамедлительной остановке двигателя крыльчатки турбины еще продолжают вращаться, но масла, которые смазывает их, уже недостаточно, что приводит к перегреву узлов турбокомпрессора (ротора и подшипников). А это, в свою очередь, ведет к повышенному износу указанных частей турбины.

Поэтому после остановки дайте поработать двигателю на холостых оборотах короткое (не более 5 минут) время. За это время турбина охладится и ее можно деактивировать.

Совет №7. Избегайте длительной работы мотора на холостых оборотах.

Для турбированного двигателя работа на холостых оборотах в течение 20-30 минут – смерти подобна. Дело в том, что при таком режиме работы двигателя может произойти закоксовка (проще говоря, засорение) турбины, а именно маслоотводящей трубки, привода изменения геометрии турбины. Также при длительной работе на холостых оборотах возможен подсос моторного масла в цилиндры двигателя, что может привести к выходу из строя компонентов цилиндропоршневой группы.

Если вы все же держите мотор длительное время на холостом ходу, то советуем вам держать частоту вращения коленвала на 1200-1600 об./мин.

Совет №8. Вовремя проводите техническое обслуживание автомобиля.

Придерживайтесь рекомендованных производителем сроков замены моторного масла и фильтров, как масляного, так и воздушного. Помните, что для турбированного двигателя сроки прохождения ТО, как правило, короче, чем для атмосферного, так как турбина работает при более высоких нагрузках, чем обычный дизельный агрегат, и, следовательно, чаще нуждается в свежем масле и фильтрах.

Следование этим простым советам избавит владельцев автомобилей от дорогостоящего ремонта турбины.

Нужно ли мыть двигатель – Нужно ли мыть двигатель автомобиля после зимы и как правильно выполнять такую работу

  • 01.03.2019

Нужно ли мыть двигатель автомобиля

Абсолютно любой механизм периодически нуждается в чистке. Двигатель автомобиля исключением не является.

Во время эксплуатации на нём в любом случае образуется слой грязи, а также масла и других нежелательных веществ.

Три причины мыть двигатель

Ухудшение теплоотдачи

Первая причина — это плохая теплоотдача. Вследствие ухудшения теплоотдачи может произойти сильный перегрев, что может привести к серьёзной поломке и необходимости капитального ремонта всего двигателя. Конечно, это происходит в крайнем случае, но всё же перегрев часто вызывает нестабильность работы мотора и его систем.

Трудности диагностики

Грязь затрудняет контроль над утечкой масла или охлаждающей жидкости. Когда подкапотное пространство чисто, то обнаружить свежие подтёки масла или какие-то другие нарушения герметичности намного проще.
Следует помнить, что это важно, так как при попадании масла на некоторые элементы, например, резиновые опоры двигателя, происходит преждевременный выход этих элементов из строя.

Риск воспламенения

Есть риск возгорания при протечке масла и попадании его на раскалённые детали двигателя.

Другими существенными причинами являются:

  • хоть и незначительная, но есть вероятность утечки электричества;
  • грязь, попавшая на контакты электропроводки, способствует их коррозии. Так как современные автомашины напичканы различными датчиками и электроприборами, это может вызвать необходимость их ремонта или замены;
  • перед продажей, регистрацией в ГИБДД или проведением технического осмотра желательно помыть двигатель. Чистое как снаружи, так и внутри авто, выглядит привлекательнее для потенциального покупателя.

Как сделать это правильно

Выбор мойки

Помыть мотор можно и самостоятельно, и на специализированной автомойке. Для очистки рекомендуется использовать специальную косметику для автомобилей, при её покупке лучше проконсультироваться с продавцом. Если заказывать чистку на мойке, стоит поинтересоваться наличием такой косметики.

Следует нанести пенный состав на загрязнённые участки, подождать несколько минут, после чего смыть состав и хорошенько высушить двигатель. Желательно просушивать на хорошо проветриваемом участке или с использованием продувки воздухом под небольшим давлением. Если детали загрязнены очень сильно, нужно повторить процедуру до полного очищения.

Внимание! Категорически не рекомендуется применять для мойки мотора средства для мытья посуды. Данные средства разрабатывались для борьбы с пищевым жиром, и они совершенно не подходят для мойки машины, а тем более двигателя. Какие могут быть последствия спрогнозировать трудно, поэтому лучше не рисковать.

По окончании чистки необходимо завести двигатель и прогреть его до рабочей температуры. Нужно проследить, как мотор «будет себя вести» после запуска. При обнаружении неисправности следует попробовать ещё раз просушить двигатель. Есть вероятность того, вода во время мойки попала на электроприборы, тщательная просушка должна решить проблему.

Справка: не рекомендуется заниматься мойкой в холодное время года, поскольку детали могут полностью не просохнуть.

Важно! Опасно очищать двигатель с помощью масел и/или бензина и керосина (существует вероятность возгорания).

Мойку двигателя можно произвести самостоятельно, но лучше делать это на автомойках, которые себя хорошо зарекомендовали, так как в случае непредвиденной поломки ответственность ляжет на сотрудников мойки. Однако нужно помнить, что не все автомойки такие услуги оказывают, а некоторые делают это с оговоркой, что «за возможные неисправности автомойка ответственности не несёт». Поэтому нужно тщательно выбирать сервис, это поможет сэкономить время, деньги и нервы.

Защита электрики

Перед началом мойки важно позаботиться о том, чтобы вода не повредила электроприборы, проводку, аккумулятор. Их нужно защитить при помощи плёнки или пакета, закреплённого скотчем.

Прикрыть воздухозаборник от попадания воды.

Если имеется сигнализация, то её также требуется защитить.

Важно! Ни в коем случае нельзя использовать сильный напор воды, так как мощная струя способна разрушить некоторые элементы электропроводки.

Правильная температура двигателя

Запрещено мыть мотор на холодную или при рабочей температуре. Оптимальная температура должна быть в диапазоне тридцати-сорока градусов по Цельсию. Температура воды тоже должна быть примерна равна температуре самого двигателя (допустимое отклонение +10 градусов).

Содержание мотора в чистоте поможет автовладельцу избежать ряда проблем и внеплановых ремонтов. Но следует ответственно подойти к данной процедуре, соблюдая технику безопасности и рекомендации специалистов и лучше всего прибегнуть к услугам профессиональных автомойщиков.

Оцените статью: Поделитесь с друзьями!

мыть или не мыть двигатель автомобиля

 Автовладельцы делятся на два типа: те кто моет двигатель, и те кто не думает об этом. Но бывают случаи, когда приходится задуматься о необходимости очистки моторного отсека от масла и грязи. Поэтому, в данной статье разберемся в том, нужно ли мыть мотор и как правильно его помыть при необходимости. А также. Рассмотрим как мыть двигатель автомобиля, а также все плюсы и минусы этого.

   • Грязь, а особенно масляные загрязнения могут повлиять на работоспособность электроники и проводки. Из-за большого скопления грязи пропитанной автомобильным маслом, может возникнуть замыкание или перегрев проводки, что приведет к возгоранию (крайне редкий случай). Но при чистом моторном отсеке — можно совсем избежать этого.

   • При очень серьезной степени загрязнения ухудшается теплообмен мотора с окружающей средой, что повышает рабочую температуру, и двигатель начинает работать с повышенной нагрузкой, при этом происходит ускоренный износ механизмов.

   • Масляные загрязнения под капотом — это легковоспламеняющийся материал, который не способствует безопасности при эксплуатации автомобиля.

   • При продаже автомобиля, вымытый моторный отсек, добавляет шансы на удачную сделку. Товарный вид автомобиля играет важную роль при продаже.

   • Осложнен визуальный осмотр двигателя при первичной диагностике. Когда мотор сильно загрязнен, можно не заметить новые масляные потеки из-за прокладки или сальников. Это приведет к серьезным последствиям при дальнейшей эксплуатации. 

 

 Минусы мойки моторного отсека:



   • Нужно осторожно использовать аэрозоли для очистки масляных загрязнений на двигателе, так как они легковоспламеняющиеся, и при неаккуратном обращении, можно наделать беды.

   • Особенно автомобили иностранного производства, могут плохо перенести последствия мокрой мойки двигателя. Вода попадает в электрооборудование и микросхемы сложной электроники. Данный факт может привести к серьезным поломкам, даже при тщательной защите ответственных мест.

   • Необходимо выбирать профессиональную автомобильную мойку, на которой работает компетентный персонал. Имеющий знание и опыт в мойке подкапотного пространства.

   • При мойке двигателя в домашних условиях, появляется повышенный шанс некачественной просушки, что может привести к многочисленным замыканиям в электропроводке автомобиля.

 Отметим, что большинство автопроизводителей не разрешают мыть двигатель автомобиля, и рекомендуют это делать только в исключительных случаях. Поэтому все возможные последствия и риски, автовладелец принимает на себя. И решение о необходимости мойки автомобиля, также принимает только автовладелец.

 Ниже предлагается видеоролик на тему: «Нужно или нет, мыть автомобиль» 

 

Как помыть двигатель



 Здесь, мы постараемся, описать подробную схему мойки подкапотного пространства, так как не каждый автовладелец знаком со всеми нюансами и с процедурой в общем. Также, обсудим некоторые способы и химические вещества помогающие привести в порядок двигатель автомобиля. Сам процесс нельзя назвать легким, а некоторые условия необходимо исполнять в точности по инструкции. 

    

   • Перед процедурой мойки двигателя, его необходимо прогреть не менее чем на 40 градусов по Цельсию, а весь процесс проводится на заглушенной машине.

   • блоки сигнализации и воздухозаборники необходимо закрыть от попадания воды.

   • Также, закрывается все электрооборудование и аккумулятор от возможного попадания влаги.

   • Для проведения очистки необходимо использовать специализированные средства, для избежания негативного влияния на резиновые элементы.

   • Средство для очистки сложных загрязнений и масляных пятен наносится на весь мотор, и оставляется на некоторое время для взаимодействия с загрязнением. После, подкапотное пространство тщательно вымывают чистой водой. При необходимости, можно повторить процедуры.

   • После, убираются все защитные покрытия с электрооборудования и воздухозаборников.

   • Моторный отсек тщательно высушивается при помощи струи воздуха под давлением, можно воспользоваться компрессором.

   • Только после тщательной просушки, можно завести автомобиль, и проверить работоспособность.

   • и конечным этапом убираются все подтеки воды.

 В процессе мойки двигателя, нужно уделять особое внимание блоку цилиндров мотора и поддону картера. Также стоит хорошо очистить от грязи высоковольтные провода, для избежания пробоя на массу электрической искры. Стоит отметить, что самый лучший результат получиться при мойке автомобиля на эстакаде, когда существует удобный способ добраться к днищу автомобиля.

 Химические средства для очистки двигателя



 Самый важный момент в мойке двигателя — это применение специализированных средств для этого. Помните, применение порошков или других бытовых средств недопустимо, так как они могут негативно влиять на резиновые детали автомобиля в особенно важных местах. 
    

 Также, не стоит пользоваться «дедовскими» методами с применением дизельного топлива или бензина. Мало того, что неприятный запах в салоне сохраниться долгое время, а первый час после очистки с работающего мотора будет идти белый дым. Так еще и пары бензина могут воспламениться от любой искры. Такие методы крайне небезопасны, и не стоит лишний раз рисковать собой и своим автомобилем.

 Стоит уточнить, что применяемое оборудование для мойки двигателя не должно иметь сильное давление воды. Это может привести к некоторым неисправностям и попаданию влаги в ненужные места. Для сушки двигателя лучше всего применять компрессор с ресивером или баллон со сжатым воздухом. При сушке двигателя, необходимо уделить особое внимание электрическим соединениям и другим контактам, для избежания возможного замыкания электрооборудования.

 Мойка двигателя на специальном сервисе



 Данную услугу могут предлагать некоторые станции технического обслуживания или автомойки. При нежелании или невозможности самостоятельной мойки подкапотного пространства, можно обратиться к специалистам в данной сфере. Но не стоит обращаться к первым попавшимся, лучше потрудиться и найти проверенных мастеров, после которых не возникнут неполадки в работе автомобиля.

 Перед самой мойкой, разузнайте у мастеров, как именно они собираются мыть двигатель, и особое внимание уделите вопросу использование аппаратов высокого давления воды. Применение таких агрегатов может привести к серьезным последствиям. Струя воды под высоким давлением может стереть некоторые надписи на деталях автомобиля или повредить утеплитель капота. Также, вода легче попадает в труднодоступные места, и может вызвать нежелательные последствия в реле или блоке управления. 

    

 Поэтому, можно дать точный ответ, что применение высокого давления воды при мойке двигателя — категорически нежелательно, это может привести к серьезным проблемам в дальнейшем.

 Также. Существует много мнений, на тему необходимости мойки двигателя, находящегося на гарантийном обслуживании. При возникновении неполадки, может возникнуть ситуация, что автомобиль не примут по гарантии и Вам самостоятельно придется оплачивать ремонт. Но если возникла такая необходимость, то воспользуйтесь фирменным СТО, которое предоставит документы на проведенную процедуру. А также, обязательно наблюдайте за процессом мойки, это увеличит качество и аккуратность работы.

 Особенности мойки дизельного двигателя



 Мойка дизельного двигателя еще проще чем бензинового. В данном вопросе он значительно надежнее и его сложно повредить при мойке. Самая большая неприятность с ним может случиться только при использовании большого давления воды. В таком случае могут слететь некоторые шланги, в том числе и топливные. Это может привести к завоздушиванию системы или попаданию воды в нее. 
    
 Защита электрооборудования аналогична всем остальным автомобилям. А при качественной сушке подкапотного пространства с помощью сжатого воздуха — беспокоиться не о чем.

 Вывод



 Как уже упоминалось выше, автопроизводители не рекомендуют проводить мойку моторного отсека, из-за возможного попадания влаги в электронные системы автомобиля, что приведет к сложному и дорогому ремонту. Но если возникла такая необходимость, или проводится предпродажная подготовка, то стоит подойти к этому ответственно, и соблюдать всю технологию чистки моторного отсека автомобиля.

 В том случае, если Вы прибегаете к услугам посторонних мастеров, то необходимо тщательно выбирать станцию технического обслуживания или автомойку, на которой работает квалифицированный персонал, и предоставляющая чеки об оплате. 


 Основное — это ответственно отнестись к данной процедуре. Ведь при некачественном выполнении, в будущем могут проявиться серьезные последствия, если не проявятся моментально.

Нужно ли мыть двигатель автомобиля после зимы и как правильно выполнять такую работу

В подкапотном пространстве автомобиля при его ежедневной эксплуатации скапливается грязь, которая покрывает двигатель и всё навесное оборудование, что не только ухудшает внешний вид мотора, но и отрицательно сказывается на теплообмене. Все это, в конечном счёте, может привести к серьезным поломкам двигателя. Неудивительно, что многие автовладельцы задаются вопросом, нужно ли мыть двигатель и как правильно выполнить такую работу.


Мойка двигателя: за и против

Сторонники мытья двигателя утверждают, что покрытый отработанным маслом и грязью мотор может загореться от перегрева, после чего потушить и восстановить машину попросту не представляется возможным. Часто такие возгорания происходят по причине пробоя проводки, которую как раз выводит из строя грязь и масло.

Многие мастера, которые занимаются ремонтом автомобилей, утверждают, что покрытый плотным слоем грязи мотор плохо охлаждается, его рабочая температура приблизительно на 10-15 градусов выше, что и приводит к перегреву. Последствия такой длительной работы двигателя на высокой температуре известны – это проблемы с маслосъёмными колпачками, сложности со смазкой подвижных элементов, а, в конечном счете, деформируется головка блока цилиндра и такой мотор идет под замену.

Установить подтёки масла на загрязненном моторе крайне сложно, автовладелец попросту не может заметить вовремя, что прохудилась прокладка клапанной крышки, двигатель работает посуху, а это вызывает его клин. Тогда как на чистом моторе любая протечка технической жидкости из-под прокладок будет сразу же заметна, можно локализовать место повреждения уплотнителей, что гарантирует своевременный и относительно простой ремонт.


Однако и недостатки у мытья двигателя всё же имеются, причём они достаточно серьезные, поэтому многие автовладельцы всё же отказываются от такой работы. Замочив во время мойки различное навесное оборудование, кабели и электропроводку, автовладелец рискует их поломками или появлением коротких замыканий. В последующем потребуется выполнять дорогостоящий сложный ремонт мотора, в том числе его соответствующую диагностику на специальном оборудовании.

Неудивительно, что специализированные автомойки, которые предлагают услуги мытья двигателя, каждому автовладельцу предлагают перед тем как приступить к подобной работе подписать бумагу, избавляющую их от любой ответственности за техническое состояние машины после мойки. Причём подобные ситуации, когда завести двигатель после его мытья не представляется возможным, отмечаются сплошь и рядом. В итоге, автовладельцу требуется вызывать эвакуатор и везти машину в сервис для ремонта.

Даже выполняя такую работу максимально аккуратно и с использованием профессионального оборудования, полностью гарантировать отсутствие таких проблем будет попросту невозможно. Поэтому, вне зависимости от того, моет ли автовладелец подкапотное пространство самостоятельно или обращается в специализированные компании, всегда будет существовать риск серьезных поломок машины после такой работы.


Правильная мойка двигателя

Автовладельцу, который планирует самостоятельно заняться мойкой двигателя, необходимо в первую очередь позаботиться о наличии специальных шампуней и соответствующей автохимии. А вот использовать для этой работы обычное моющее средство для посуды запрещается. Это прямой путь в мастерскую, куда потребуется на эвакуаторе доставлять машину с отказавшим заводиться двигателем. Проще всего использовать специальную автохимию в аэрозольных баллончиках, которую можно с легкостью наносить на металлические и пластиковые элементы двигателя, действуя даже в труднодоступных местах.

Непосредственно при мойке подкапотного пространства необходимо будет обесточить автомобиль, для чего снимают клеммы с аккумуляторной батареи. По возможности все навесные элементы, в том числе стартер, ЭБУ, блок предохранителей, генератор, аккумулятор, высоковольтные провода следует замотать канцелярским скотчем и полиэтиленовой пленкой.


Используемый автошампунь и соответствующие средства необходимо развести в воде в полном соответствии с инструкцией к конкретной автохимии. После нанесения активной пены следует выждать около 5 минут, после чего аккуратно с помощью щётки дополнительно очищаются металлические элементы двигателя, и лишь после этого аккуратно с лейки или со шланга водой смывают грязную пену.

Только после этого можно убирать полиэтиленовую защиту, а двигателю дают высохнуть около получаса. Не лишним будет дополнительно продуть мотор сжатым воздухом, для чего потребуется воспользоваться электрическим компрессором. По завершению работы следует завести двигатель и прогреть мотор до рабочей температуры. Если появились какие-либо проблемы в работе агрегата, например, двигатель глохнет на холостых или не держит обороты, необходимо просушить мотор заново.


Что запрещается при мойке двигателя?

Большинство специалистов рекомендует воздержаться от использования бытовой химии для мытья подкапотного пространства. Такие средства содержат щелочь и различные другие агрессивные компоненты, которые не только приводят к появлению коррозии, но и могут вызвать в последующем пробой высоковольтных проводов и другие проблемы с мотором.

Подкапотное пространство лучше всего мыть вручную, отказавшись от использования специальных механических насосов высокого давления. Такие мини-мойки удобны при мытье кузова, но при этом могут повредить элементы двигателя, а часто вода из распылителя попадает внутрь генераторов, стартеров и другого навесного оборудования, что в последующем приводит к невозможности запустить мотор.

Проще всего мыть двигатель в тёплое время года, когда после такой работы мотор быстро просыхает, и в последующем отсутствуют какие-либо сложности с эксплуатацией автомобиля. А вот зимой вода может попадать в скрытые полости, где быстро замерзает, и в последующем появляются проблемы в работе электроники, машина плохо держит обороты, требуется ее доставка в сервис, дорогостоящая диагностика и соответствующий ремонт.

02.04.2019

Можно ли мыть двигатель автомобиля зимой и как делать это правильно?

