Схема питания дизельного двигателя – схемы подачи питания бензиновых и дизельных двигателей автомобиля, а также устройство и принцип работы, что такое обратка

  • 10.12.2020

Содержание

Какие существуют системы подачи топлива в дизельном ДВС

Категория: Полезная информация.

Как мы знаем, в дизельном ДВС топливо воспламеняется не от внешнего источника (искра зажигания в бензиновом моторе), а в результате сильного сжатия и нагрева. При этом топливно-воздушная смесь подается и распыляется в цилиндрах под высоким давлением. С этой целью в дизелях используются разные типы систем подачи топлива.

common rail5

Топливная система дизельных ДВС: основные принципы

Сначала воздух подается в цилиндр, затем сжимается, нагреваясь в процессе до экстремальных температур, и лишь к концу такта сжатия в цилиндр подается дизельное топливо. Подается таким образом: впрыскивается в камеру сгонария под высоким давлением (от 100 до 2000 атмосфер) и распыляется. Поэтому, вне зависимости от типа топливной системы дизеля, в ней всегда есть два компонента:

  • тот, что создает высокое давление – топливный насос высокого давления (ТНВД)
  • и тот, что впрыскивает и разбрызгивает горючее по камере – форсунка.

В зависимости от типа топливной системы дизельного ДВС, отличается конструкция ТНВД и устройство форсунок. Также отличаются схемы управления этими элементами и место их расположения.

Основные типы топливных систем дизеля

Наибольшее распространение получили 4 типа топливных систем дизельных моторов:

  • рядный ТНВД
  • ТНВД распределительного типа
  • насос-форсунки
  • система Common Rail

Рядный ТНВД – проверенное десятилетиями решение, которое активно применяется на грузовой и специальной технике с дизельными моторами. В основе этой системы подачи топлива находится работа плунжерной пары. Цилиндр движется в гильзе, создавая давление и сжимая топливо до необходимых показателей. Как только они достигнуты, открывается специальный клапан, подающий топливо на форсунку, которая впрыскивает его в цилиндр. Плунжер в это время движется вниз, открывает канал для впуска горючего в пространство гильзы с помощью топливоподкачивающего насоса, и цикл повторяется.

ryadnii tnvd

Работа самого плунжера становится возможна благодаря кулачковому валу, который приводится от мотора. Кулачки «толкают» клапана, а мкфта опережения впрыска, соединяющая ТНВД и двигатель, корректирует работу топливной системы.

Неоспоримые достоинства системы подачи топлива с рядными ТНВД – их ремонтопригодность и доступность обслуживания.

ТНВД распределительного типа конструктивно напоминает рядный топливный насос. Отличие заключается в количестве плунжерных пар. Если в рядном ТНВД одна пара идет на один цилиндр, то в распределительном работы одной плунжерной пары достаточно, чтобы обслуживать два, три, и даже шесть цилиндров. Это достигается через опцию вращения плунжера вокруг оси. Вращаясь, плунжер поочередно открывает выпускные клапана, подавая горючее на форсунки нескольких цилиндров.

raspred tnvd009

Эволюция распределительных ТНВД привела к тому, что появились уже роторные топливные насосы: в них плунжеры помещаются в ротор и в процессе работы движутся навстречу двуг другу, пока ротор вращает их, распределяя тем самым топливо по камере сгорания.

Преимущество системы подачи топлива с распределительным ТНВД – компактность самого устройства. Недостатки – сложность настройки, применение схем электронного управления и корректировки работы.

Система подачи топлива в цилиндр с помощью насос-форсунок вообще исключает необходимость ТНВД как отдельного элемента. В этом случае, форсунка и насосная секция – это один узел в общем корпусе.

maxresdefault

 

В результате достигается легкость регулировки подачи топлива в конкретный цилиндр, а при выходе из строя одной насос-форсунки, остальные продолжают работать, что облегчает ремонт. Конструктивно, насос-форсунки приводят в действие плунжеры распредвал ГРМ в головке блока цилиндров.

Система подачи топлива насос-форсунками распространена не только на грузовых, но и на легковых автомобилях. К недостаткам ее можно отнести высокую стоимость запчастей, а также крайнюю чувствительность к качеству дизельного топлива. Мельчайшие примеси в горючем могут легко вывести из строя насос-форсунку, что отражается на стоимости эксплуатации такого решения в личном автомобиле.

Система Common Rail стала своего рода прорывом в части решения механизма подачи топлива в дизельных ДВС. Эта система позволяет экономить топливо при высоком КПД дизеля, что и сделало ее такой популярной. Common Rail придумали инженеры Bosch еще в 90-х годах. Сегодня большинство дизельного транспорта оснащается именно Коммон Реил.

Stiri Noutati Bosch 10 milioane de sisteme common rail pentru autovehiculele comerciale 125 large

Главное отличие этой системы – наличие аккумулятора высокого давления в общей магистрали. Туда топливо нагнетается отдельным ТНВД, чтобы затем под постоянным давлением подаваться на форсунки. Именно постоянство давления дает возможность быстро и эффективно впрыскивать горючее в цилиндр. Как результат – производительная, мягкая и комфортная работа дизельного двигателя. Бонусом – упрощение конструкции самого ТНВД в системе Common Rail.