Многие автовладельцы пренебрегают мойкой двигателя или крайне редко проводят её. А зимой, относятся без понимания к очистке важной части авто.  Мнения бывают и такие, что мыть мотор вообще не обязательно, можно навредить и получить больше трудностей, нежели пользы. Тем более автомойки отталкивают некоторых клиентов объявлениями насчет того, что администрация за работу электронного оборудования после очистки, ответственности не несет. Несмотря на это, такие вещи все равно будет лучше доверить специалистам по детейлингу и профессиональному уходу за автомобилем alarmauto-vrn.ru — это позволит избежать множество неприятностей, если у вас нет опыта.

Можно решительно утверждать, что, мойка двигателя обязательна. Это не означает, что мыть его следует каждую неделю. Но нужно поддерживать опрятность в подкапотном пространстве. Для чего же всё это нужно? А затем, чтобы мотор не перегревался из-за большого слоя грязи на нем. Такие элементы, как пыльники и ремни прослужат дольше, в случае их чистоты.

Летом подкапотное пространство сильнее загрязняется. Двигатель перегревается быстрее и на его работеэто негативно сказывается.

В зимнее время на дорогах много агрессивных химреагентов. Они попадая на двигатель, могут привести к коррозии. В мороз чаще происходит появление подтеков масла через сальники и хомутные соединения. В связи с этим повышается расход топлива и происходит потеря мощностных характеристик. То есть процесс износа ускоряется..

Но, у многих, возникает вопрос, можно ли зимой мыть двигатель, и каким образом это сделать правильно? Давайте разберемся в этом вопросе.

Можно ли зимой мыть двигатель?

Плюсы:

1. Собравшиеся под капотом, грязь и масло, оказывают, на работу электронного оборудования, плохое влияние. Из строя может выйти электропроводка и другие электромеханизмы. Вероятно даже воспламенение, вызванное небольшим замыканием.

2. Загрязненный мотор поддается перегреву чаще, чем чистый. В смазочной системе, в связи с повышением температуры может произойти разжижение моторного масла, что приведет в будущем к закипанию.

3. Пожарная безопасность. В подкапотном пространстве грязного мотора, накопившиеся масляные пятна могут воспламениться.

4. Проще осуществить продажу машины с чистым мотором, потому что товарный вид имеет важную роль.

5. В техобслуживании двигателя появляются сложности. Владелец автомобиля, из-за загрязнения может не усмотреть неисправности, которые позже приведут к очень серьезным поломкам.

Минусы:

1. С легковоспламеняющимися средствами, нужно обходиться очень осторожно, которые предназначены для мойки мотора.

2. В большинстве случаев этот процесс плохо переносят иномарки, особенно со стороны электрического оборудования. Есть вероятность, что влага попадет в электрические механизмы не смотря на полиэтилен, закрывающий их..

3. Надлежит придирчиво делать выбор автосервиса, ведь от подготовленности специалистов зависит работа вашего авто.

4. Если очистка мотора, производится лично, возможно недоброкачественное просушивание, которое, вероятнее всего, приведет к замыканию в проводке.

Желательно не забывать, что мыть двигатель, производители автомобилей разрешают лишь в редких случаях. Любой автовладелец сам должен определить степень необходимости. Так же стоит помнить, что загрязнение не нанесет такого вреда, как струя воды.

Если автомобиль имеет старый дизельный двигатель и топливную систему высокого давления, то бояться очистки мотора не стоит. Даже если его опустить в воду полностью с ним все будет хорошо, ведь в них повышенная надёжность. А вот бензиновые моторы из-за контакта с водой работать перестанут. И здесь нет никаких исключений, ни скидок на автомобильный возраст.

Как зимой правильно мыть двигатель?

В мороз, на улице, произвести полноценную мойку мотора, своими руками, невозможно, если у вас нет обогреваемого помещения и навыков обращения с химией. Лучше обратиться к профессионалам с автомойки. Негативных последствий бояться не нужно. Опытный мойщик примет абсолютно все меры предосторожности. Моторный отсек будет как новый, что непременно вас порадует.

Но, перед тем, как отдать свой автомобиль в руки профессионалам, необходимо узнать о качестве предоставляемых ими услуг и о профессиональных навыках специалистов. Так же необходимо разобраться, как будет происходить процесс, и возможно ли применение препаратов высокого давления.

Чем новее автомобиль, тем безопаснее мыть его мотор. Современные машины обладают двигателями с высокой степенью защиты от жидкости. Их изоляция электропроводки намного выше уровнем, нежели у автомобилей старшего возраста. Опаснее всего мыть карбюраторные двигатели. Вода попадает на контакты системы зажигания, и тогда мотор не заведется. А еще вода попадет в сам карбюратор и в воздушный фильтр. Некоторые специалисты советуют отмывать карбюраторные моторы только в заведенном состоянии.

Если вы хотите произвести мойку двигателя самостоятельно следует знать технологию. Сейчас мы ее рассмотрим.

Технология очищения двигателя.

1. Он не должен быть холодным (30-40 градусов), следует прогреть его и заглушить;

2. Воздухосборники и сигнализацию следует закрыть от проникновения влаги;

3. Аккумулятор и все электрооборудование следует закрыть полиэтиленом и закрепить его скотчем;

4. Для очистки нужно применять только специальные моющие средства;

5. Средство наносят на весь мотор, затем нужно немного подождать, чтобы грязь размокла;

6. Затем кистью отчищают все тяжелодоступные места;

7. Его ополаскивают и повторяют процесс на неочищенных участках;

8. После этого весь полиэтиленовый защитный материал можно убрать;

9. Обсушить мотор;

10. После полного высыхания его нужно завести, чтобы убедиться в нормальной его работе.

Следует тщательно помыть поддон картера и блок цилиндра. Особое внимание стоит уделить чистке высоковольтных проводов. Скопившиеся на них загрязнения способствуют уходу тока на массу. Это возможно приведет к сбою в обычной работе двигателя.

Для сушки двигателя лучше всего употребить в работу компрессор или пылесос в режиме выдувания. Необходимо обдуть все контакты и хорошо просушить места соединения электрики.

Использование «кархера».

Ответим еще на один распространенный вопрос автомобилистов. Возможно ли очищать мотор «кархером»?

Рассмотрим причины по которым его применение крайне неуместно:

1. Мощная струя может уничтожить надписи на узлах двигателя, а также пробить материал на капоте;

2. Жидкость попавшая в мотор никуда не денется и вызовет коррозию мотора;

3. Невозможно оградить попадание влаги в свечные колодцы, корпус реле, трамблер.

Лучше не применять автомойку высокого давления, а использовать более облегченные методы очистки мотора.

Если вы все же используете «кархер», то нужно воспользоваться сжатым воздухом для устранения остатков влаги.

Подводим итог

Таким образом, мойка двигателя может производиться и зимой. При правильном подходе никаких проблем не возникнет. Необходимо полностью придерживаться плана и соблюдать правила очистки двигателя. Старайтесь не применять автомойки высокого давления. В конце важно все просушить, чтобы нигде не осталось жидкости. Если вы отдаете предпочтение автомойкам, нужно выбирать надёжные фирмы с высококвалифицированными специалистами.

Как моют двигатель автомобиля, можно посмотреть на видео:

Нужно ли мыть двигатель?

 

Вопрос необходимости очистки двигателя интересует всех (если не каждого), у кого есть авто. В этой статье мы попробуем разобраться, как это правильно делать, и главное, есть ли в принципе необходимость в этой процедуре

В теории

Если следовать логике, любой механизм нуждается в очистке от загрязнений. Двигатель машины – не исключение. Есть мнение, что у загрязненного двигателя…

— худшая теплоотдача

— возможна потеря мощности

— возможно увеличение расхода топлива

— утечка тока

— неустойчивая работа

— сложнее найти неполадки (утечка масла и других жидкостей может быть незаметной)

Мыть двигатель имеет смысл разве что перед продажей автомобиля

Важно отметить, что вышеуказанные пункты относятся разве что к очень запачканным двигателям. Если под капотом нет кусков грязи и рек потекших жидкостей – никаких проблем возникнуть не должно. Ведь современные двигатели хорошо защищены и охлаждаются за счет теплообмена радиатора. По крайней мере, так считает Антон Ротов, специалист по ремонту двигателей СТО «Вездеход». По его мнению, мыть двигатель имеет смысл разве что перед продажей автомобиля, если его возраст не превышает 5-7 лет или он не эксплуатировался на бездорожье. Если двигатель ни разу не мыли (или очень редко), скорее всего, толстый слой пыли/грязи смутит потенциального покупателя.

Значит ли это, что грязный двигатель является показателем нечистоплотности автовладельца и халатного отношения к своему «железному коню»? В определенной степени доля правды в этом есть, но есть и обратная сторона медали.

Обратная сторона медали

Среди автовладельцев есть ярые противники мойки двигателя. По их мнению, ополаскивание «сердца» машины может привести к нежелательным последствиям, которые будут куда хуже «слегка» ухудшенной теплоотдачи и толстого слоя пыли. Мойка на специализированной мойке? Некоторые считают подобную процедуру едва ли не криминалом.

Причины:

Чистый радиатор важнее чистого мотора

— мойщики сами толком не знают, как это правильно делать

— если бы все было легко и просто, администрация не писала бы, что не несет ответственности за работоспособность автомобиля после мойки двигателя

Последняя причина еще более прозаична. Мол, зачем мыть мотор, если он защищен от попадания различной грязи.

Кто прав?

Как и в случае с мойкой кузова автомобиля, опрошенные АвтоПорталом эксперты разделились на два лагеря. Подобно автовладельцам, одни заявили, что мыть двигатель вовсе необязательно.

Так, в представительстве KIA порекомендовали больше обращать внимание на чистоту радиатора, очищая его от пуха и грязи. Что касается мойки двигателя, в представительстве южнокорейской марки настоятельно порекомендовали делать это на специализированных СТО, где используются специальные очищающие средства. Делать это вручную специалисты не советуют хотя бы потому, что самостоятельно не удастся отмыть действительно въевшуюся грязь или потеки масла.

Некоторые специалисты считают необходимым регулярно ополаскивать мотор

«Мойка двигателя – сугубо личное дело. Если хозяин машины не обслуживает автомобиль самостоятельно, а возраст самой машины невелик, вовсе не нужно регулярно ополаскивать двигатель. В данном случае риск не оправдан – у автовладельца больше шансов увеличить расходы на ремонт, нежели улучшить или сохранить эксплуатационные характеристики своей машины. Ничего критичного произойти не может. Даже, если не мыть двигатель на протяжении 5-7 лет», — рассказали нам в столичном сервисном центре Nissan.

Другие же, наоборот, выдвинули гипотезу, что игнорирование этой процедуры чревато последствиями.

«Двигатель автомобиля не зря называют «сердцем» автомобиля. Если человек будет жить в грязи и пыли, злоупотреблять алкоголем и вообще вести нездоровый образ жизни, работа его сердца ухудшится. То же касается авто. Если не ухаживать за мотором, рано или поздно, он даст сбой. В частности, могут произойти сбои в работе электроники, может снизиться вязкость масла, возникает риск пожара из-за потеков масла… да и вряд ли кому-то приятно проверять уровень масла, пачкаясь от каждой детали двигателя. Я считаю, что мыть двигатель нужно. Тем более в нашей стране, где дороги никто не очищает от пыли и грязи. Лишним это не будет, но мыть мотор нужно с умом», — считает специалист по ремонту двигателей СТО «115».

Подобного мнения придерживается и Александр Чаленко, начальник департамента сервиса Корпорации УкрАВТО:

Грязный двигатель сложнее обслуживать — можно запачкаться при заполнении бочка омывателя

«Иногда двигатель мыть нужно. Это как генеральная уборка в квартире. Двигатель ведь тоже загрязняется, на его составляющие, как подвижные, так и неподвижные попадает грязь (абразив, техжидкости), которая оказывает негативное влияние. Это и коррозия из-за гигроскопичности накопившейся грязи, и возможность засорения контактов в плохо защищенных разъемах проводки, и возможность попадания мелкодисперсных частиц грязи в емкости с техжидкостями, при их открывании. К тому же, грязный двигатель сложнее обслуживать и можно элементарно запачкаться при заполнении бочка омывателя. Вот банальные причины зачем его мыть. Но делать это часто не следует, особенно при эксплуатации в городских условиях».

По мнению Александра Чаленко, двигатели современных автомобилей мыть безопаснее – степень защиты у них от воды выше, изоляция лучше. Двигатели более старых автомобилей, особенно карбюраторные, мыть опаснее – могут не завестись. Причина банальна – попадание воды на контакты системы зажигания, реже – в карбюратор и корпус воздушного фильтра. Такие двигатели умельцы рекомендуют мыть в не заглушенном состоянии. К слову, некоторые автолюбители рассказывают о неплохих результатах мойки двигателя Спрайтом, но эксперты не рекомендуют проверять эту гипотезу. По крайней мере, на личном автомобиле.

Мыть мотор нужно с умом

Эксперимента ради мы объездили 8 столичных автомоек (Троещина, Лесной массив, Печерск, Подол, Голосеевский р-н), где есть услуга мойки двигателя. Кстати, она существует практически во всех «авто-банях». Тем не менее, как показал наш опрос, далеко не все работники понимают тонкости ополаскивания двигателя. Так, на 6-ти мойках нам заявили, что двигатель моется с помощью мойки высокого давления без какой-либо подготовки. На вопрос «а, что если мотор не заведется?» во всех случаях был дан ответ, что автомойка не несет ответственности за последствия мойки двигателя. А, они ведь могут быть…

После мойки двигателя автомобиль может не завестись из-за халатности самих мойщиков

Интернет буквально пестрит возмущениями о последствиях мойки двигателей в самых разных автомобилях. Самая распространенная проблема – после ополаскивания двигатель может не завестись. Проводка, аккумулятор… Реже – выход из строя трамблера и/или свечей.

«После мойки двигателя автомобиль может не завестись из-за халатности самих мойщиков. В частности, самое главное правило – тщательное высушивание подкапотного пространства. крайне нежелательна и мойка силового агрегата на «горячую». Лучше, чтобы перед ополаскиванием двигатель немного остыл – хотя бы до 40-45С. Но лучше до комнатной температуры», — считают в представительстве KIA.

Независимо от того, хотите вы мыть двигатель на специализированной мойке или самостоятельно, нужно соблюдать определенные правила:

— нельзя мыть мотор на холодную или, наоборот, при рабочей температуре. Оптимальная температура – 30-40С

— вода должна быть приблизительно такой же температуры, как и сам двигатель (допустимо +10С)

— воздухозаборник должен быть прикрыт от попадания воды (например, с помощью кулька, закрепленного скотчем)

— если есть сигнализация, ее нужно тоже «укрыть» во избежание попадания воды

— нужно защитить проводку, электрооборудование и аккумулятор (например, с помощью кулька, закрепленного скотчем)

— опасно очищать двигатель с помощью масел и/или бензина и керосина (существует вероятность возгорания)

— есть мнение, что можно использовать средство для мытья посуды и стиральный порошок. Не стоит экспериментировать, поскольку их состав еще та загадка – неизвестно, как то или иное вещество повлияет на детали двигателя

— заводские наклейки на агрегате желательно заклеить скотчем или надежно прикрыть иным способом. С 90-процентной вероятностью они отклеятся, особенно, при мойке под высоким давлением

— если после мойки двигателя все же возникли проблемы в его работе, пишите жалобу на администрацию автомойки и с этим заявлением, если не поможет, идите в суд и/или общество защиты потребителей (с предварительным обращением на автосервис для получения соответствующей бумаги о потери эксплуатационных качеств мотора)

— для очистки мотора лучше использовать специальную авто-косметику (при самостоятельной очистке). Если делать на мойке – интересоваться использованием таковой

— нанести специальные средства или пенку (на мойке). Дать грязи «откиснуть» (минут 5-10) и ополоснуть двигатель

— после осуществления процедуры очистки мотора, нужно снять «защитный полиэтилен» и хорошенько просушить абсолютно все элементы двигателя. Если на мойке – с помощью аппарата сжатого воздуха. Если в «домашних» условиях – используя пылесос в режиме выдувания. В крайнем случае – не закрывая крышку капота завести двигатель и дать ему поработать минут 15-20

—  в завершении всей процедуры можно пройтись тряпочкой и убрать потеки, чтобы все было ну очень аккуратненько и красиво

Мойдодыр

После прочитанного у многих может возникнуть вопрос «так, самому мыть или ехать на мойку?». Вопрос сложный и риторический. Если «окутывать» жизненно важные элементы и не заливать мотор из шланга, параллельно нанизывая мясо на шампур, вполне можно очистить мотор самостоятельно. Но надо понимать, что результат будет хуже, чем в случае с ополаскиванием на мойке. Но мы бы советовали не скупиться и хотя бы раз в 3 года посещать официальную СТО для ополаскивания двигателя – там есть хоть какая-то гарантия, что в случае непредвиденной поломки будет к кому обратиться.

Если же у вас старый автомобиль, гарантия на который закончилась в прошлом веке, советуем не рисковать и мыть двигатель под тщательным надзором на мойке или собственноручно, но без лишнего «заливания». В принципе, ничего сложного в этом нет, но нужно соблюдать хотя бы указанные выше элементарные правила. 

 

Ну, и не забывайте, что чистый двигатель всегда работает тише. Как и в случае с чистой машиной, которая после почему-то всегда едет лучше и быстрее. Самовнушение – великая сила…источник : http://autoportal.ua

Рекомендуем также почитать:

• За что автомобиль могут снять с гарантии?

• Зачем на внедорожнике нужен кенгурятник?

• Какие опасности в себе таят подушки безопасности?

 

 


Как правильно мыть двигатель автомобиля

Уделяя внимание внешнему виду автомобиля, важно помнить про его внутреннее состояние. Интенсивная эксплуатация со временем приводи к износу деталей, что впоследствии обязывает автовладельца обращаться к услугам станции технического обслуживания. В таком случае замена, вышедшей из стоя детали, неизбежна. Но качественный уход и своевременное обслуживание узлов и агрегатов сокращает риск образования существенных дефектов, приводящих к сбою работы целых систем.

Как правильно мыть двигатель автомобиля

Проблемы загрязнённого двигателя

Для многих необходимость мытья мотора остаётся спорным вопросом. Но стоит ли сомневаться, что каждая деталь за годы эксплуатации склона к появлению загрязнений. Другой вопрос: какие проблемы ожидают автовладельца, игнорирующего важность процедуры очистки силового агрегата. При этом важно понимать, что автомобиль является целостной системой, и неполадки в одной области непременно потянут за собой нарушение работы остальных узлов.

Проблемы, связанные с загрязнением двигателя:

  1. Теплоотдача. Толстый слой грязи и пыли оказывает пагубное влияние на процесс передачи тепла. Затрудняется процедура охлаждения мотора воздухом, подаваемым из радиатора.
  2. Потеря мощности. Это нарушение является производной от плохой теплоотдачи и в свою очередь приводит к другим погрешностям работы.
  3. Увеличение расхода топлива. Вследствие потери мощности неизбежно увеличивается расход поглощаемого топлива. Быстрый износ большинства деталей при таких обстоятельствах неизбежен.
  4. Пожароопасность. Одна из самых больших проблем, которая может быть спровоцирована обилием загрязнений внутри двигателя – это вероятность самовозгорания. Мотор устроен таким образом, что масляные пары должны выветриваться. Из-за скопления пыли и грязи масло оседает на стенках моторного отсека. При нагреве двигателя появляется опасность возгорания.

К сожалению, это далеко не весь список неисправностей, к которым может привести чрезмерное загрязнение силового агрегата. Кроме этого, велика вероятность утечки тока и масла. Общая картина выглядит так: двигатель работает нестабильно, а причины выявить сложно. Многие специалисты станций техобслуживания отказываются брать в ремонт автомобили с грязным двигателем, объясняя это затруднительным процессом произведения работ.

Отсюда можно сделать вывод, что обеспечить чистоту моторного отсека – задача владельца автомобиля, но о том, как помыть двигатель самостоятельно, знают далеко не все.

Зачем мыть двигатель и моторный отсек

Вопросы, зачем мыть двигатель и моторный отсек и надо ли это делать долгие годы продолжают оставаться спорным. Среди автовладельцев есть противники данного процесса, аргументирующие свою позицию тем, что процедурой может быть нанесён вред, степень которого гораздо больше, чем от грязи. Сильным аргументом к такому утверждению является наличие защиты моторного отсека от попадания пыли и грязи в любом автомобиле.

Даже эксперты разделяются во мнении. Одни рекомендуют больше внимания уделять чистоте радиатора, другие же продолжают настаивать на регулярном проведении мойки двигателя и моторного отсека. Европейские производители утверждают, что автомобили сконструированы таким образом, что пыль и грязь не способны снизить его эксплуатационные характеристики.

Исследованию данного вопроса посвящено немало социальных опросов, а также опросов по этому делу специалистов станций технического обслуживания и конструкторов автомобильных концернов. По-прежнему единой точки зрения нет.

Каждый автовладелец сам принимает решение мыть или не мыть, но если взять во внимание тот факт, что автодороги нашей страны далеки от совершенства, а пыль и грязь являются верными спутниками любого автомобилиста, то становится ясно, что масштаб проблемы может быть существенно недооценён европейскими экспертами.

Мойка двигателя и моторного отсека

Заглядывая под капот, добропорядочный хозяин машины способен сам определить, насколько хорошо хотя бы с точки зрения эстетики выглядит моторный отсек. Необязательно для этого быть профессионалом. Достаточно посмотреть на корпус двигателя и, обнаружив на стенках толстый слой масла, покрытого пылью и грязью, сделать вывод, что в таком состоянии двигатель работать эффективно не способен. Дополнительная неоправданная нагрузка в любом случае оказывает отрицательное влияние на работу всех без исключения систем и приводит к быстрому износу деталей. Возможно, на европейских автомобильных трассах дело с уровнем загрязнения подкапотного пространства и обстоит иначе, но, учитывая особенности российской климатогеографической зоны и механизма работы автодорожных служб, рассчитывать на отсутствие пыли и грязи российским автолюбителям не стоит.

Прежде чем перейти к процедуре, стоит отметить преимущества автомобилей, моторный отсек которых регулярно подвергается очистке:

  1. Чистый мотор не склонен к перегреву.
  2. Эстетичный внешний вид моторного отсека делает процедуру замены масла и фильтров или регулировки свечей зажигания более приятной.
  3. В чистом моторном отсеке легче выявить такую неисправность, как утечка масла.
  4. Снижается риск возникновения пожара.

Если же речь идёт о продаже авто, то вопрос о надобности проведения процедуры становится не актуальным. Чистота моторного отсека говорит о бережной эксплуатации автомобиля прежним владельцем.

Подготовка двигателя к мойке

Перед началом процедуры мытья двигателя необходимо произвести подготовительные работы. Это делается с целью защиты узлов от нежелательного попадания влаги.

Что нужно сделать:

  • демонтировать детали, ограничивающие доступ к двигателю;
  • отсоединить минусовую клемму аккумулятора;
  • снять защиту моторного отсека;
  • обработать близлежащие детали влагоотталкивающей аэрозолью;
  • накрыть датчики, разъёмы и провода поли этиленовой пленкой.

На этом подготовка к мойке двигателя заканчивается. После проведения работ можно приступать к мойке.

Чем помыть двигатель автомобиля в домашних условиях

Существует два типа моющих средств:

  • специализированные;
  • универсальные.

Специализированные моющие средства используются на станциях техобслуживания и предназначены для конкретного вида загрязнений, к примеру, если нужно очистить двигатель от налёта масла. В то время как универсальным под силу справиться с любым видом грязи, они предназначены для проведения комплексной очистки.

Выбор лучшего моющего средства для мытья двигателя во многом зависит от марки и модели автомобиля. По типу ёмкости очистители делятся на те, которые выпускаются во флаконах с ручным распылителем, и на те, что представлены в качестве спреев. В зависимости от объёма подкапотного пространства можно использовать те или другие.

Для того чтобы определить, чем помыть двигатель автомобиля своими руками, следует обратиться к списку лучших и самых востребованных средств.

Restone Heavy Duty

Универсальное моющее средство для двигателя. Выпускается в болоне объёмом 360 мл., оснащённом аэрозольным клапаном. Средство отлично справляется с незначительными загрязнениями разных типов, однако для удаления многолетних скоплений грязи не подходит. Применяется в качестве профилактических мер. Инструкция по применению химического состава предполагает нанесение средства на разогретый двигатель.

Restone Heavy DutyRestone Heavy Duty

STP

Универсальный моторный очиститель. Представлен в баллоне-аэрозоли объемом 500 мл. Эффективно справляется с разным уровнем загрязнённости агрегата. Рекомендуется наносить на прогретый до рабочей температуры двигатель, оставлять на 10 – 15 мин., после чего удалять небольшим количеством воды.

Liqui Moly

Данное средство очень популярно как на станциях техобслуживания, так и в домашних условиях. Это спрей-очиститель, доступный в специальном флаконе объемом 400 мл. Отлично удаляет налёт пыли любой давности, а также эффективно борется с масляными загрязнениями.

Liqui MolyLiqui Moly

Лавр

Универсальный очиститель российского производства, выпускаемый в виде концентрата для последующего разбавления. Доступен в разных вариантах расфасовки. Обладает высокой эффективностью при очистке ДВС. Обладает защитным действием против коррозии.

ЛаврЛавр

Как правильно мыть мотор

Человеку без опыта в этом деле будет достаточно сложно справиться с задачей. Но, ознакомившись с инструкцией, как правильно мыть мотор, и следуя её пунктам, достичь желаемого результата можно.

Если учесть тот факт, что далеко не каждый специалист станции техобслуживания способен профессионально справиться с задачей мытья двигателя, а ответственности за исправность автомобиля СТО на себя не возлагает, то лучше тщательно изучив механизм процедуры, произвести её самостоятельно.

Правила мытья двигателя:

  1. Произвести изоляцию узлов, неустойчивых к влаге с помощью поли этилена и скотча. Нужно обязательно закрыть блок управления двигателем, генератор, воздушный фильтр, аккумулятор, электропроводку.
  2. Обработать труднодоступные детали спреем с водоотталкивающим составом.
  3. Разогреть двигатель до рабочей температуры. Мыть мотор в холодном или горячем состоянии запрещено, это может привести к деформации головки блока цилиндров. Наиболее подходящая температура – 40 С.
  4. Нанести очищающий состав на двигатель и стенки моторного отсека.
  5. По истечении времени, указанного в инструкции по применению химического вещества, удалить средство влажным полотенцем или небольшим количеством воды. Температура наносимых на двигатель жидкостей должна соответствовать температуре двигателя.

Инструкцию о том, как правильно помыть двигатель самостоятельно, можно получить на станции технического обслуживания. При этом обязательно нужно соблюдать правила техники безопасности: верхние дыхательные пути должны быть защищены от попадания паров моющего средства, поскольку его состав небезопасен для человеческого организма.

Сушка двигателя после мойки

После мойки необходимо тщательно удалить всю влагу с поверхности мотора. Для этого можно использовать бумажные салфетки или текстильные полотенца. Заводить автомобиль с влажным двигателем категорически противопоказано.

Периодичность процедуры мытья двигателя зависит от интенсивности эксплуатации транспортного средства, манеры езды, местности, в которой используется автомобиль. Определить, когда мотор загрязнён до критического состояния, не сложно, это видно не вооружённым взглядом. Если же по состоянию подкапотного пространства определить наличие проблемы не удаётся, лучше обратиться к профессионалам.

Как помыть двигатель автомобиля. Плюсы и минусы мойки двигателя

Каждый водитель рано или поздно задумывается как помыть двигатель автомобиля. Но этому предшествуют размышления на тему, стоит ли вообще мыть двигатель, ведь есть риск, что нарушится его работа. Давайте взвесим все за и против.

Почему стоит мыть двигатель автомобиля

  • грязный двигатель быстрее греется;
  • грязь и потеки масла могут повредить электрооборудованию;
  • масляные пятна могут привести к возгоранию;
  • испачканный мотор мешает проводить поиск неисправности;
  • чистый двигатель имеет более товарный вид при продаже авто.

Почему не стоит мыть двигатель автомобиля

  • сильный напор воды может повредить резиновые уплотнения и проводку;
  • есть риск попадания влаги на электрооборудование, даже защищенное;
  • средства для мойки двигателя легко воспламеняются;
  • не все сервисы моют мотор правильно;
  • некачественная просушка при самостоятельной мойке может привести к замыканию проводки.


Так что стоит взвесить эти плюсы и минусы, чтобы принять решить стоит ли мыть движок. Если решение было принято в пользу мойки двигателя автомобиля, то вот как это делается.

Как помыть двигатель автомобиля

Конечно, можно обратиться за помощью на специализированную автомойку. Но если там вам предложат помыть двигатель струей воды с высоким давлением – лучше сразу оттуда уехать. Да и предупреждение о том, что мойка не несет ответственности за неисправность двигателя после мойки, которое висит на многих станциях, уверенности не добавляет. Но в принципе, помыть двигатель автомобиля своими руками вполне возможно.

Нельзя мыть двигатель на горячую. Советуют делать мойку, когда движок слегка теплый.

Перед тем как помыть двигатель автомобиля нужно обезопасить от попадания влаги сигнализацию, воздухозаборники, электрооборудование, закрыв их полиэтиленом и закрепив скотчем.

Чтобы самостоятельно помыть мотор нужно нанести на него специальное моющее средство и подождать некоторое время (указанное на средстве), чтобы грязь размокла. Затем аккуратно помыть труднодоступные места и сполоснуть двигатель. Убрать полиэтилен и тщательно высушить подкапотное пространство. Проверить, нормально ли работает мотор.

Почему двигатель не заводится после мойки

Если после того как помыли двигатель автомобиля машина перестала заводиться, дело, скорей всего, в халатной просушке. Действию влаги могла подвергнуться проводка и ее нужно просушить компрессором. Если же двигатель троит после мойки, значит, вода попала в свечные колодцы — придется снимать свечи и сушить их вместе с колодцами.

Как помыть дизельный двигатель

Дизельный движок мыть значительно легче, чем бензиновый, поскольку его достаточно сложно повредить мойкой. Это может произойти, только если вода под сильным давлением собьет топливные шланги и в систему попадет влага. Еще одна опасность – риск окисления, но это грозит в случае если двигатель был плохо смазан при сборке. В остальном никаких затруднений не должно возникнуть, надо только хорошо высушить аккумулятор, генератор и стартер.

Автор: Иван Матиешин

Спрашивайте в комментариях. Ответим обязательно!

М111 двигатель мерседес характеристики – На каких моделях мерседес стоит 111 двигатель. Первый четырехклапанный в серии – Mercedes-Benz M111. Модификации двигателей М111 Е23

  • 27.02.2019

Двигатель Мерседес 111: характеристики, обслуживание, ремонт

Одним из самых престижных автомобилей в России конца минувшего века считался Мерседес. Его владельцем мог стать лишь весьма состоятельный человек. Подобную роскошь могли себе позволить либо влиятельные члены преступных группировок, разбогатевшие незаконным путём, либо чиновники высшего ранга, чьи доходы также имели сомнительное происхождение.

Одним словом, такая машина считалась свидетельством немалого достатка. Сегодня Mercedes на улицах российских городов стал явлением столь же привычным, как и отечественные Москвичи и Жигули.

На автомобили популярной серии устанавливались силовые агрегаты разных видов. Наиболее удачным вариантом двигателя, оснащающего Мерседес, является М111. Рассмотрим подробнее атмосферную модификацию такой установки.

Атмосферный 111 мотор Мерседес. Характеристики, преимущества и недоработки

М111 модель силового агрегата, помещённого в кузов Mercedes Benz, начала выпускаться немецкими производителями с 1992 года. За период до 2006 года, когда её изготовление было прекращено, произошли значительные изменения, в конструкции благодаря модернизации и многократному усовершенствованию установки.

Огромной популярностью у автолюбителей всего мира пользовался мотор, укомплектованный дополнительной системой наддува, использующей механическую энергию компрессоров. К названию автомобиля, оборудованного подобным двигателем, добавилась приставка Kompressor. Такие модели М111 имели две разновидности:

  1. с постоянным приводом вала компрессора — М45;
  2. с электропитанием вала, соединяемым за счёт специальной муфты, обладающей электромагнитными свойствами — М62.

Примером подобного мотора является М111 Е23 объёмом 2.3 л и мощностью, равной энергии 193 полноценных лошадок. Он был запущен в производство с начала 1995 года.

2000 год ознаменовался грандиозной модернизацией, выразившейся изменением конструкции огромного количества деталей. Конструкторское бюро усовершенствовало устройство более 150 элементов. Обновлённый агрегат получил название M111-EVO.

Самые первые модификации рассматриваемой марки мотора были атмосферными. Производителями изготавливались две их разновидности, отличающихся объёмом и мощностью. Эксплуатационные показатели каждой из них являются объектом предстоящего исследования.

Характеристики М111Е20

Началом производства считается 1992 год. Таким движком укомплектовывался 124 Мерседес. Силовой агрегат имеет в конструкции четыре рабочих цилиндра, расположенных на одной линии.

Интересно будет узнать, что двигатель М111 данной модификации одним из первых сталиспользовать четырёх клапанную систему газораспределения.

Что касается технических показателей рассматриваемого силового агрегата Mercedes M111 атмосферного типа, они следующие:

  1. рабочее пространство каждого из четырех цилиндров, диаметр которых составляет 89.9 мм, вмещает 1993 см3 топливно-воздушной смеси;
  2. поршень совершает полезную работу при поступательном движении на расстоянии 78.7 мм;
  3. для двигателя подобной модификации М111 характерной величиной степени сжатия считается показатель 9.6;
  4. при достижении коленчатым валом частоты вращения 5500 оборотов в минуту силовым агрегатом развивается мощность 136 лошадиных сил;
  5. для разгона до 100 км/час автомобилю с таким мотором требуется всего 11 с;
  6. указанная выше мощность позволяет Мерседесу с двигателем М111развивать скорость 200 км/час. По крайней мере, такими показателями характеризуется Mercedes W124;
  7. размеренная неспешная езда по запруженным городским улицам требует расхода 11 литров бензина Аи-95, при движении по открытой трассе мотор поглощает 7 литров топлива.

Сравнительную безопасность для окружающей среды силовому агрегату М111 выпуска 90 годов обеспечивает соответствие нормативным требованиям Евро-4. Разумеется, это возможно при использовании рекомендованной марки горючего.

Эксплуатационные качества М111 Е22

Аналогичная с предыдущей версией конструкция мотора должна иметь идентичные показатели. Однако они отличаются благодаря разнице объёмов. При рассмотрении 111 мотора Е22 автомобиля Мерседес W124, наблюдаются следующие технические характеристики, указанные производителем в сопроводительной документации:

  1. вместимость функционального пространства составляет 2.2 л;
  2. внутри цилиндра с поперечным сечением 89.9 мм поршень совершает рабочий ход в 86.6 мм;
  3. за счёт увеличения объёма растёт и мощность силовой установки, достигающей показателя в 150 л.с., при аналогичной предыдущему исполнению двигателя частоте вращения коленчатого вала;
  4. большей величиной характеризуется степень сжатия, выражаемая числом 10;
  5. с таким ДВС автомобиль способен разогнаться до 100 км/час за ничтожно короткое время, а точнее за 10.5 секунд;
  6. изготовителем заложена максимальная скорость 210 км/час, что является весьма привлекательным качеством для отечественных лихачей;
  7. несмотря на повышенные расходы на заправку двигателя внутреннего сгорания за счёт использования дорогостоящего Аи-95, силовой агрегат радует потребителей своей экономичностью благодаря небольшому расходу топлива. Мотором потребляется 10 л бензина при перемещении по городу и 7 л на свободной трассе.

Разумеется, предложенное описание относится к нормально функционирующим двигателям. По отклонениям перечисленных параметров можно определить, что в агрегате имеются некоторые неисправности.

Преимущества и недочёты атмосферников М111

Несмотря на то, что такие агрегаты давно были сняты с производства, на дорогах они встречаются и сегодня, причём в достаточно большом количестве. Особую популярность завоевали моторы первой рассмотренной категории М111 Е20. Такую преданность со стороны водителей двигатели завоевали благодаря неоспоримым достоинствам, а именно:

  • чрезвычайной надёжностью, подтверждаемой многолетней безотказной эксплуатацией;
  • увеличенным сроком службы механизма газораспределения за счёт привода цепного типа. Однако предпочтительнее использовать обновлённую версию ГРМ, которая подверглась значительной доработке и модернизации, приобретая приоритетные характеристики по сравнению с оригинальной системой;
  • приемлемый показатель топливного расхода не оказывает негативного влияния на динамические способности силового агрегата;
  • доступностью и сравнительной дешевизной обслуживания. Необходимым условием для этого является своевременная замена смазочной субстанции и использование моторного масла согласно рекомендациям изготовителя, изложенным в прилагаемой технической документации.

К сожалению, не обошлось без недостатков. Вероятной причиной можно считать недоработки конструкторского бюро, выпускающего моторы М111. Основными недочётами являются:

  • возможная утечка масла, вызванная изношенной прокладкой ГБЦ, что неудивительно при более чем 20-летнем сроке эксплуатации. Указанная неисправность является легко устраняемой за счёт элементарной замены негодной детали;
  • по вине неполадок в измерителе расхода воздуха увеличивается количество потребляемого топлива, сопровождаемое досадным падением мощности. Проблема считается решённой после замены неисправного прибора;
  • некоторых водителей отпугивает некоторая шумность при эксплуатации. Однако звуковое сопровождение атмосферных двигателей М111 значительно уступает громогласному ВАЗу.

Двигатель М111 Е20 | Ремонт, проблемы, масло


Характеристики двигателя М111

Производство Stuttgart-Untertürkheim Plant
Марка двигателяM111
Годы выпуска1992-2004
Материал блока цилиндровчугун
Система питанияинжектор
Типрядный
Количество цилиндров4
Клапанов на цилиндр4
Ход поршня, мм78.7
Диаметр цилиндра, мм89.9
Степень сжатия8.5 (Kompressor)
9.6
10.6
(см. модификации)
Объем двигателя, куб.см1998
Мощность двигателя, л.с./об.мин136-129/5100-5500
163-192/5300-5400 (Kompressor)
(см. модификации)
Крутящий момент, Нм/об.мин 185-190/3500-4000
230-250/2500 (Kompressor)
(см. модификации)
Топливо95
Экологические нормыЕвро 3
Евро 4 (с 2000 г.в.)
Вес двигателя, кг
Расход  топлива, л/100 км (для C230 Kompressor W203)
— город
— трасса
— смешан.

13.9
6.9
9.7
Расход масла, гр./1000 кмдо 1000
Масло в двигатель0W-30
0W-40
5W-30
5W-40
10W-40
15W-40
Сколько масла в двигателе, л5.5
7.0 (c 2000 г.в.)
При замене лить, л~5.0
~6.5
Замена масла проводится, км 7000-10000
Рабочая температура двигателя, град.~90
Ресурс двигателя, тыс. км
— по данным завода
 — на практике


300+
Тюнинг, л.с.
— потенциал
— без потери ресурса

300+
Двигатель устанавливалсяMercedes-Benz C 180 W203
Mercedes-Benz C 200 W202
Mercedes-Benz C 200 Kompressor W202
Mercedes-Benz C 200 Kompressor W203
Mercedes-Benz CLK 200 C208
Mercedes-Benz CLK 200 Kompressor C208
Mercedes-Benz E 200/ 200 E W124
Mercedes-Benz E 200 W210
Mercedes-Benz E 200 Kompressor W210
Mercedes-Benz SLK 200 R170
Mercedes-Benz SLK 200 Kompressor R170
Mercedes-Benz V 200/ Vito 113 W638

Надежность, проблемы и ремонт двигателя Мерседес М111 Е20 2.0 л.

Новый двигатель М111 Е20 появился в 1992 году и дал начало следующей серии четырехцилиндровых моторов Мерседес (в которую вошли и М111 Е18, М111 Е22 и М111 Е23), сам же М111 Е20 заменил устаревший М102 Е20. Для этого поколения силовых агрегатов был заново разработан компактный чугунный блок цилиндров, с новым коленвалом, шатунно-поршневой группой и прочим.
Головка блока цилиндров теперь 16-ти клапанная с двумя распредвалами (DOHC), с гидрокомпенсаторами и электронным впрыском топлива. Диаметр впускных клапанов 35 мм, выпускных 31 мм. Вместе с атмосферным вариантом выпускалась и компрессорная версия M111 E20 ML, где в качестве нагнетателя использовался рутс компрессор Eaton M62. Привод ГРМ цепной, ресурс данной цепи около 250 тыс. км. Система управления двигателем Bosch ME 2.1.
В 2000 году серия подверглась модификациям, в обновленном движке заменены шатуны и поршни под увеличенную степень сжатия, блок цилиндров с ребрами жесткости, доработана ГБЦ с измененными камерами сгорания и каналами, индивидуальные катушки зажагания, доработанная топливная система с новыми форсунками, другие свечи, электронная дроссельная заслонка, повышена экологичность до уровня Евро 4, компрессорные версии вместо Eaton M62 получили нагнетатель Eaton M45 и еще более 100 других изменений получили двигатели, к названию которых добавилось обозначение EVO. Система управления двигателем заменена на Siemens ME-SIM4.

В 2002 году компания Mercedes-Benz представила следующее поколение, дальнейшее развитие семейства рядных четверок под именем М271 и в течении двух лет M111 E20 ML уступил место новому M271 E18 ML, с рабочим объемом 1.8 литра.

Модификации двигателей М111 Е20

1. M111.940 (1992 — 1998 г.в.) — первая версия мощностью 136 л.с. при 5500 об/мин, крутящий момент 190 Нм при 4000 об/мин., степень сжатия 10.4, впрыск PMS. Ставился на Mercedes-Benz E200 W124/W210, C200 W202.
2. M111.941 (1994 — 2000 г.в.) — аналог М111.940 с Bosch Motronic. Ставился на Mercedes-Benz C200 W202.
3. M111.942 (1995 — 2000 г.в.) — аналог М111.940 с впрыском HFM. Ставился на Mercedes-Benz E200 W210.
4. M111.943 (1996 — 2000 г.в.) — версия M111.940 с компрессором Eaton M62, давление до 0.5 бар, степень сжатия снижена до 8.5, мощность 192 л.с. при 5300 об/мин, крутящий момент 270 Нм при 2500 об/мин. Ставился на Mercedes-Benz SLK 200 Kompressor R170.
5. M111.944 (1996 — 2000 г.в.) — версия M111.943 для Mercedes-Benz CLK 200 Kompressor C208 и C 200 Kompressor W202.
6. M111.945 (1994 — 2002 г.в.) — версия M111.942 для Mercedes-Benz CLK 200 C208 и C 200 W202.
7. M111.946 (1996 — 2000 г.в.) — версия M111.945 для Mercedes-Benz SLK 200 R170.
8. M111.947 (1997 — 2002 г.в.) — компрессорная модификация мощностью 186 л.с. при 5300 об/мин, крутящий момент 260 Нм при 2500 об/мин., степень сжатия 8.5. Ставился на Mercedes-Benz E200 Kompressor W210.
9. M111.948 (1995 — 2000 г.в.) — атмосферный вариант для Mercedes-Benz V 200 W638 с впрыском Siemens PMS, степень сжатия снижена до 9.6, мощность 129 л.с. при 5100 об/мин, крутящий момент 186 Нм при 3600 об/мин.
10. M111.950 (1995 — 2000 г.в.) — аналог М111.948 с впрыском HFM.
11. M111.951 (2000 — 2002 г.в.) — рестайлинговый мотор EVO, степень сжатия 10.6, мощность 129 л.с. при 5500 об/мин, крутящий момент 190 Нм при 4000 об/мин. Предназначался двигатель для Mercedes-Benz C 180 W203.
12. M111.955 (2000 — 2002 г.в.) — компрессорный аналог М111.951, нагнетатель Eaton M45, давление 0.37 бар, степень сжатия 9.5, мощность 163 л.с. при 5300 об/мин, крутящий момент 230 Нм при 2500 об/мин. Двигатель предназначался для Mercedes-Benz C 200 Kompressor W203, CLK 200 Kompressor C208 и E 200 Kompressor W210.

Проблемы и недостатки двигателей Мерседес М111 Е20 2 л.

1. Течи масла. Популярная проблема на 111-й серии, причиной является износ прокладки ГБЦ и лечится неисправность ее заменой.
2. Потеря мощности, высокий расход топлива. Корень зла в расходомере воздуха, который живет около 100 тыс. км. Замените его и ситуация исправится в лучшую сторону.
Кроме того, двигатели М111 отличаются шумной работой, недолго живут свечи зажигания (около 20 тыс. км), помпа живет около 100 тыс. км, после 200 тыс. км велик шанс износа юбок поршней, нередко появляются трещины в выпускном коллекторе. К этому добавим то, что большинство данных двигателей абсолютно изношены и отъездили весь свой немалый моторесурс, следовательно к вышеобозначенным проблемам могут добавиться какие угодно возрастные осложнения. Для минимизации подобных неприятностей, необходимо использовать только качественные рабочие жидкости и регулярно проводить техническое обслуживание.  

Тюнинг двигателя Мерседес М111

Компрессор

Наиболее рационально дорабатывать изначально мощную компрессорную версию M111 E20 ML, где меняется шкив нагнетателя на тюнинговый, ставится новая спортивная прошивка и мощность увеличивается до ~210 л.с. С заменой выхлопа на спортивный, получим более агрессивное звуковое сопровождения, что усиливает ощущение возросшей динамики, вместе с этим добавятся еще около 5-10 л.с. Ставить турбину вместо компрессора не так выгодно, ибо под замену отправится половина мотора. Куда проще купить мощный контрактный двигатель Мерседес V6. Это же касается и тюнинга обычного атмосферного М111 Е20, здесь даже не стоит тратить время, только замена на мощный мотор.

РЕЙТИНГ ДВИГАТЕЛЯ: 4+

<<НАЗАД

Двигатель М111 Е18 | Характеристики, масло, ремонт


Характеристики двигателя М111

Производство Stuttgart-Untertürkheim Plant
Марка двигателяM111
Годы выпуска1993-2000
Материал блока цилиндровчугун
Система питанияинжектор
Типрядный
Количество цилиндров4
Клапанов на цилиндр4
Ход поршня, мм78.7
Диаметр цилиндра, мм85.3
Степень сжатия9.8
Объем двигателя, куб.см1799
Мощность двигателя, л.с./об.мин122/5500
Крутящий момент, Нм/об.мин 170/3700
Топливо95
Экологические нормыЕвро 3
Вес двигателя, кг
Расход  топлива, л/100 км (для С180 W202)
— город
— трасса
— смешан.

12.7
7.2
8.5
Расход масла, гр./1000 кмдо 1000
Масло в двигатель0W-30
0W-40
5W-30
5W-40
10W-40
15W-40
Сколько масла в двигателе, л5.5
При замене лить, л~5.0
Замена масла проводится, км 7000-10000
Рабочая температура двигателя, град.~90
Ресурс двигателя, тыс. км
— по данным завода
 — на практике


300+
Тюнинг, л.с.
— потенциал
— без потери ресурса


Двигатель устанавливалсяMercedes-Benz С180 W202

Надежность, проблемы и ремонт двигателя Мерседес М111 Е18 1.8 л.

Очередная младшая версия рядных четверок в составе семейства М111 (в него вошли и М111 Е20, М111 Е22 и М111 Е23), появилась в 1993 году и заменила М102 Е18. В отличие от своего устаревшего предшественника, в основе нового движка лежал блок цилиндров от М111 Е20, но с цилиндрами меньшего диаметра, под поршни 85.3 мм (были 89.9 мм). В остальном двигатель аналогичен двухлитровому собрату. Головка блока цилиндров 16-ти клапанная с двумя распредвалами (DOHC), имеются гидрокомпенсаторы и электронный впрыск топлива. Диаметры впускных клапанов, относительно М111 Е20, уменьшены до 33 мм (были 35 мм), выпускных до 29 мм (были 31 мм). В приводе ГРМ используется цепь с ресурсом около 250 тыс. км.
Данный силовой агрегат выпускался в двух вариантах: M111.920 и M111.921.
Система управления впрыском и зажиганием на М111.920 Bosch PMS, на версии М111.920 — Bosch HFM.

Производился мотор до 2000 года, когда был снят с производства и через два года был представлен новый двигатель M271 E18 ML.

Проблемы и недостатки двигателей Мерседес М111 Е18

Все неисправности и недостатки двигателя М111.920/М111.921 полностью аналогичны тем, что присутствуют на старших моторах M111 E20, ознакомиться с ними можно здесь.

Тюнинг двигателя M111 E18

Компрессор

В тюнинге двигателя М111 Е18 есть единственно верный и реально увеличивающий мощность путь, это купить контрактный двигатель Мерседес V6 и свапнуть его вместо 1.8 литровой четверки. Данный шаг позволит сэкономить средства и получить значительную мощность без ущерба для ресурса. Крайне тусклой альтернативой столь радикальным шагам, может стать чип-тюнинг с заменой выхлопа и установкой фильтра пониженного сопротивления, что обеспечит около 10 дополнительных лошадинных сил.

РЕЙТИНГ ДВИГАТЕЛЯ: 4+

<<НАЗАД

Проблемы и надежность двигателя Mercedes M111

 28.11.2019

Двигатель Mercedes M111 – это рядные четверки объемом от 1,8 до 2,3 литров. Эти двигатели появились в 1992 году и выпускались до 2006 года. Таким образом, их дебют состоялся еще на Mercedes W124. Последние «Мерседесы» с этим двигателем – С-класс W203, родстер SLK R170, купе CLK C208. Но дольше всего этот двигатель продержался на Sprinter W905. Также этот силовой агрегат в 2,3-литровом исполнении устанавливали на Volkswagen LT и два SsangYong – Musso и Kuron.

Среди «четверок» М111 были не только атмосферники, но и версии с компрессором типа Roots. Такие версии объемом 2,0 и 2,3 литра дебютировали в 1995 году на С-классе W202. Самая слабая атмосферная 1,8-литровая версия развивала 122 л.с., а самая мощная 2,3-литровая с компрессором выдавала 197 л.с.

У моторов М111 чугунный блок цилиндров и алюминиевая 16-клапанная ГБЦ. Разумеется, в приводе клапанов присутствуют гидрокомпенсаторы. На впускном распредвале присутствует фазовращатель оригинальной конструкции.

 

 

На нашем YouTube-канале вы можете посмотреть разборку 2-литрового атмосферного двигателя M111.942, снятого с Е-класса W210 1994 года выпуска 136 л.с. Этот двигатель оснащен системой управления Bosch HFM c пленочным расходомером.

 

 

Выбрать и купить двигатель для Mercedes W210 вы можете в нашем каталоге контрактных моторов.

 

Блок PMS для W124, W202 и W638

С самого начала моторы семейства М111 получили электронный впрыск топлива с довольно мудреной системой управления PMS, которая руководила и форсунками, и свечами. Систему PMS (Pressure Monitoring System) выпускали компании Bosch и Siemens, а суть ее в том, что она измеряла нагрузку на двигатель датчиком абсолютного давления. И этот самый датчик был одним целым с блоком управления. Датчик давления оказался нежным и недолговечным, а при его выходе из строя нужно было менять весь блок целиком. Позже эти блоки научились перепаивать с заменой вышедшего из строя датчика давления. Двигатели с системой PMS никогда не устанавливались на Mercedes W210. Они достались ранним двигателям M111 объемом 1,8 и 2,0 литра, для моделей W124, W202 и W638.

 

 

На рубеже 2000-годов двигатели М111 эволюционировали: блоки были усилены, поршни и шатуны были укреплены под увеличившуюся степень сжатия. Также была изменена ГБЦ, появились индивидуальные катушки зажигания. Если изначально компрессорные версии оснащались нагнетателем Eaton M62, который приводился отдельным ремнем через электромагнитную муфту, то EVO-версии получили нагнетатель Eaton M45 c постоянным приводом нагнетателя.

 

 

Мы будем разбирать 2-литровый атмосферный двигатель M111.942, снятый с Е-класса W210 1994 года выпуска 136 л.с. Этот двигатель оснащен системой управления Bosch HFM c пленочным расходомером.

 

Компрессор

Это компрессор Eaton M45 с двигателя М111 объемом 2,3 литра. Такой компрессор постоянно вращается при работе двигателя, создает избыточное давление до 0,37 бар.

С точки зрения производителя, компрессор не является ремонтопригодным. Однако для него выпускаются комплекты игольчатых подшипников шнеков. Подшипники одинаковые для компрессора М45 и М62.

На износ компрессора указывает вой и даже жужжание при работе, а также присутствие в нем алюминиевой пыли, царапин на шнеках.

 

 

Выбрать и купить компрессор для двигателя Mercedes M111 вы можете в нашем каталоге контрактных запчастей.

 

Надежность системы HFM

Ранние варианты двигателя M111 для E-класса W210 до 1997 года оснащались системой управления двигателем с новомодным по тем временам пленочным расходомером, который более точно рассчитывает количество всасываемого воздуха.

Эта система управления более надежная, чем ее предшественница (на моторах М111), но может выйти из строя из-за короткого замыкания в проводке моторного жгута или дефекта катушек зажигания. К счастью, блок HFM ремонтропригодный, его могут восстановить знающие электрики.

 

Расходомер
Полное название пленочного расходомера HFM – термоанемометрический массовый расходомер воздуха с нагреваемой пленкой. ДМРВ такого типа используется до сих пор, но уже способен подавать в ЭБУ цифровой сигнал.

ДМРВ двигателя М111 формирует аналоговый сигнал. Работоспособность этого датчика можно проверить вольтметром: напряжение на нем должно быть в пределах 0,9-1 Вольт. Не более, что свидетельствует о неверных показаниях датчика. На неправильные данные с ДМРВ двигатель реагирует плохим запуском, неуверенной работой на холостых оборотах.

Неполадки в работе пленочного ДМРВ возникают из-за масляного и сажевого налета на его чувствительных элементах.

 

 

Выбрать и купить датчик массового расхода воздуха для двигателя Mercedes вы можете в нашем каталоге контрактных запчастей.

 

Система вентиляции картерных газов

Нередко система вентиляции картерных газов требует внимания, из-за нарушения ее проходимости. Обычно закупорки случаются в рестрикторе (он входит снизу во впускной коллектор) и в трубке, выходящей из маслоотделителя.

Для проверки проходимости системы ВКГ проще всего снять трубку, соединяющую впускной тракт до заслонки и клапанную крышку. Отверстие на клапанной крышке нужно чем-то прикрыть (хоть ладонью, хоть карточкой) и проверить, всасывается ли воздух. На работающем двигателе воздух должен хорошо всасываться в клапанную крышку, в том числе и при небольшом добавлении оборотов. Если из клапанной крышки давит давление газов, то проходимость системы ВКГ нарушена. Либо в двигателе слишком много картерных газов из-за износа ЦПГ.

Если есть сомнения в проходимости системы ВКГ, нужно добраться до сапуна и трубки перед ним. Правда, расположены они под впускным коллектором и труднодоступны. В любом случае, они нуждаются в проверке, если мотор начал выдавливать масло через сальники.

 

 

Датчик положения коленвала

Известная «болячка» двигателя М111 – глюки датчика положения коленвала. Датчик выходит из строя из-за нагревов. При высоком нагреве он не подает сигнал, из-за чего двигатель глохнет и не заводится, пока не остынет. Любопытно, что система управления двигателем на моторах М111 и его более крупных V-образных собратьев не регистрирует ошибок по датчику коленвала. Оживить двигатель можно, полив датчик водой. Тем самым можно точно установить причину поломки.

 

 

Дроссельная заслонка
Дроссельные заслонки на 111-х моторах бывают двух типов. На машинах без круиз-контроля и антипробуксовочной системы они могут управлять только холостым ходом. С «круизом» и ASR (антипробуксовочная система) заслонки управляются отдельным блоком и имеют больше самостоятельности. Т.е. способны как прикрывать заслонку, так и полностью ее открывать. Такие заслонки можно отличить друг от друга по разъемам: 8 контактов у «простой» заслонки и 14 у заслонки под круиз-контроль и ASR.

От старости электроника таких заслонок дает сбои. Моторчик заслонки может выйти из строя или начать работать с перебоями. Также заслонка может начать сбоить из-за нарушения изоляции ее проводки – той части проводов, которая находится в корпусе. А вот проблемы с потенциометрами датчика положения заслонки практически не встречаются.

В случае электрических проблем с дросселем фиксируется ошибка и возникают заметные проблемы с регулировкой холостого хода и странностями в откликах на педаль газа. Также из-за неисправного дросселя двигатель может глохнуть при появлении побочной нагрузки: включении компрессора кондиционера, повороте руля.

При загрязнении дроссельной заслонки двигателя М111 симптомы менее явные. Например, мотор заводится не с первого раза, причем этот симптом может проявляться либо только на холодном или на горячем моторе.

Также добавим, что «Мерседесах» 1990-х годов проблемы с дросселем и многими другими электронноуправляемыми узлами могут быть вызваны отказом так называемого «реле перегрузки». В нем просто разрушается пайка. Знающие люди профилактически пропаивают контакты этого реле, чтобы избежать проблем с чем угодно: от бензонасоса до дросселя.

 

 

Выбрать и купить дроссельную заслонку для двигателя Mercedes M111 вы можете в нашем каталоге контрактных запчастей.

 

Связь дроссельной заслонки и системы ВКГ

Еще раз вернемся к системе вентиляции картера. По верхней трубке, вход в которую расположен во впускном тракте после ДМРВ и перед дросселем, при малой скорости работы двигателя засасывается свежий воздух в картер. А при высокой скорости работы двигателя по этой трубке высасываются картерные газы, причем та часть, которая не отфильтровывается от паров масла.

Таким образом, пары масла имеют доступ к дросселю и могут покрывать его, образуя всем хорошо известный налет.

Также масляные пары могут отражаться от резко закрытой дроссельной заслонки, и таким образом получать доступ даже к расходомеру.

Также добавим, что в морозную погоду при недостаточном прогреве двигателя через верхнюю трубку системы ВКГ также циркулирует влага и даже эмульсия. Они могут стать причиной обмерзания дросселя и образования более густого налета бежевого цвета. Такой цвет имеет масляная мена, смешанная со влагой.

Собственно, обильное образование влаги и конденсата в верхней трубке происходит из-за того, что двигатель не успевает прогреться в морозную погоду и выпарить всю влагу, поступающую в картер со свежим воздухом.

 

Фазовращатель

Многие годы на самых различных бензиновых двигателях Mercedes применялся оригинальный механизм изменения фаз. На двигателе М111 муфта фазовращателя расположена на впускном распредвале. Муфта управляется соленоидом, связанным с гидравлическим клапаном (соленоидом). В народе он называется «магнит». Он стоит на конце распредвала, соленоид (или «магнит») по команде соленоида перемещает золотник, таким образом открывая путь маслу, приводящему фазорегулятор.

 

 

С годами и пробегом золотник, приводимый магнитным полем, может просто заклинить в своем канале. Обычно это происходит при холодном пуске. Мотор начнет трястись, загорится ошибка, указывающая на муфту. Во многих случаях помогает снятие «магнита» и расшевеливание золотника, который находится в распредвале.

Также при больших пробегах разъем на «магните» может потечь маслом, что неплохо устраняется разборкой корпуса магнита и герметизированием. Если муфта фазовращателя стучит при работе, то причина кроется в падении мощности магнита. Его придется заменить.

Замены может потребовать и сама муфта, если при подвижном золотнике и исправном ЭБУ остается проблема с регулированием фаз.

 

 

Форсунки
Из-за засорения форсунок двигатель неровно работает на холостых оборотах, теряет в мощности, чувствуется провал при разгоне. Замечено, что на двигатель М111 хорошо подходят и работают итальянские форсунки Siemens Deka Z1 с 2,5-литрового двигателя «Волги» и «Газели».

 

 

Выбрать и купить форсунки для двигателя Mercedes M111 вы можете в нашем каталоге контрактных запчастей.

 

Катушки зажигания

На двигателе М111 две сдвоенных катушки зажигания. Эти катушки чувствительны к износу свечей зажигания. Поэтому при неполадках с зажиганием нужно в комплексе оценивать и состояние свечей, и катушек. Старая свеча может быстро вывести из строя новую катушку.

На неполадки с зажиганием указывают провалы при разгоне, троение и сильное плавание оборотов, похожее на попытки двигателя не заглохнуть, если отключается один цилиндр.

 

 

Выбрать и купить катушки зажигания для двигателя Mercedes M111 вы можете в нашем каталоге контрактных запчастей.
 

Цепь ГРМ

Цепь ходит более 300 000 км. При растяжении плавают обороты, слышно легкое лязгание цепи. Инженеры предусмотрели возможность четкого контроля растяжения цепи. Для этого нужно поочередно зафиксировать впускной и выпускной распредвал и проверить смещение коленвала. Распредвалы фиксируются штифтами через специальные отверстия. Если коленвал смещен относительно впускного распредвала более, чем на 30°, а выпускной более чем на 35°, то цепь подлежит замене.

 

Помпа

Помпа двигателя М111 считается слабым местом. Она просто начинает течь по уплотнению.

 

Прокладка ГБЦ
Прокладка ГБЦ двигателя М111 недолговечная. При пробеге более 300 000 км она рано или поздно даст течь масла наружу. Обычно течь появляется спереди справа, возле генератора. Для устранения течи придется снимать «голову», менять прокладку. Настоятельно рекомендуется проверить плоскость ГБЦ, также поменять маслосъемные колпачки.

 

Поршневая группа

Оставшиеся в живых двигатели М111 прошли много сотен тысяч километров, поэтому можно сказать, что цилиндропоршневая группа у них выносливая. Блок можно точить, производитель предлагает ремонтные размеры поршневых колец, поршней и всех вкладышей.

Жор масла у двигателя М111 случается, и возникает из-за задубевших маслосъемных колпачков и залегших поршневых колец.

 

Выбрать и купить двигатель для Mercedes, вы можете в нашем каталоге контрактных моторов.

 

Здесь по ссылкам вы можете посмотреть наличие на авторазборке конкретных автомобилей Mercedes заказать с них автозапчасти.

Двигатель MERCEDES-BENZ M111 E20: характеристики, особенности, описание, обслуживание

Двигатель Мерседес M111 E20 является первым и старшим братом серии моторов М111. Выпускалась модель достаточно долго, но многим владельцам известна по Мерсу С-класса. Мотор достаточно эффективный, и имеет незначительные проблемы.

Характеристики и особенности моторов

Двигатель Мерседес М111 2.0 с самого начала производства имел полноценный инжектор. На смену этого силового агрегата пришёл М271 с улучшенными конструктивными показателями. Также, в серию моторов вошли силовые агрегаты с объёмом 1.8, 2.2 и 2.3 литра.

Mercedes-benz Clk-class.

Для этого поколения силовых агрегатов был заново разработан компактный чугунный блок цилиндров, с новым коленвалом, шатунно-поршневой группой и прочим. Головка блока цилиндров теперь 16-ти клапанная с двумя распредвалами (DOHC), с гидрокомпенсаторами и электронным впрыском топлива. Диаметр впускных клапанов 35 мм, выпускных 31 мм.

Вместе с атмосферным вариантом выпускалась и компрессорная версия M111 E20 ML, где в качестве нагнетателя использовался РУТС компрессор Eaton M62. Привод ГРМ цепной, ресурс данной цепи около 250 тыс. км. Система управления двигателем Bosch ME 2.1.

В 2000 году серия подверглась модификациям, в обновлённом движке заменены шатуны и поршни под увеличенную степень сжатия, блок цилиндров с рёбрами жёсткости, доработана ГБЦ с изменёнными камерами сгорания и каналами, индивидуальные катушки зажигания.

Мотор M111 E20.

Также преобразовалась топливная система с новыми форсунками, другие свечи, электронная дроссельная заслонка, повышена экологичность до уровня Евро 4, компрессорные версии вместо Eaton M62 получили нагнетатель Eaton M45 и ещё более 100 других изменений получили двигатели, к названию которых добавилось обозначение EVO. Система управления двигателем заменена на Siemens ME-SIM4.

М111 Е20

Наименование

Характеристики

Производитель

Stuttgart-Untertürkheim Plant

Марка мотора

М111

Тип двигателя

Инжектор

Объём

2.0 литра (1998 см куб)

Мощность

136-192 л.с.

Диаметр цилиндра

89.9

Количество цилиндров

4

Количество клапанов

16

Степень сжатия

8.5-10.6

Расход топлива

9.7 литра на каждые 100 км пробега в смешанном режиме

Масло для мотора

0W-30
0W-40
5W-30
5W-40
10W-40
15W-40

Ресурс

300+ тыс. км

Модификации мотора

За долгое время производства силового агрегата было выпущено значительное количество модификаций моторов, которые получили широкое распространение. Рассмотрим, какие разновидности имеет мотор М111 Е20:

Двигатель M111 E20.

  • M111.940 (1992 — 1998 г.в.) — первая версия мощностью 136 л.с. при 5500 об/мин, крутящий момент 190 Нм при 4000 об/мин., степень сжатия 10.4, впрыск PMS. Ставился на Mercedes-Benz E200 W124/W210, C200 W202.
  • M111.941 (1994 — 2000 г.в.) — аналог М111.940 с Bosch Motronic. Ставился на Mercedes-Benz C200 W202.
  • M111.942 (1995 — 2000 г.в.) — аналог М111.940 с впрыском HFM. Ставился на Mercedes-Benz E200 W210.
  • M111.943 (1996 — 2000 г.в.) — версия M111.940 с компрессором Eaton M62, давление до 0.5 бар, степень сжатия снижена до 8.5, мощность 192 л.с. при 5300 об/мин, крутящий момент 270 Нм при 2500 об/мин. Ставился на Mercedes-Benz SLK 200 Kompressor R170.
  • M111.944 (1996 — 2000 г.в.) — версия M111.943 для Mercedes-Benz CLK 200 Kompressor C208 и C 200 Kompressor W202.
  • M111.945 (1994 — 2002 г.в.) — версия M111.942 для Mercedes-Benz CLK 200 C208 и C 200 W202.
  • M111.946 (1996 — 2000 г.в.) — версия M111.945 для Mercedes-Benz SLK 200 R170.
  • M111.947 (1997 — 2002 г.в.) — компрессорная модификация мощностью 186 л.с. при 5300 об/мин, крутящий момент 260 Нм при 2500 об/мин., степень сжатия 8.5. Ставился на Mercedes-Benz E200 Kompressor W210.
  • M111.948 (1995 — 2000 г.в.) — атмосферный вариант для Mercedes-Benz V 200 W638 с впрыском Siemens PMS, степень сжатия снижена до 9.6, мощность 129 л.с. при 5100 об/мин, крутящий момент 186 Нм при 3600 об/мин.
  • M111.950 (1995 — 2000 г.в.) — аналог М111.948 с впрыском HFM.
  • M111.951 (2000 — 2002 г.в.) — рестайлинговый мотор EVO, степень сжатия 10.6, мощность 129 л.с. при 5500 об/мин, крутящий момент 190 Нм при 4000 об/мин. Предназначался двигатель для Mercedes-Benz C 180 W203.
  • M111.955 (2000 — 2002 г.в.) — компрессорный аналог М111.951, нагнетатель Eaton M45, давление 0.37 бар, степень сжатия 9.5, мощность 163 л.с. при 5300 об/мин, крутящий момент 230 Нм при 2500 об/мин. Двигатель предназначался для Mercedes-Benz C 200 Kompressor W203, CLK 200 Kompressor C208 и E 200 Kompressor W210.

Обслуживание

Техническое обслуживание моторов М111 ничем не отличается от стандартных силовых агрегатов этого класса. ТО моторов проводится с интервалом в 15 000 км. Рекомендованное обслуживание проводить необходимо каждые 10 000 км.

Типичные неисправности

Проблемы семейства М111 для всех объёмов мотора одинаковые. Причина этому — ряд конструктивных особенностей, которые способны испортить настроение любому бывалому автолюбителю. Рассмотрим, основные неисправности, которые встречаются на силовом агрегате:

Ремонт двигателя M111 E20.

  • Повышенный расход масла. Всему виной изношенность маслосъёмных колпачков. Замена элементов решит проблему.
  • Потеря мощности и «тупит» мотор. Стоит проверить расходомер воздуха.
  • Вибрация. Как и на любом другом моторе, причиной становится — подушка, которую необходимо заменить.

Вывод

Двигатель М111 Е20 — достаточно надёжные и качественные движки производства Мерседес. Что касается ремонта, то рекомендуется обратиться на сервисную станцию технического обслуживания, но большинство автолюбителей проводят ремонтно-восстановительные работы самостоятельно.

Двигатель MERCEDES-BENZ M111 E23: характеристики, особенности, описание, обслуживание

Двигатель Мерседес M111 E23 является самым старшим в серии моторов М111. Выпускалась модель достаточно долго, но многим владельцам известна по Мерсу С-класса. Мотор достаточно эффективный, и имеет незначительные проблемы.

Характеристики и особенности моторов

Двигатель Мерседес М111 2.3 пришёл на смену М102 Е23 с рядом серьёзных конструктивных доработок. На смену этого силового агрегата пришёл М271 с улучшенными конструктивными показателями. Также, в серию моторов вошли силовые агрегаты с объёмом 1.8, 2.2 и 2.0 литра.

Mercedes-Benz CLK-Class с мотором M111 E23.

Новый М111 Е23 обзавёлся компактным чугунным блоком цилиндров, как на М111 Е20, но с увеличенным на 1 мм диаметром цилиндров (был 89.9 мм) и другим коленвалом, с увеличенным до 88.4 мм ходом поршня, относительно Е20.

Головка блока цилиндров такая же, как и на двухлитровом родственном силовом агрегате, с двумя распредвалами и 16 клапанами, гидрокомпенсаторами и электронным впрыском топлива. Параллельно с атмосферником выпускался и компрессорный вариант, на котором использовался нагнетатель Eaton M62. В приводе ГРМ использовалась цепь с ресурсом около 250 тыс. км. Система управления двигателем Bosch ME 2.1.

Спустя 5 лет после запуска в производство, вся серия М111 подверглась глубоким модификациям, в новых версиях используется блок цилиндров с рёбрами жёсткости, новая шатунно-поршневая группа, увеличена степень сжатия, доработаны камеры сгорания и каналы ГБЦ, применены индивидуальные катушки зажигания.

Изменилась топливная система с другими форсунками, заменены свечи, внедрена электронная дроссельная заслонка, улучшены экологические показатели до класса Евро 4, вместо компрессора Eaton M62 установили нагнетатель Eaton M45 и ещё ряд других более мелких изменений (общее количество 100+). Отличить новые двигатели можно по обозначению EVO и году выпуска, а именно младше 2000 г.в. Система управления двигателем заменена на Siemens ME-SIM4.

Схема двигателя M111 E23.

М111 Е23

Наименование

Характеристики

Производитель

Stuttgart-Untertürkheim Plant

Марка мотора

М111

Тип двигателя

Инжектор

Объём

2.3 литра (2295 см куб)

Мощность

143-197 л.с.

Диаметр цилиндра

90.9

Количество цилиндров

4

Количество клапанов

16

Степень сжатия

8.8-10.4

Расход топлива

8.3 литра на каждые 100 км пробега в смешанном режиме

Масло для мотора

0W-30
0W-40
5W-30
5W-40
10W-40
15W-40

Ресурс

300+ тыс. км

Модификации мотора

За долгое время производства силового агрегата было выпущено значительное количество модификаций моторов, которые получили широкое распространение. Рассмотрим, какие разновидности имеет мотор М111 Е23:

Передняя часть двигателя M111 E23.

  • M111.970 (1995 — 2005 г.в.) — первая версия мощностью 150 л.с. при 5400 об/мин, крутящий момент 220 Нм при 3700 об/мин., степень сжатия 10.4, впрыск HFM. Ставился на Mercedes-Benz E230 W210 и SsangYong Musso.
  • M111.973 (1996 — 2000 г.в.) — компрессорный вариант с нагнетателем Eaton M62, степень сжатия 8.8, мощность 193 л.с. при 5300 об/мин, крутящий момент 280 Нм при 2500 об/мин. . Ставился на Mercedes-Benz SLK 230 Kompressor R170.
  • M111.974 (1994 — н.в.) — аналог М111.970 для Mercedes-Benz C230 W202 и SsangYong Kyron, Rexton.
  • M111.975 (1996 — 2000 г.в.) — аналог М111.973 для Mercedes-Benz CLK 230 Kompressor C208.
  • M111.977 (1998 — 2000 г.в.) — версия M111.970 для Mercedes-Benz ML 230 W163.
  • M111.978 (1995 — 2003 г.в.) — версия для Mercedes-Benz V 230 W638, степень сжатия снижена до 8.8, впрыск PMS, мощность 143 л.с. при 5000 об/мин, крутящий момент 215 Нм при 3500 об/мин.
  • M111.979 (1995 — 2006 г.в.) — аналог М111.978 для Mercedes-Benz Sprinter W901-905.
  • M111.980 (1995 — 2003 г.в.) — аналог М111.978 с впрыском HFM для Mercedes-Benz V 230 W638.
  • M111.981 (2001 — 2002 г.в.) — компрессорный вариант с нагнетателем Eaton M45, степень сжатия 9, мощность 197 л.с. при 5500 об/мин, крутящий момент 280 Нм при 2500 об/мин. Ставился на Mercedes-Benz E 230 Kompressor W210, SLK 230 Kompressor R170.
  • M111.984 (1995 — 2006 г.в.) — аналог М111.979 с впрыском HFM для Mercedes-Benz Sprinter и Volkswagen LT.

Обслуживание

Техническое обслуживание моторов М111 ничем не отличается от стандартных силовых агрегатов этого класса. ТО моторов проводится с интервалом в 15 000 км. Рекомендованное обслуживание проводить необходимо каждые 10 000 км.

Типичные неисправности

Проблемы семейства М111 для всех объёмов мотора одинаковые. Причина этому — ряд конструктивных особенностей, которые способны испортить настроение любому бывалому автолюбителю. Рассмотрим, основные неисправности, которые встречаются на силовом агрегате:

Мотор M111 E23.

  • Повышенный расход масла. Всему виной изношенность маслосъёмных колпачков. Замена элементов решит проблему.
  • Потеря мощности и «тупит» мотор. Стоит проверить расходомер воздуха.
  • Вибрация. Как и на любом другом моторе, причиной становится — подушка, которую необходимо заменить.

Вывод

Двигатель М111 Е23 — достаточно надёжные и качественные движки производства Мерседес. Что касается ремонта, то рекомендуется обратиться на сервисную станцию технического обслуживания, но большинство автолюбителей проводят ремонтно-восстановительные работы самостоятельно.

Мотор «Мерседес» 111 — описание и характеристики

Автомобили марки «Мерседес» славятся своими мощными и надежными двигателями. В этом уже убедились многие автовладельцы. Но немецкий производитель выпускает самые разные моторы. Одни более экономичные, другие – более мощные. Среди наиболее оптимальных является двигатель М111. Что это за мотор и какие он имеет характеристики? Рассмотрим в нашей сегодняшней статье.

Описание

Двигатель «Мерседес» 111 — это рядный четырехцилиндровый бензиновый мотор. Впервые он появился в 92-м году и пришел на смену старому М102. Нужно сказать, что новый двигатель «Мерседес» 111 был разработан с нуля, а не стал доработанной версией предыдущего. Так, мотор получил компактный чугунный блок, другой коленвал и шатунно-поршневую группу. Головка блока стала 16-клапанной. Также двигатель отличается электронным впрыском и гидрокомпенсаторами. Диаметр выпускных и впускных клапанов – 31 и 35 миллиметров соответственно.

мотор мерседес

Двигатель был не только атмосферным – существовали и компрессорные модификации. В качестве нагнетателя использовался компрессор «Итон М62».

Привод газораспределительного механизма мотора «Мерседес» 111 — цепной. Ресурс цепи – 250 тысяч километров. Для сравнения, старый двигатель М102 нуждался в замене цепи каждые 120 тысяч. Система управления двигателем – «Бош МЕ 2,1».

Модернизация

Спустя 8 лет после выпуска мотор получил модернизацию. Так, в агрегате были заменены поршни и шатуны под увеличенную степень сжатия. Блок цилиндров получил дополнительные ребра жесткости. Доработана и головка блока. Она имеет измененные каналы и камеру сгорания. Также на ДВС появились индивидуальные катушки зажигания. Были заменены форсунки и свечи. Агрегат стал более экологичным. Появилась электронная дроссельная заслонка. На компрессорных моторах был заменен нагнетатель на «Итон М45». Также заменена система управления. Вместо «Бошевского» установлен электронный блок «Сименс».

Технические характеристики

Итак, двигатель М111 – это рядная четверка с инжекторным впрыском и 16-клапанной головкой. Диаметр цилиндра составляет 89,9 миллиметров. Ход поршня – 78,7 миллиметров. Степень сжатия агрегата – от 8,5 до 10,6. Рабочий объем агрегата – 1998 кубических сантиметров. Максимальная мощность в зависимости от модификации – от 129 до 192 лошадиных сил. Крутящий момент – от 185 до 250 Нм. Двигатель рассчитан на 95-й бензин. Соответствует экологическому стандарту Евро-3. После модернизации агрегат стал соответствовать требованиям Евро-4.

111 мотор мерседес

Какие имеет динамические характеристики данный мотор? В среднем «Мерседес» с этим двигателем разгонялся за 10,6 секунды. Максимальная скорость – 210 километров в час. Самые лучше динамические характеристики были у машин на механике. Но в основном М111 укомплектовывался автоматом на четыре ступени. Что касается расхода топлива, он составлял от 7 до 14 литров в зависимости от условий эксплуатации (трасса и город соответственно). На автомате расход был всегда больше.

На какие авто устанавливался?

В основном этот мотор ставился на автомобили С-класса. Это «Мерседесы» в 202-м и в 203-м кузове. Также агрегат можно встретить на автомобилях CLK (сюда ставились только компрессорные). Кроме того, мотор «Мерседес» 111 устанавливался на модели бизнес-класса. Это поздние 124-е кузова и 210-й «Мерседес». В редких случаях такой мотор можно встретить на микроавтобусе «Вито». На другие автомобили данной марки он не ставился.

Недостатки и проблемы мотора

Среди популярных проблем отзывы отмечают течь масла. Причиной тому является повышенный износ прокладки головки блока. Проблема решается путем замены уплотнительного элемента. Следующая проблема – это потеря мощности и повышенный расход топлива. Такое явление происходит вследствие неисправности расходомера воздуха. Его ресурс составляет порядка 100 тысяч километров.

111 мотор мерседес фото

Среди «детских болезней» владельцы отмечают повышенную шумность работы. Этот недостаток никак не устранить. Также мотор требует частой замены свечей зажигания. Их ресурс составляет около 20 тысяч километров. Водяной насос служит около 100 тысяч. На пробеге за 200 владелец может столкнуться с таким явлением, как трещины в выпускном коллекторе. В остальном, двигатель весьма надежный и не доставляет проблем владельцу.

Обслуживание

Данный агрегат нуждается в замене масла каждые 10 тысяч километров. В случае экстремальной эксплуатации (частые пробки, высокие нагрузки), масло менять нужно раз в 7 тысяч. Использовать нужно качественную синтетику. Вязкость может быть разной – от 0W-30 до 15W-40.

111 мотор

Заправочный объем – 5,5 литра на моторах до модернизации и 7 на ДВС после модернизации в 2000-м году. Замену антифриза следует выполнять раз в 5 лет, либо каждые 150 тысяч километров. Сюда подходит охлаждающая жидкость группы G12.

Тюнинг

Очень часто устанавливают на атмосферные агрегаты компрессор. Таким образом можно увеличить мощность без потери ресурса. Если выполнить прошивку, можно увеличить мощность до 210 лошадиных сил. Еще один распространенный вариант тюнинга – это замена выхлопа на спортивный. Таким образом можно увеличить мощность еще на 5 процентов.

динамические характеристики

А вот производить установку турбины специалисты не советуют. В таком случае нужно дорабатывает еще половину мотора. А как это скажется на ресурсе, никто предугадать не сможет.

Подводим итоги

Итак, теперь мы знаем, что собой представляет мотор «Мерседес» 111. Этот двигатель отличается высоким ресурсом и не требователен в обслуживании. Если вы задаетесь вопросом о том, какой хороший двигатель можно взять, однозначно стоит рассмотреть вариант покупки М111. Данный агрегат не имеет сложных систем впрыска или технологий изменения фаз газораспределения. Поэтому мотор «Мерседес» 111 является одним из самых надежных в линейке.

Двигатель внутреннего сгорания фото – Двигатель внутреннего сгорания: рабочий цикл,как работает,система питания двс,фото,видео.

  • 15.02.2019

Двигатель внутреннего сгорания: рабочий цикл,как работает,система питания двс,фото,видео.

 

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.

Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).



Рис. 1.2. Двигатель со снятой головкой блока цилиндров.


Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.

Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).

Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.



Рис. 1.3. Поршень с шатуном.


На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).

Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.

Примечание.

Распределительный вал двигателя приводится в действие коленчатым валом.

Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.

Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.

Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.

По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.

РАБОЧИЙ ЦИКЛ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Рабочий цикл — это строгая последовательность рабочих процессов (тактов), периодически повторяющихся в каждом цилиндре. Каждый такт соответствует одному проходу поршня.

Двигатели внутреннего сгорания бывают четырехтактными и двухтактными. Принципиальная разница между ними заключается в следующем: в четырехтактном двигателе один рабочий цикл происходит за четыре хода поршня, а в двухтактном — за два хода. Двухтактные двигатели используются в основном на мотоциклах, моторных лодках, скутерах и т. п. Поэтому здесь будем вести речь о четырехтактном двигателе внутреннего сгорания — именно такими моторами оснащаются легковые автомобили.

Рабочий цикл четырехтактного двигателя внутреннего сгорания включает в себя следующие такты.

1. Первый такт — впуск горючей смеси в цилиндр двигателя. Нужно сказать, что в цилиндре происходит сгорание топлива не в чистом виде, а смеси его паров с воздухом (горючая смесь). В советских автомобилях за приготовление такой смеси отвечал специальный прибор — карбюратор. Однако в современных автомобилях карбюраторы давно не применяются — данный процесс контролируется электроникой (прибором, который называется инжектор).

Примечание.

Для бензинового двигателя внутреннего сгорания оптимальной является горючая смесь, состоящая из 1 части бензина и 15 частей воздуха (то есть 1:15).

Горючая смесь попадает в цилиндр при открывшемся впускном клапане (напомню, что в нужный момент на него давит кулачок распределительного вала). В момент открытия впускного клапана поршень всегда расположен в ВМТ и начинает перемещаться вниз к НМТ. При этом над поршнем возникает разрежение, под воздействием которого в цилиндр поступает горючая смесь. Иными словами, при движении вниз к НМТ поршень засасывает горючую смесь в цилиндр через открывшийся впускной клапан. Как только поршень достигнет НМТ, клапан под воздействием мощной пружины возвращается на прежнее место и плотно закрывает впускное отверстие.

Когда горючая смесь попадает в цилиндр, она перемешивается с остатками имеющихся в нем выхлопных газов. Такая смесь называется рабочей, и именно она будет сгорать в камере сгорания.

На протяжении первого такта работы мотора кривошип коленчатого вала (рис. 1.4) проворачивается на пол-оборота.

 



Рис. 1.4. Коленчатый вал двигателя.


2. Исходное положение для начала второго такта таково: поршень находится в НМТ, впускной клапан плотно закрыт, цилиндр заполнен рабочей смесью. Во время второго такта поршень перемещается от НМТ к ВМТ, сжимая в процессе этого находящуюся в цилиндре рабочую смесь.

Опытным водителям хорошо знакомо такое понятие, как степень сжатия. Данный показатель информирует о том, во сколько раз сокращается объем рабочей смеси при достижении поршнем ВМТ. Отмечу, что степень сжатия — одна из наиболее значимых технических характеристик любого автомобиля.

В процессе сжатия рабочей смеси ее температура существенно повышается. При достижении поршнем ВМТ она равняется примерно +300… 400 °С. Что касается давления внутри цилиндра, то оно при этом составляет порядка 9-10 кг/см.

Второй такт заканчивается при достижении поршнем ВМТ. В этот момент рабочая смесь максимально сжата. За второй такт кривошип коленчатого вала проворачивается еще на пол-оборота. Следовательно, за два такта коленчатый вал делает один полный оборот.

3. Как отмечалось ранее, принцип работы двигателя внутреннего сгорания заключается в преобразовании тепловой энергии в механическую. Это происходит на третьем этапе работы двигателя, который называется рабочим ходом. Когда поршень находится в ВМТ, а рабочая смесь максимально сжата, между электродами свечи зажигания возникает электрическая искра, что вызывает воспламенение рабочей смеси (это происходит в камере сгорания). В результате на поршень, находящийся в ВМТ, оказывается мощное давление. Клапаны в этот момент плотно закрыты, продуктам горения деваться некуда, и именно они давят на поршень, который под воздействием этого давления вынужден двигаться вниз к НМТ. При этом он передает энергию своего движения через шатун на кривошип коленчатого вала, тем самым вынуждая его вращаться. Именно это вращение является движущей силой автомобиля.

Примечание.

Давление на поршень во время третьего такта рабочего цикла двигателя достигает 40 кг/см.

Во время третьего такта коленчатый вал двигателя проворачивается еще на пол-оборота.

4. Последний, четвертый такт рабочего цикла — выпуск отработанных газов. Он начинается, когда после третьего такта поршень находится в НМТ и начинает двигаться вверх. В этот момент под воздействием соответствующего кулачка распределительного вала открывается выпускной клапан и движущийся вверх поршень выдавливает выхлопные газы из цилиндра. Сразу после этого клапан плотно закрывает выпускное отверстие. Затем выхлопные газы через глушитель и выхлопную трубу выводятся наружу.

Четвертый такт завершается, когда поршень достиг ВМТ и плотно закрылся выпускной клапан.

В течение четвертого такта коленчатый вал проворачивается еще на пол-оборота. Следовательно, за четыре такта работы (на протяжении одного рабочего цикла) коленчатый вал делает два полных оборота.

После четвертого такта опять начинается первый такт и т. д.

СИСТЕМА ПИТАНИЯ

Система питания является одной из ключевых систем двигателя внутреннего сгорания, поэтому от ее исправности и технического состояния, а также от качества используемого топлива напрямую зависит мощность и надежность двигателя, а также возможность его быстрого запуска.

Внимание!

Практически любая неисправность системы питания влечет за собой повышение расхода топлива и, как следствие, снижение экономичности автомобиля.

Среди наиболее характерных признаков, свидетельствующих о наличии неполадок в системе питания, можно отметить резкий запах топлива, а также наличие подтеканий из топливной системы. О неисправностях в топливной системе также может говорить трудный запуск двигателя, его нестабильная работа в разных режимах, а также слишком высокий расход топлива.

Состав выхлопных газов может рассказать о состоянии системы питания. Например, неполадки часто приводят к образованию слишком богатой либо наоборот — слишком бедной рабочей смеси, что в конечном счете отражается на содержимом выхлопных газов.

При диагностике системы питания следует учесть, что отклонения в показателях какого- либо параметра могут быть обусловлены сразу несколькими неполадками. В частности, повышенное потребление топлива случается из-за неисправностей в кривошипно¬шатунном либо газораспределительном механизме, из-за неполадок в системе зажигания, а также при наличии некоторых неисправностей подвески. Результаты диагностики в такой ситуации будут достоверными только тогда, когда точно известно техническое состояние каждого из названных узлов и агрегатов.

При диагностике системы питания работники автосервисов и СТО нередко «разводят на деньги» своих клиентов. Подобное мошенничество базируется на том, что кислородный датчик может оказывать существенное влияние на экономичность потребления топлива автомобилем. Исправность этого прибора водитель самостоятельно проверить не может, если только не является большим докой в устройстве современного автомобиля.

Когда клиент на СТО жалуется, что его автомобиль стал в последнее время слишком «прожорлив», ему сразу же предлагают пройти диагностику. Стоимость такой процедуры зависит от конкретной СТО, но в среднем она составляет порядка $15–20. Результат проверки почти всегда один и тот же: строгим тоном, не терпящим возражений, клиенту заявляют, что в его машине неисправен датчик кислорода. В наличии таких датчиков, само собой, сейчас нет, поэтому придется заказывать новый из-за границы. На робкий вопрос клиента относительно цены нового кислородного датчика механик авторитетно заявляет: «Вообще-то это дорого, но для вас сделаем всего за $350».

Расчет в данном случае простой: подавляющее большинство клиентов не пожелают выкладывать такую сумму за датчик кислорода и просто смирятся с возросшей «прожорливостью» своего автомобиля. Деньги, уплаченные за диагностику, разумеется, вам никто не вернет. На такой псевдо-диагностике в настоящее время делается очень неплохой «навар». Стоит ли говорить о том, что на самом деле неисправность, ставшая причиной высокого потребления топлива, может заключаться совершенно в другом, и устранить ее можно быстро и недорого. Вот только заниматься этим работники российских автосервисов не хотят: куда проще «содрать» с клиента $350, чем чинить его машину за меньшие деньги.

На вопрос клиента, что именно стало причиной выхода из строя кислородного датчика, может последовать много ответов: здесь и плохое качество российского топлива (об этом наши соотечественники знают чуть ли не с детского сада), и этилированный бензин, из-за которого датчик приходит в негодность практически сразу же, и морозные российские зимы и т. п. Практически все эти утверждения в большинстве случаев не имеют ничего общего с реальностью, иначе все автомобилисты в России ездили бы с неисправными датчиками либо меняли эти датчики едва ли не каждую неделю.

Конечно, никто не берется утверждать, что датчик кислорода не влияет на потребление топлива. Иногда он действительно является виновником его повышенного расхода, причем в исправном состоянии. Вот наиболее простой пример: в автомобиле поврежден воздухопровод и имеет место нештатный подсос воздуха. В таком случае кислородный датчик распознает лишний воздух как слишком бедную рабочую смесь и добавляет в нее топливо, чтобы довести до кондиции.

Как же определить, имеется ли в машине нештатный подсос воздуха?

Это несложно. Возьмите обыкновенный аэрозоль, содержащий горючую смесь (они обычно используются для промывки карбюратора), заведите мотор и направьте из баллончика струю в то место, в котором, как вы подозреваете, имеется нештатное проникновение воздуха. Если ваши подозрения подтвердятся, то у двигателя самопроизвольно повысятся обороты (поскольку через место, куда обычно попадает лишний воздух, сейчас проникает струя горючей смеси из аэрозоля).

Повышенный расход топлива на современных автомобилях, оборудованных электронной системой зажигания, может быть обусловлен неправильным выставлением датчика положения дроссельной заслонки. В таком случае компьютер будет воспринимать ошибочную информацию как верную, что может повлечь за собой неправильное приготовление рабочей смеси, а также смещение угла опережения зажигания. В конечном счете это приведет к нарушению работы двигателя на холостом ходу (мотор может работать нестабильно, либо холостые обороты могут быть повышенными и др.).

ПОХОЖИЕ СТАТЬИ:

  • Сравнительная характеристика экономичности автомобилей
  • Надежная и стабильная работа системы охлаждения двигателя
  • ГТО — перечень документов, необходимых при прохождении
  • ДИАГНОСТИКА ЭЛЕКТРООБОРУДОВАНИЯ АВТОМАШИН
  • Новый Audi Q2 2016-2017 описание технические характеристики фото видео
  • КАК ПРОИЗВОДЯТ АВТОМОБИЛИ В ГЕРМАНИИ — немецкие авто видео.
  • Mercedes-Benz Concept седан — видео трейлер
  • Volkswagen c coupe gte: обзор,описание,фото,видео,комплектация.
  • Бмв е90: описание,обзор,фото,видео,комплектация,характеристики.
  • Бмв е39: обзор,описание,фото,видео,комплектация,характеристики
  • Опель Зафира: обзор,описание,фото,видео,комплектация.
  • Какую сигнализацию лучше поставить на автомобиль с автозапуском.
  • Volkswagen Amarok 2017 года фото видео обзор описание комплектация.
  • Как выбрать самый экономичный кроссовер по расходу топлива?
  • Опель Корса 2019 года: характеристики,цена,фото ,комплектация

Поршень двс (устройство, назначение, фото)

Поршень двс

Поршень одна из важных деталей двигателя внутреннего сгорания благодаря которой передается энергия на шатун. В этой статье поговорим про устройство поршня узнаем его назначения и рассмотрим его фото.

Поршень двc на первый взгляд имеет простую конструкцию. Тем не менее не все так просто инженеры постоянно работают над облегчением поршня и увеличением его прочности. Другими словами стараются найти золотую середину. Найти золотую середину бывает не просто, так как поршень постоянно эксплуатируется в экстремальных условиях при высоких температурах и повышенных инерционных нагрузках. Под действием энергии топливно-воздушной смеси поршень отправляется в НМТ ( нижнюю мертвую точку). Поршень в свою очередь передает энергию на коленвал через шатун с которым поршень связан через поршневой палец.

Основные функции поршня двс:

1) Отвод излишков тепла.

2) Благодаря поршню камера сгорания становится герметичной.

3) Передача энергии на коленвал через шатун.

Если сказать кратко задача поршня передать энергию газов на коленвал чтобы последний преобразовал ее в механическую энергию.

Устройство

В последнее время поршень двс изготавливают из алюминия так как этот материал лёгкий и прочный.

Поршни бывают литые и кованные. Литые поршни изготавливаются литьём под давлением. Кованные поршни изготавливают методом штамповки из алюминиевого сплава с небольшим добавлением кремния 15%. Что увеличивает их прочность и износостойкость.

Обсудим основные детали поршня, более подробно устройство поршня можно рассмотреть на схеме.

Днище

Днище поршня может иметь 5 разных видов поверхностей у каждого типа свои преимущества и недостатки.

Плоское. Такой тип поверхности используется довольно часто. Недостаток поршня такого типа, в том что при обрыве ремня поршни гнут клапана.

Вогнутое. Обеспечивает более эффективную работу камеры сгорания. Тем не менее способствует большему образованию отложений при сгорании топлива.

OLYMPUS DIGITAL CAMERA

Выпуклое. Улучшает производительность поршня, но при этом понижает эффективность сгорания топлива.

С циковками. Предотвращают столкновение поршней с клапанами за счёт специальных углублений называемых циковками. Из-за канавок может быть небольшая потеря мощности.

С лужей.Такой тип поршней также оснащен канавками только большего размера. Цель таких поршней понизить степень сжатия. Например они отлично подходят для турбокомпрессора.

Компрессионные кольца

Обычно в двc устанавливается 2 компрессионных кольца и одно маслосъемное. Поршневые кольца изготавливаются из высокопрочного чугуна. Расстояние от днища поршня до первого кольца носит огневой пояс. Функция поршневых колец состоит в том, чтобы поршень плотно прилегал к цилиндру. Для уменьшения трения используется моторное масло.

Одно из важных предназначений поршневых колец заключается в препятствии попадания газов из камеры сгорания в картер. Благодаря добавлению хрома, молибдена, никеля или вольфрама прочность и термостойкость поршневых колец значительно повышается. При износе поршневых колец ресурс поршня понижается.

Маслосъемное кольцо

Маслосъемные кольца служат для того чтобы отводить излишки масла. Маслосъемные кольца обладают дренажными отверстиями.

Юбка

Юбка поршня и есть его тело служит направляющей. Благодаря специальным добавкам в сплав юбка поршня обладает высокой стойкостью к расширению.

Поршневой палец

Поршневой палец соединяет поршень с шатуном. Благодаря стопорному кольцу достигается их прочное соединение.

Ответы на частые вопросы

Для чего в днище поршня дизельного двигателя делают выемку ?

Выемка в поршнях дизельного двигателя называется вихревой камерой( камерой сгорания). Топливо перемешиваясь с воздухом в вихревой камере сгорает более эффективно и быстро.

Температура поршня двс ?

Кратковременно при работе двс поршень может нагреться до 2000 градусов и более. В целом температура поршня при работе может достигать 200 градусов.

Как продлить срок службы поршней ?

Для того чтобы продлить срок службы поршней двс необходимо во время менять масло. Лучше даже немного раньше срока как советуют многие водители.

norfin arcticthe hermitage st petersberg

Click to rate this post!

[Total: 0 Average: 0]

что это такое? Двигатель внутреннего сгорания: характеристики, схема

Не будет преувеличением сказать, что большинство самодвижущихся устройств сегодня оснащены двигателями внутреннего сгорания разнообразных конструкций, использующими различные принципиальные схемы работы. Во всяком случае, если говорить об автомобильном транспорте. В данной статье мы рассмотрим более подробно ДВС. Что это такое, как работает данный агрегат, в чем его плюсы и минусы, вы узнаете, прочитав ее.

Принцип работы двигателей внутреннего сгорания

Главный принцип работы ДВС основан на том, что топливо (твердое, жидкое или газообразное) сгорает в специально выделенном рабочем объеме внутри самого агрегата, преобразуя тепловую энергию в механическую.

двс что это такое Рабочая смесь, поступающая в цилиндры такого двигателя, подвергается сжатию. После ее воспламенения при помощи специальных устройств возникает избыточное давление газов, заставляющих поршни цилиндров возвращаться в исходное положение. Так создается постоянный рабочий цикл, преобразующий при помощи специальных механизмов кинетическую энергию в крутящий момент.

На сегодняшний день устройство ДВС может иметь три основных вида:

Помимо этого существуют и другие модификации основных схем, позволяющие улучшить те или иные свойства силовых установок данного вида.

Преимущества двигателей внутреннего сгорания

В отличие от силовых агрегатов, предусматривающих наличие внешних камер, ДВС обладает значительными преимуществами. Главными из них являются:

  • гораздо более компактные размеры;
  • более высокие показатели мощности;
  • оптимальные значения КПД.

Необходимо заметить, говоря о ДВС, что это такое устройство, которое в подавляющем большинстве случаев позволяет использовать различные виды топлива. Это может быть бензин, дизельное топливо, природный или сжиженный газ, керосин и даже обычная древесина.

ремонт двс Такой универсализм принес данной принципиальной схеме двигателя заслуженную популярность, повсеместное распространение и поистине мировое лидерство.

Краткий исторический экскурс

Принято считать, что двигатель внутреннего сгорания ведет отсчет своей истории с момента создания французом де Ривасом в 1807 году поршневого агрегата, использовавшего в качестве топлива водород в газообразном агрегатном состоянии. И хотя с тех пор устройство ДВС подверглось значительным изменениям и модификациям, основные идеи этого изобретения продолжают использоваться и в наши дни.

Первый четырехтактный двигатель внутреннего сгорания увидел свет в 1876 году в Германии. В середине 80-х годов XIX столетия в России был разработан карбюратор, позволявший дозировать подачу бензина в цилиндры мотора.

устройство двс А в самом конце позапрошлого века знаменитый немецкий инженер Рудольф Дизель предложил идею воспламенения горючей смеси под давлением, что существенно повышало мощностные характеристики ДВС и показатели КПД агрегатов подобного вида, которые до этого оставляли желать много лучшего. С тех пор развитие двигателей внутреннего сгорания шло в основном по пути улучшения, модернизации и внедрения разнообразных улучшений.

Основные виды и типы ДВС

Тем не менее более чем 100-летняя история агрегатов данного вида позволила разработать несколько основных видов силовых установок с внутренним сгоранием топлива. Они отличаются между собой не только составом используемой рабочей смеси, но и конструктивными особенностями.

Бензиновые двигатели

Как явствует из названия, агрегаты данной группы используют в качестве топлива различные виды бензина.

характеристики двс В свою очередь, такие силовые установки принято подразделять на две большие группы:
  • Карбюраторные. В таких устройствах топливная смесь перед поступлением в цилиндры обогащается воздушными массами в специальном устройстве (карбюраторе). После чего происходит ее воспламенение при помощи электрической искры. Среди наиболее ярких представителей данного типа можно назвать модели ВАЗ, ДВС которых очень долгое время был исключительно карбюраторного типа.
  • Инжекторные. Это более сложная система, в которой впрыск топлива в цилиндры осуществляется посредством специального коллектора и форсунок. Он может происходить как механическим способом, так и посредством специального электронного устройства. Наиболее продуктивными считаются системы прямого непосредственного впрыска «Коммон Рейл». Устанавливаются почти на все современные автомобили.

Инжекторные бензиновые двигатели принято считать более экономичными и обеспечивающими более высокий КПД. Однако стоимость таких агрегатов намного выше, а обслуживание и эксплуатация – заметно сложнее.

Дизельные двигатели

На заре существования агрегатов подобного вида очень часто можно было слышать шутку о ДВС, что это такое устройство, которое ест бензин, как лошадь, а движется намного медленнее. С изобретением дизельного двигателя эта шутка частично потеряла свою актуальность. Главным образом потому, что дизель способен работать на топливе гораздо более низкого качества. А значит, и на гораздо более дешевом, нежели бензин.

Главным принципиальным отличием дизельного двигателя внутреннего сгорания является отсутствие принудительного воспламенения топливной смеси. Солярка впрыскивается в цилиндры специальными форсунками, а отдельные капли топлива воспламеняются из-за силы давления поршня. Наряду с преимуществами дизельный двигатель обладает и целым рядом недостатков. Среди них можно выделить следующие:

  • гораздо меньшая мощность по сравнению с бензиновыми силовыми установками;
  • большими габаритами и весовыми характеристиками;
  • сложностями с запуском при экстремальных погодных и климатических условиях;
  • недостаточной тяговитостью и склонностью к неоправданным потерям мощности, особенно на сравнительно высоких оборотах.

Кроме того, ремонт ДВС дизельного типа, как правило, гораздо более сложен и затратен, нежели регулировка или восстановление работоспособности бензинового агрегата.

Газовые двигатели

Несмотря на дешевизну природного газа, используемого в качестве топлива, устройство ДВС, работающих на газе, несоизмеримо сложнее, что ведет к существенному удорожанию агрегата в целом, его монтажа и эксплуатации в частности.

ваз двс На силовых установках подобного типа сжиженный или природный газ поступает в цилиндры через систему специальных редукторов, коллекторов и форсунок. Воспламенение топливной смеси происходит так же, как и в карбюраторных бензиновых установках, – при помощи электрической искры, исходящей от свечи зажигания.

Комбинированные типы двигателей внутреннего сгорания

Мало кто знает о комбинированных системах ДВС. Что это такое и где применяется?

блок двс Речь идет, конечно же, не о современных гибридных автомобилях, способных работать как на горючем, так и от электрического мотора. Комбинированными двигателями внутреннего сгорания принято называть такие агрегаты, которые объединяют в себе элементы различных принципов топливных систем. Наиболее ярким представителем семейства таких двигателей являются газодизельные установки. В них топливная смесь поступает в блок ДВС практически так же, как и в газовых агрегатах. Но поджиг горючего производится не при помощи электроразряда от свечи, а запальной порцией солярки, как это происходит в обычном дизельном моторе.

Обслуживание и ремонт двигателей внутреннего сгорания

Несмотря на достаточно широкое разнообразие модификаций, все двигатели внутреннего сгорания имеют аналогичные принципиальные конструкции и схемы. Тем не менее, для того чтобы качественно осуществлять обслуживание и ремонт ДВС, необходимо досконально знать его устройство, понимать принципы работы и уметь определять неполадки. Для этого, безусловно, необходимо тщательно изучить конструкцию двигателей внутреннего сгорания различных типов, уяснить для себя назначение тех или иных деталей, узлов, механизмов и систем. Дело это непростое, но очень увлекательное! А главное, нужное.

схема двс Специально для пытливых умов, которые желают самостоятельно постичь все таинства и секреты практически любого транспортного средства, примерная принципиальная схема ДВС представлена на фото выше.

Итак, мы выяснили, что собой представляет данный силовой агрегат.

Аксиальные двигатели внутреннего сгорания / Habr


Аксиальный ДВС Duke Engine

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.


Классический ДВС

Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров — что, естественно, также увеличивает результирующий объём двигателя.

С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС. Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.

У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».

Не остались в стороне и советские инженеры. В 1916-м году появился двигатель конструкции А. А. Микулина и Б. С. Стечкина, а в 1924 г — двигатель Старостина. Об этих двигателях знают, пожалуй, только любители истории авиации. Известно, что детальные испытания, проведенные в 1924 г, выявили повышенные потери на трение и большие нагрузки на отдельные элементы таких двигателей.


Двигатель Старостина из музея авиации в Монино

Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём — начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках.

Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором — среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним — каждый из концов поршня должен был работать в своём цилиндре.


Чертёж из тетради Делореана

По каким-то причинам рождение двигателя не состоялось — возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с. Пытливый читатель может изучить сканы чертежей и заметок Делореана на этой странице.


Экзотический вариант аксиального двигателя — «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения — в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах — благодаря тому, как хорошо они вписываются в цилиндр.



Вариант под названием «Цилиндрический энергетический модуль» с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности

Главная отличительная черта аксиального ДВС — компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и — ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.

Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов — движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.

Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.

Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие — к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя — в зависимости от ваших целей).

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому, это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.


Демострация малых вибраций двигателя Duke

Двигатель внутреннего сгорания — история создания / Техника / stD

Это вступительная часть цикла статей посвящённых Двигателю Внутреннего Сгорания, являющаяся кратким экскурсом в историю, повествующая об эволюции ДВС. Так же, в статье будут затронуты первые автомобили.

В следующих частях будут подробно описаны различные ДВС:

• Шатунно-поршневые
• Роторные
• Турбореактивные
• Реактивные

Паровая машина, послужившая прародителем ДВС, по своей сути являлась двигателем внешнего сгорания, так как горение топлива происходило в отдельно стоявшем котле, а рабочее тело (пар) подавалось в цилиндр по трубам.
Такая конструкция приводила к большим потерям тепла (энергии) и черезмерному расходу топлива.

Для преодоления этих недостатков необходимо было сделать так, чтоб топливо сгорало непосредственно в самом цилиндре. Реализацией этой идеи и стал Двигатель Внутреннего Сгорания.

ДВС различного действияДвухтактный ДВС — на первом такте происходит впуск и сжатие горючей смеси, а на втором такте расширение и выпуск отработанных газов.

Четырёхтактный ДВС — на первом такте происходит впуск, на втором сжатие, на третьем расширение, на четвёртом выпуск.

Звёздообразный, или радиальный ДВС — имеет небольшую длину и позволяет компактно размещать большое количество цилиндров.

Ротативный ДВС — двигатель вращается вокруг неподвижного коленчатого вала.

Роторный ДВС — за один оборот двигатель выполняет один рабочий цикл.


Слово «Детонация» здесь неуместно, правильно будет — расширение. Детонация же, это разрушительное следствие неправильной работы двигателя.

Турбореактивный ДВС — в основном используются на самолётах.

Реактивный ДВС — используется в ракетах.



К первым попыткам создать ДВС (если не брать в расчёт артиллерийские орудия) можно отнести проект порохового двигателя в виде цилиндра с поршнем, предложенный Христианом Гюйгенсом и Дени Папеном, в 17 веке.

Идея заключалась в том, что насыпанный внутрь цилиндра и подожжённый порох, выталкивал поршень вверх.
Конечно, назвать эту конструкцию двигателем можно лишь с большой натяжкой, однако нужно помнить что на дворе был 1690 год.

           

Чуть позже, Папен, вместо пороха залил в цилиндр воду, которая доводилась до кипения костром, разожженным под цилиндром, а образующийся пар толкал поршень.
Тогда эта идея, отчасти, поспособствовала созданию паровой машины, а сейчас поршень и цилиндр используется в современных шатунно-поршневых ДВС.

Существовали и другие изобретатели 17-18 веков пытавшиеся создавать ДВС, но им не удалось добиться сколько-нибудь значимых результатов, да и информации о них крайне мало.


    В 1801 году, Филипп Лебон — французский инженер и изобретатель газового освещения, зарегистрировал патент на двигатель внутреннего сгорания работающий на смеси газа и воздуха.

В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый «светильный газ» из газогенератора. Газовоздушная смесь поступала в рабочий цилиндр, где и воспламенялась.

В связи со смертью Лебона, в 1804 году, двигатель так и остался проектом на бумаге.

К сожалению, не нашёл никаких картинок.


В 1806 году, французский изобретатель Джозеф Ньепс вместе со своим братом Клодом, сконструировали прототип двигателя внутреннего сгорания и назвали его «Pyreolophore».

Двигатель был установлен на лодку, которая смогла подняться вверх по течению реки Сона. Спустя год, после испытаний, братья получили патент на своё изобретение, подписаный Наполеоном Бонопартом, сроком на 10 лет.

Правильнее всего, было бы назвать этот двигатель реактивным, так как его работа заключалась в выталкивании воды из трубы находящейся под днищем лодки…

Двигатель состоял из камеры поджигания и камеры сгорания, сильфона для нагнетания воздуха, топливо-раздаточного устройства и устройства зажигания. Топливом для двигателя служила угольная пыль.

Сильфон впрыскивал струю воздуха смешанную с угольной пылью в камеру поджигания где тлеющий фитиль зажигал смесь. После этого, частично подожжённая смесь (угольная пыль горит относительно медленно) попадала в камеру сгорания где полностью прогорала и происходило расширение.
Далее давление газов выталкивало воду из выхлопной трубы, что заставляло лодку двигаться, после этого цикл повторялся.
Двигатель работал в импульсном режиме с частотой ~12 и/минуту.

Спустя некоторое время, братья усовершенствовали топливо добавив в него смолу, а позже заменили его нефтью и сконструировали простую систему впрыска.
В течении следующих десяти лет проект не получил никакого развития. Клод уехал в Англию с целью продвижения идеи двигателя, но растратил все деньги и ничего не добился, а Джозеф занялся фотографией и стал автором первой в мире фотографии «Вид из окна».

Принято считать, что братья Ньепс были авторами первой в мире системы впрыска.

Во Франции, в доме-музее Ньепсов, выставлена реплика «Pyreolophore».

Справа стоит самокат (дрезина — лат. быстроя нога), который Джозеф Ньепс построил в 1817 году.


В том же 1807 году, швейцарский изобретатель Франсуа Исаак де Рива сконструировал двигатель внутреннего сгорания с электрическим зажиганием. Топливом для двигателя служил водород, а идею электрического поджига, де Рива позаимствовал у Алессандро Вольта.

Чуть позже, де Рива водрузил свой двигатель на четырёхколёсную повозку, которая, по мнению историков, стала первым автомобилем с ДВС.

Про Алессандро ВольтаВольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока («Вольтов столб»).

В 1776 г. Вольта изобрел газовый пистолет — «пистолет Вольты», в котором газ взрывался от электрической искры.

В 1800 году построил химическую батарею, что позволило получать электричество с помощью химических реакций.

Именем Вольты названа единица измерения электрического напряжения — Вольт.


A — цилиндр, B — «свеча» зажигания, C — поршень, D — «воздушный» шар с водородом, E — храповик, F — клапан сброса отработанных газов, G — рукоятка для управления клапаном.

Водород хранился в «воздушном» шаре соединённым трубой с цилиндром. Подача топлива и воздуха, а так же поджиг смеси и выброс отработанных газов осуществлялись вручную, с помощью рычагов.

Принцип работы:

• Через клапан сброса отработанных газов в камеру сгорания поступал воздух.
• Клапан закрывался.
• Открывался кран подачи водорода из шара.
• Кран закрывался.
• Нажатием на кнопку подавался электрический разряд на «свечу».
• Смесь вспыхивала и поднимала поршень вверх.
• Открывался клапан сброса отработанных газов.
• Поршень падал под собственным весом (он был тяжёлый) и тянул верёвку, которая через блок поворачивала колёса.

После этого цикл повторялся.

В 1813 году де Рива построил ещё один автомобиль. Это была повозка длиной около шести метров, с колесами двухметрового диаметра и весившея почти тонну.
Машина смогла проехать 26 метров с грузом камней (около 700 фунтов) и четырьмя мужчинами, со скоростью 3 км/ч.
С каждым циклом, машина перемещалась на 4-6 метров.

Мало кто из его современников серьезно относился к этому изобретению, а Французская Академия Наук утверждала, что двигатель внутреннего сгорания никогда не будет конкурировать по производительности с паровой машиной.

В Парижском «Музее искусств и ремёсел» экспонируется модель автомобиля Франсуа де Рива.


В 1825 году, английский инженер и изобретатель Сэмюэль Браун, создал двигатель работающий на газе (водород).

Принцип работы двигателя основывался на сжигании воздуха в цилиндре, что приводило к созданию вакуума и втягивании поршня, а для более эффективного охлаждения, цилиндр окружала водяная рубашка.

Двигатель использовался для перекачки воды и для приведения в движение речных судов. Браун создал компанию по производству двигателей для лодок и барж, некоторые из которых достигали скорости 14 км/ч. Тем не менее, предприятие оказалось неудачным из-за перебоев с поставками топлива и высокой стоимости.


В 1826 году, Сэмюэль Мори, пионер американского «паростроения», запатентовал двигатель внутреннего сгорания работающий на скипидаре и спирте.

Двигатель имел много общего с современными, он состоял из двух цилиндров с водяной рубашкой, карбюратора и выпускных клапанов.

Информации очень мало, поэтому пишу что есть:

Мори продемонстрировал свой ​​двигатель в Нью-Йорке и Филадельфии, о чём есть свидетельства очевидцев. Двигатели были установлены на лодку и на телегу. Во время демонстрации «автомобиля», Мори не справился с управлением и съехал в канаву. Это была первая в США поездка на автомобиле. Несмотря на успех, Мори не смог найти покупателя.

Популяризатором идеи Мори был Чарльз Дьюри, изобретатель, сконструировавший первый бензиновый двигатель в Америке. Он профинансировал создание двух рабочих реплик двигателя Мори, одна из которых находится в распоряжении Смитсоновского института, а другая принадлежит Дин Камен.


В 1833 году, американский изобретатель Лемюэль Веллман Райт, зарегистрировал патент на двухтактный газовый двигатель внутреннего сгорания с водяным охлаждением.

Дугалд Клерк (см. ниже) в своей книге «Gas and Oil Engines» написал о двигателе Райта следующее:

«Чертеж двигателя весьма функционален, а детали тщательно проработаны. Взрыв смеси действует непосредственно на поршень, который через шатун вращает кривошипный вал. По внешнему виду двигатель напоминает паровую машину высокого давления, в которой газ и воздух подаются с помощью насосов из отдельных резервуаров. Смесь, находящаяся в сферических ёмкостях поджигалась во время подъёма поршня в ВМТ (верхняя мёртвая точка) и толкала его вниз/вверх. В конце такта открывался клапан и выбрасывал выхлопные газы в атмосферу.»

Неизвестно, был ли когда-либо этот двигатель построен, однако есть его чертёж:


В 1838 году, английский инженер Уильям Барнетт получил патент на три двигателя внутреннего сгорания.

Первый двигатель — двухтактный одностороннего действия (топливо горело только с одной стороны поршня) с отдельными насосами для газа и воздуха. Поджиг смеси происходил в отдельном цилиндре, а потом горящая смесь перетекала в рабочий цилиндр. Впуск и выпуск осуществлялся через механические клапана.

Второй двигатель повторял первый, но был двойного действия, то есть горение происходило попеременно с обоих сторон поршня.

Третий двигатель, так же был двойного действия, но имел впускные и выпускные окна в стенках цилиндра открывающееся в момент достижения поршнем крайней точки (как в современных двухтактниках). Это позволяло автоматически выпускать выхлопные газы и впускать новый заряд смеси.

Отличительной особенностью двигателя Барнетта было то, что свежая смесь сжималась поршнем перед воспламенением.

Чертёж одного из двигателей Барнетта:


В 1853-57 годах, итальянские изобретатели Еугенио Барзанти и Феличе Маттеуччи разработали и запатентовали двухцилиндровый двигатель внутреннего сгорания мощность 5 л/с.
Патент был выдан Лондонским бюро так как итальянское законодательство не могло гарантировать достаточную защиту.

Строительство прототипа было поручено компании «Bauer & Co. of Milan» (Helvetica), и завершено в начале 1863 года. Успех двигателя, который был гораздо более эффективным чем паровая машина, оказался настолько велик, что компания стала получать заказы со всего света.

Ранний, одноцилиндровый двигатель Барзанти-Маттеуччи:

Модель двухцилиндрового двигателя Барзанти-Маттеуччи:

Маттеуччи и Барзанти заключили соглашение на производство двигателя с одной из бельгийских компаний. Барзанти отбыл в Бельгию для наблюдения за работой лично и внезапно умер от тифа. Со смертью Барзанти все работы по двигателю были прекращены, а Маттеуччи вернулся к своей прежней работе в качестве инженера-гидравлика.

В 1877 году, Маттеуччи утверждал, что он с Барзанти были главными создателями двигателя внутреннего сгорания, а двигатель построенный Августом Отто очень походил на двигатель Барзанти-Маттеуччи.

Документы касающиеся патентов Барзанти и Маттеуччи хранятся в архиве библиотеки Museo Galileo во Флоренции.

Национальный музей науки и техники Леонардо да Винчи в Милане.


В 1860 году, бельгийский инженер Жан Жозеф Этьен Ленуар построил двигатель внутреннего сгорания с водяным охлаждением, представлявший собой переделанную одноцилиндровую горизонтальную паровую машину двойного действия, работавший на смеси воздуха и светильного газа с электрическим искровым зажиганием. Мощность двигателя составляла 12 л/с.

Двигатели Ленуара использовались как стационарные, судовые, на локомотивах и на дорожных экипажах.

Современная модель:

Принцип работы прост: смесь, с помощью одного золотникового устройства, попеременно подавалась в полости цилиндра и поджигалась от «свечи», а через другой золотник выбрасывались отработанные газы.

Золотник

В зависимости от положения золотника, окна (4) и (5) сообщаются с замкнутым пространством (6) окружающим золотник и заполненным паром, или с полостью 7, соединённой с атмосферой или конденсатором.

Это был первый коммерчески успешный двигатель внутреннего сгорания. К 1865 году более 400 единиц использовались во Франции и около 1000 в Великобритании.


Двигатель Ленуара. «Музей искусств и ремёсел». Париж.

В 1862 году Ленуар построил первый автомобиль с двигателем внутреннего сгорания, адаптировав свой ​​двигатель для работы на жидком топливе.

Даже капот есть

После появления четырёхтактного двигателя конструкции Николауса Отто, двигатель Ленуара быстро потерял свои позиции на рынке.


В 1861 году, французский инженер Альфонс Эжен Бо де Роша получил патент на четырёхтактный двигатель внутреннего сгорания. Проект был реализован только на бумаге.

Картинок я не нашёл.


В 1863 году, Николаус Август Отто и Карл Ойген Ланген сконструировали атмосферный двигатель внутреннего сгорания и основали завод по его производству «N. A. Otto & Cie».

В 1867 году на «Парижской Всемирной Выставке» их двигатель был удостоен золотой медали.

После банкротства в 1872 году, Ланген и Отто основали новую компанию, которая сегодня известна как «Deutz AG». На должность топ-менеджера был принят Готлиб Даймлер, который в свою очередь, взял на должность главного конструктора своего друга Вильгельма Майбаха.

Самым главным изобретением Николауса Отто был двигатель с четырёхтактным циклом — циклом Отто. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Четырёхтактный цикл был самым большим техническим достижением Отто, но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша (см. выше). Группа французских промышленников оспорила патент Отто в суде, суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Не смотря на то, что конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним опытом модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область их применения.
Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два — в Москве и Петербурге.


В 1865 году, французкий изобретатель Пьер Хьюго получил патент на машину представлявшую собой вертикальный одноцилиндровый двигатель двойного действия, в котором для подачи смеси использовались два резиновых насоса, приводимых в действие от коленчатого вала.

Позже Хьюго сконструировал горизонтальный двигатель схожий с двигателем Ленуара.


Science Museum, London.


В 1870 году, австро-венгерский изобретатель Сэмюэль Маркус Зигфрид сконструировал двигатель внутреннего сгорания работающий на жидком топливе и установил его на четырёхколёсную тележку.

Сегодня этот автомобиль хорошо известен как «The first Marcus Car».

В 1887 году, в сотрудничестве с компанией «Bromovsky & Schulz», Маркус построил второй автомобиль — «Second Marcus Car».

Technisches Museum Wien


В 1872 году, американский изобретатель Джордж Брайтон запатентовал двухцилиндровый двигатель внутреннего сгорания постоянного давления, работающий на керосине.
Брайтон назвал свой двигатель «Ready Motor».

Первый цилиндр выполнял функцию компрессора, нагнетавшего воздух в камеру сгорания, в которую непрерывно поступал и керосин. В камере сгорания смесь поджигалась и через золотниковый механизм поступало во второй — рабочий цилиндр. Существенным отличием от других двигателей, было то, что топливовоздушная смесь сгорала постепенно и при постоянном давлении.

Интересующиеся термодинамическими аспектами двигателя, могут почитать про «Цикл Брайтона».


В 1878 году, шотландский инженер Сэр (в 1917 году посвящён в рыцари)Дугалд Клерк разработал первый двухтактный двигатель с воспламенением сжатой смеси. Он запатентовал его в Англии в 1881 году.

Двигатель работал любопытным образом: в правый цилиндр подавался воздух и топливо, там оно смешивалось и эта смесь выталкивалась в левый цилиндр, где и происходило поджигание смеси от свечи. Происходило расширение, оба поршня опускались, из левого цилиндра (через левый патрубок) выбрасывались выхлопные газы, а в правый цилиндр всасывалась новая порция воздуха и топлива. Следуя по инерции поршни поднимались и цикл повторялся.


В 1879 году, Карл Бенц, построил вполне надежный бензиновый двухтактный двигатель и получил на него патент.

Однако настоящий гений Бенца проявился в том, что в последующих проектах он сумел совместить различные устройства (дроссель, зажигание с помощью искры с батареи, свеча зажигания, карбюратор, сцепление, КПП и радиатор) на своих изделиях, что в свою очередь стало стандартом для всего машиностроения.

В 1883 году, Бенц основал компанию «Benz & Cie» по производству газовых двигателей и в 1886 году запатентовал четырехтактный двигатель, который он использован на своих автомобилях.

Благодаря успеху компании «Benz & Cie», Бенц смог заняться проектированием безлошадных экипажей. Совместив опыт изготовления двигателей и давнишнее хобби — конструирование велосипедов, к 1886-му году он построил свой первый автомобиль и назвал его «Benz Patent Motorwagen».


Конструкция сильно напоминает трехколёсный велосипед.

Одноцилиндровый четырёхтактный двигатель внутреннего сгорания рабочим объёмом 954 см3., установленный на «Benz Patent Motorwagen«.

Двигатель был оснащён большим маховиком (использовался не только для равномерного вращения, но и для запуска), бензобаком на 4,5 л., карбюратором испарительного типа и золотниковым клапаном, через который топливо поступало в камеру сгорания. Воспламенение производилось свечой зажигания собственной конструкции Бенца, напряжение на которую подавалось от катушки Румкорфа.

Охлаждение было водяным, но не замкнутого цикла, а испарительным. Пар уходил в атмосферу, так что заправлять автомобиль приходилось не только бензином, но и водой.

Двигатель развивал мощность 0,9 л.с. при 400 об/мин и разгонял автомобиль до 16 км/ч.

Карл Бенц за «рулём» своего авто.

Чуть позже, в 1896 году, Карл Бенц изобрел оппозитный двигатель (или плоский двигатель), в котором поршни достигают верхней мертвой точки в одно и то же время, тем самым уравновешивая друг друга.


Музей «Mercedes-Benz» в Штутгарте.


В 1882 году, английский инженер Джеймс Аткинсон придумал цикл Аткинсона и двигатель Аткинсона.

Двигатель Аткинсона — это по существу двигатель, работающий по четырёхтактному циклу Отто, но с измененным кривошипно-шатунным механизмом. Отличие заключалось в том, что в двигателе Аткинсона все четыре такта происходили за один оборот коленчатого вала.

Использование цикла Аткинсона в двигателе позволяло уменьшить потребление топлива и снизить уровень шума при работе за счёт меньшего давления при выпуске. Кроме того, в этом двигателе не требовалось редуктора для привода газораспределительного механизма, так как открытие клапанов приводил в движение коленчатый вал.

Не смотря на ряд преимуществ (включая обход патентов Отто) двигатель не получил широкого распространения из-за сложности изготовления и некоторых других недостатков.
Цикл Аткинсона позволяет получить лучшие экологические показатели и экономичность, но требует высоких оборотов. На малых оборотах выдаёт сравнительно малый момент и может заглохнуть.

Сейчас двигатель Аткинсона применяется на гибридных автомобилях «Toyota Prius» и «Lexus HS 250h».


В 1884 году, британский инженер Эдвард Батлер, на лондонской выставке велосипедов «Stanley Cycle Show» продемонстрировал чертежи трёхколёсного автомобиля с бензиновым двигателем внутреннего сгорания, а в 1885 году построил его и показал на той же выставке, назвав «Velocycle». Так же, Батлер был первым кто использовал слово бензин.

Патент на «Velocycle» был выдан в 1887 году.

На «Velocycle» был установлен одноцилиндровый, четырёхтактный бензиновый ДВС оснащенный катушкой зажигания, карбюратором, дросселем и жидкостным охлаждением. Двигатель развивал мощность около 5 л.с. при объёме 600 см3, и разгонял автомобиль до 16 км/ч.

На протяжении многих лет Батлер улучшал характеристики своего транспортного средства, но был лишен возможности его тестировать из-за «Закона Красного Флага» (издан в 1865 году), согласно которому транспортные средства не должны были превышать скорость свыше 3 км/ч. Кроме того, в автомобиле должны были присутствовать три человека, один из которых должен был идти перед автомобилем с красным флагом (такие вот меры безопасности).

В журнале «Английский Механик» от 1890 года, Батлер написал — «Власти запрещают использование автомобиля на дорогах, в следствии чего я отказываюсь от дальнейшего развития.»

Из-за отсутствия общественного интереса к автомобилю, Батлер разобрал его на металлолом, и продал патентные права Гарри Дж. Лоусону (производителю велосипедов), который продолжил производство двигателя для использования на катерах.

Сам же Батлер перешёл к созданию стационарных и судовых двигателей.

В 1900 году, в журнале «Autocar», Батлер опубликовал статью следующего содержания:

«Теперь, когда внимание общественности приковано к немецким изобретателям — Бенцу и Даймлеру, я надеюсь, что вы найдёте место в вашем журнале для иллюстрации небольшого бензинового автомобиля, который я считаю, был сделан абсолютно первым в этой стране.
Я не могу утверждать, что сделал очень много, однако я проводил свои эксперименты в то время, когда прогресс тормозился из-за предрассудков людей и отсутствия интереса. Тем не менее, часть моих идей до сих пор используется во многих типах двигателей.»


В 1889 году, на Всемирной выставке в Париже, французский инженер Феликс Милле представил и запатентовал 5-цилиндровый ротационный (не роторный) двигатель, встроенный в колесо велосипеда.


Мотоцикл Феликса Милле, 1897 год.

Ротационный двигатель основан на стандартном цикле Отто, но вместо вращения коленчатого вала вращается весь двигатель выступая в роли маховика, а коленчатый вал стоит на месте.

Подобные двигатели широко использовались в авиации во времена Первой мировой войны.

Достоинства и недостатки этих двигателей будут описаны в отдельной статье, однако интересующиеся могут почитать википедию.


В 1891 году, Герберт Эйкройд Стюарт в сотрудничестве с компанией «Richard Hornsby and Sons» построил двигатель «Hornsby-Akroyd», в котором топливо (керосин) под давлением впрыскивалось в дополнительную камеру (из-за формы её называли «горячий шарик»), установленную на головке блока цилиндров и соединённую с камерой сгорания узким проходом. Топливо воспламенялось от горячих стенок дополнительной камеры и устремлялось в камеру сгорания.


1. Дополнительная камера (горячий шарик).
2. Цилиндр.
3. Поршень.
4. Картер.

Для запуска двигателя использовалась паяльная лампа, которой нагревали дополнительную камеру (после запуска она подогревалась выхлопными газами). Из-за этого двигатель «Hornsby-Akroyd», который был предшественником дизельного двигателя сконструированного Рудольфом Дизелем, часто называли «полу-дизелем». Однако спустя год Эйкройд усовершенствовал свой двигатель добавив к нему «водяную рубашку» (патент от 1892 г.), что позволило повысить температуру в камере сгорания за счёт увеличения степени сжатия, и теперь уже не было необходимости в дополнительном источнике нагрева.


В 1893 году, Рудольф Дизель получил патенты на тепловой двигатель и модифицированный «цикл Карно» под названием «Метод и аппарат для преобразования высокой температуры в работу».

В 1897 году, на «Аугсбургском машиностроительном заводе» (с 1904 года MAN), при финансовом участии компаний Фридриха Круппа и братьев Зульцер, был создан первый функционирующий дизель Рудольфа Дизеля
Мощность двигателя составляла 20 лошадиных сил при 172 оборотах в минуту, КПД 26,2 % при весе пять тонн.
Это намного превосходило существующие двигатели Отто с КПД 20 % и судовые паровые турбины с КПД 12 %, что вызвало живейший интерес промышленности в разных странах.

Двигатель Дизеля был четырёхтактным. Изобретатель установил, что КПД двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но сильно сжимать горючую смесь нельзя, потому что тогда повышаются давление и температура и она самовоспламеняется раньше времени. Поэтому Дизель решил сжимать не горючую смесь, а чистый воздух и концу сжатия впрыскивать топливо в цилиндр под сильным давлением.
Так как температура сжатого воздуха достигала 600—650 °C, топливо самовоспламенялось, и газы, расширяясь, двигали поршень. Таким образом Дизелю удалось значительно повысить КПД двигателя, избавиться от системы зажигания, а вместо карбюратора использовать топливный насос высокого давления (ТНВД).

Позднее, в 1900 году, на «Всемирной выставке», Рудольф Дизель продемонстрировал двигатель работающий на арахисовом масле (биодизель).


В 1903 году, норвежский изобретатель Эгидий Эллинг построил первую газовую турбину, развивавшую мощность в 11 лошадиных сил. Патент на это изобретение он получил ещё в 1884 году.

К 1904-му году мощность турбины была увеличена до 44 лошадиных сил, а к 1932-му году турбина уже развивала мощность около 75 лошадиных сил.

В 1933 году Эллинг пророчески писал: «Когда я начал работать над газовой турбиной в 1882 году, я был твёрдо уверен в том, что моё изобретение будет востребовано в авиастроении.»

К сожалению, Эллинг умер в 1949 году, так и не дожив до наступления эры турбореактивной авиации.


Единственное фото, которое удалось найти.

Возможно кто-то найдёт что-либо об этом человеке в «Норвежском музее техники».


В 1903 году, Константин Эдуардович Циолковский, в журнале «Научное обозрение» опубликовал статью «Исследование мировых пространств реактивными приборами», где впервые доказал, что аппаратом, способным совершить космический полёт, является ракета. В статье был предложен и первый проект ракеты дальнего действия. Корпус её представлял собой продолговатую металлическую камеру, снабжённую жидкостным реактивным двигателем (который тоже является двигателем внутреннего сгорания). В качестве горючего и окислителя он предлагал использовать соответственно жидкие водород и кислород.


Наверное на этой ракетно-космической ноте и стоит закончить историческую часть, так как наступил 20-ый век и Двигатели Внутреннего Сгорания стали производиться повсеместно.

Философское послесловие…

К.Э. Циолковский полагал, что в обозримом будущем люди научатся жить если не вечно, то по крайней мере очень долго. В связи с этим на Земле будет мало места (ресурсов) и потребуются корабли для переселения на другие планеты. К сожалению, что-то в этом мире пошло не так, и с помощью первых ракет люди решили просто уничтожать себе подобных…

Спасибо всем кто прочитал.

Все права защищены © 2016 istarik.ru
Любое использование материалов допускается только с указанием активной ссылки на источник.

Необычные двигатели внутреннего сгорания

Другой цикл

В начале ХХ века тихие бесклапанные моторы устанавливались на многие престижные модели. К примеру, под капотом этого шикарного “Daimler Double Six 40/50” стоял именно такой двигатель.

“Mazda Millenia/Xedos 9” – один из немногих массовых автомобилей, который оснащался двигателем Аткинсона.

ОБЫЧНЫЙ 4-тактный двигатель работает по циклу, изобретенному еще в 1876 году немецким инженером Николаусом Отто: в цилиндре при определенных условиях попеременно происходят определенные процессы – впуск, сжатие, рабочий ход и выпуск. В 1886 году эту схему попытался усовершенствовать британский инженер Джеймс Аткинсон.

На первый взгляд его двигатель мало отличался от прародителя – тот же порядок тактов, схожий принцип работы… Однако на самом деле различий было немало. К примеру, за счет специального коленвала со смещенными точками крепления Аткинсону удалось снизить потери на трение в цилиндре и поднять степень сжатия мотора.

Также в подобных двигателях другие фазы газораспределения. Если на обычном ДВС впускной клапан закрывается практически сразу по прохождении поршнем нижней мертвой точки, то в цикле Аткинсона такт впуска значительно длиннее – клапан закрывается лишь на полпути поршня к верхней мертвой точке, когда в цикле Отто уже вовсю идет такт сжатия.

Что это дало? Самое главное – лучшее наполнение цилиндров благодаря снижению так называемых насосных потерь. Не вдаваясь в технические подробности, лишь скажем, что в результате двигатель Аткинсона примерно на 10% эффективнее (и экономичнее) обычного ДВС.

Однако на серийных автомобилях моторы, действующие по схеме Аткинсона, до последнего времени не встречались. Дело в том, что такой двигатель может правильно работать и выдавать хорошие показатели лишь на высоких оборотах. А на холостых он, наоборот, норовит заглохнуть. Чтобы решить проблему наполнения цилиндров на малых оборотах, на подобные моторы приходится устанавливать механические нагнетатели (такую схему иногда не совсем верно еще называют “двигатель Миллера”), что еще больше усложняет и удорожает конструкцию. К тому же потери на привод компрессора практически сводят на нет преимущества необычного мотора.

Поэтому серийные массовые автомобили с двигателями Аткинсона можно пересчитать по пальцам одной руки. Характерный пример – “Mazda Xedos 9/Millenia”, которая выпускалась с 1993-го по 2002 год и оснащалась 210-сильным 2,3-литровым V6.

Зато в чистом виде моторы Аткинсона оказались очень подходящими для гибридных моделей вроде знаменитого “Toyota Prius” или новейшего “Mercedes-Benz” S-класса, который вскоре пойдет в серийное производство. Ведь на малых скоростях такие машины передвигаются в основном на электротяге, а бензиновый двигатель подключается только при разгоне или при больших нагрузках. Эта схема, с одной стороны, позволяет нивелировать врожденные недостатки мотора Аткинсона, а c другой – максимально использовать его положительные качества.

Бесшумные золотники

Благодаря высокой экономичности моторы, работающие по циклу Аткинсона, сегодня все чаще используются на гибридных автомобилях вроде “Toyota Prius”.

МЕХАНИЗМ газораспределения – один из самых сложных и шумных в традиционном двигателе. Поэтому многие изобретатели пытались полностью избавиться от него или хотя бы существенно модернизировать.

Пожалуй, самой успешной альтернативной конструкцией стал мотор, созданный американским инженером Чарльзом Найтом в начале ХХ века. Привычных клапанов и их громоздкого привода в этом двигателе не было – их заменили специальные золотники в виде двух гильз, размещенных между цилиндром и поршнем. С помощью оригинального привода золотники перемещались вверх-вниз и в необходимый момент открывали окна в стенке цилиндра, через которые внутрь поступала свежая горючая смесь и удалялись в атмосферу выхлопные газы.

Такой мотор был сложен в изготовлении и достаточно дорог, зато он отличался очень тихой, практически бесшумной по меркам того времени работой. Поэтому многие компании, выпускавшие представительские автомобили, стали устанавливать двигатели Найта на свои модели. Покупатели готовы были переплачивать ради высокого комфорта. В начале прошлого века подобные моторы использовали такие известные фирмы, как “Daimler”, “Mercedes-Benz”, “Panhard-Levassor”..

Однако первоначальный восторг от бесшумной работы двигателей Найта вскоре сменился разочарованием. Конструкция оказалась ненадежной, к тому же отличалась повышенным потреблением бензина и масла из-за высокого трения между золотниками и стенками цилиндра, которое в разы возрастало при увеличении оборотов коленвала. Поэтому позади автомобилей с такими моторами всегда вился характерный сизый дымок.

Эпоха двигателей Найта закончилась в 30-е годы, когда на рынке появились моторы с усовершенствованным клапанным механизмом газораспределения, который почти избавился от чрезмерной шумности. Тем не менее в наши дни то и дело появляются сообщения о различных опытных вариантах бесклапанных двигателей, так что не исключено, что в будущем мы еще увидим такие моторы на серийных машинах.

Переменная степень сжатия

СТЕПЕНЬ сжатия – одна из важнейших характеристик двигателя. Чем больше этот параметр, тем выше максимальная мощность, экономичность и КПД бензинового мотора. Однако бесконечно увеличивать степень сжатия нельзя – в цилиндрах будет происходить детонация, то есть взрывное, неконтролируемое сгорание рабочей смеси, приводящее к повышенному износу деталей и механизмов.

Еще острее эта проблема стоит при создании двигателей с наддувом, которые в последнее время получают все большее распространение. Дело в том, что детали таких моторов работают в более жестких условиях, поэтому они сильнее нагреваются, и риск появления детонации выше. Так что степень сжатия приходится снижать. При этом соответственно падает и эффективность двигателя.

В идеале степень сжатия должна плавно меняться в зависимости от режима работы мотора. Для получения максимальной отдачи ее надо увеличивать, когда нагрузка на двигатель невелика, а затем по мере роста сопротивления движению постепенно уменьшать.

Первые проекты моторов с изменяемой степенью сжатия появились еще во второй половине ХХ века, однако сложность конструкции пока не позволяет широко использовать на массовых моделях. Тем не менее над совершенствованием этой схемы работают многие автопроизводители.

К примеру, SAAB в 2000 году представил опытный рядный 5-цилиндровый мотор SVC (“Saab Variable Compression”), который за счет изменяемой степени сжатия при скромном рабочем объеме 1,6 л выдает приличные 225 л.с. Шведский двигатель по горизонтали разделен на две части, шарнирно соединенные друг с другом с одной стороны. В нижней находятся коленвал, шатуны и поршни, а верхняя объединяет в едином моноблоке цилиндры и их головки. Специальный гидропривод может слегка наклонять моноблок, варьируя степень сжатия от 14 единиц на холостых оборотах до 8 – на высоких, когда в работу включается приводной компрессор. Такая конструкция оказалась эффективной, но очень дорогой, поэтому вскоре после премьеры проект SVC закрыли до лучших времен.

По мнению специалистов, более жизнеспособной выглядит другая схема. Такой двигатель практически неотличим от обычного, за исключением оригинального кривошипно-шатунного механизма. Коленвал здесь связан с поршнем через специальное коромысло. Оно, в свою очередь, закреплено на специальном валу, который может поворачиваться с помощью электро- или гидропривода. При наклоне коромысла меняется положение поршня в цилиндре, а значит, и степень сжатия. Преимущества такой компоновки в относительной простоте – в принципе ее можно создать на основе практически любого мотора.

Таким образом, современные технологии уже позволяют построить двигатель с переменной степенью сжатия. Осталось только решить проблему высокой стоимости таких проектов..

 

 

Не тот гибрид

Возможно, в недалеком будущем мы увидим на автомобилях концерна GM двигатели, сочетающие в себе преимущества как дизельных, так и бензиновых моторов.

НА СОВРЕМЕННЫХ автомобилях в основном применяются два типа двигателей – бензиновые и дизельные. Первые отличаются высокой мощностью, вторые – хорошей тяговитостью и экономичностью.

Сейчас многие автопроизводители работают над созданием мотора, который совместил бы в себе оба эти достоинства. В принципе конструкция обычных бензиновых агрегатов уже стала очень похожей на дизель: непосредственный впрыск топлива позволил поднять степень сжатия до 13-14 единиц (против 17-19 у дизельных вариантов).

На экспериментальных моделях степень сжатия еще выше – 15-16 единиц. Однако для постоянного самовоспламенения смеси этого не всегда достаточно. Поэтому при запуске двигателя, а также при высоких нагрузках топливо поджигается обычной свечой. При равномерном движении она отключается, и мотор переходит на “дизельный” режим работы, потребляя минимум топлива. Контролирует всю систему электроника, которая следит за условиями движения и при их изменении дает соответствующие команды исполнительным механизмам. По словам разработчиков, подобные двигатели весьма экономичны и практически не загрязняют окружающую среду. Однако уже сейчас ясно, что стоимость автомобилей с такими моторами будет достаточно высокой. Найдут ли они свое место на рынке, пока сказать сложно.

Автор
Юрий УРЮКОВ
Издание
Клаксон №24 2008 год
Фото
фото фирм-производителей