Common Rail 95

 

Управляется работа системы отдельным ЭБУ: группа датчиков сообщает контроллеру, сколько и как скоро нужно подать дизельное топливо в цилиндры. С другой стороны, сложность и недостаток Коммон Реил обусловлена как раз умной электроникой и принципом работы системы. Поэтому владельцам таких решений стоит выбирать качественное топливо и своевременно менять топливные фильтры.

О том, как еще продлить жизнь вашего дизельного двигателя, мы писали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

Устройство топливной системы дизельного двигателя

Дизельные двигатели изначально имели ярко выраженное «тракторное происхождение», и до сих пор поэтому ассоциируются у многих с шумностью, «львиным рычанием», повышенными показателями вибрации и детонации. Но это явно устаревшее представление. Современные дизели, благодаря применению новых автоматических систем управления и подкорректированным принципам работы топливной системы, в значительной степени избавились от пресловутых дрожи и звука. Сохранив при этом свои лучшие качества – мощную тягу и экономичность. Как эволюционировала, вместе с дизельным мотором, его топливная система, и что она из себя представляет на данный момент, рассмотрим в этой статье.

О конструктивных особенностях дизелей, в сравнении с бензомоторами

И дизель, и бензиновый мотор являются двигателями внутреннего сгорания. В глобальном смысле, по своей конструкции дизель не отличается от бензомотора: и там, и здесь – цилиндры, поршни и шатуны в них. Однако в дизелях степень сжатия гораздо выше (19-24 единицы, а у бензинового – 9-11). Потому и все детали, и клапаны в значительной степени усилены (чтобы противостоять намного более высоким нагрузкам). Потому и вес, и габариты дизельного мотора гораздо более внушительны, чем бензинового.

Главное же различие состоит в способах формирования топливно/воздушной смеси, её воспламенения и сгорания.  В бензиновых моторах смесь топлива с воздухом формируется во впускной системе, а воспламеняется она от искры свечи зажигания. В дизельных же моторах горючее и воздух подаются в рабочие полости цилиндров по отдельности. Сначала воздух. Он накаляется до семи-восьми сотен градусов и сжимается. Когда затем в камеру сгорания под большим давлением впрыскивается топливо, то оно самовоспламеняется, практически мгновенно.

О конструктивных особенностях дизелей, в сравнении с бензомоторами

Таким образом, искры никакой не требуется. А свечи накаливания, которые установлены в цилиндрической головке представляют собой нагревательные элементы, типа паяльника, и предназначены они для быстрого обогрева воздуха в камере сгорания, покуда мотор ещё не прогрелся. Это называется системой предпускового подогрева.

Когда включается зажигание, свечи накаливания за несколько мгновений разогреваются до 800-900 градусов, прогревая воздух и обеспечивая процесс самовоспламенения. Сигналы о работе данной системы подаёт водителю контрольная лампа. Электропитание снимается со свечей в автоматическом режиме, спустя 15-20 секунд после запуска непрогретого двигателя, когда его устойчивая и стабильная работа уже вполне обеспечена. Решающая же роль в обеспечении подобных показателей работы мотора принадлежит его топливной системе, об устройстве которой и пойдёт речь.

Принцип и общая схема работы топливной системы

Последовательность работы топливной системы дизельного двигателя следующая. Солярка закачивается из топливного бака при помощи топливоподкачивающего насоса (шестерёнчатого, либо помпового типа), а после фильтрации она подаётся топливным насосом высокого давления (ТНВД) на форсунки. Топливо после закачки из бака проходит сначала через фильтр грубой очистки, избавляясь от крупных включений. Далее, уже непосредственно перед топливным насосом высокого давления – сквозь фильтр тонкой очистки. В связке с ТНВД работают форсунки, через которые солярка в распылённом состоянии и впрыскивается в цилиндры.

Принцип и общая схема работы топливной системы

Схему топливной системы дизельного двигателя двигателя можно не условно, а вполне чётко разделить на два отсека: высокого давления и низкого. На участке низкого давления осуществляется предварительная подготовка, фильтрация топливной смеси, перед его отправкой в отдел высокого давления. Отсек высокого давления, в свою очередь, дорабатывает смесь до конца и переводит её в рабочую камеру.

Основная функция топливной системы, описание её работы

Предназначение топливной системы дизельного двигателя состоит в том, чтобы  подавать в цилиндры чётко отмеренный объём дизтоплива, в конкретный момент времени и под определённым давлением. Поэтому, из-за необходимости обеспечения постоянно высокого давления, а также за счёт высоких требований к точности работы, топливная система дизельного двигателя будет посложнее в конструкции, чем у бензинового, и достаточно дорого стоит.

Теперь попробуем представить себе бесперебойную работу топливной системы в поэтапном режиме, а для этого разберём по порядку отдельные её составные части. Итак, топливный бак служит для размещения солярки и обеспечения бесперебойной её подачи в систему. Эту функцию выполняют трубопроводы. Вначале топливоподкачивающий насос высасывает из бака горючее и через фильтры подаёт его в распределительную магистраль низкого давления. При этом в системе поддерживается стабильное давление в три атмосферы. Топливо дважды проходит  фильтрацию, проходя через фильтры грубой и тонкой очистки.

Основная функция топливной системы, описание её работы

В задачу топливных фильтров входит контроль за чистотой горючего и избавлением его от возможных посторонних примесей – от частичек грязи, воды, песчинок. Прошли те времена, когда дизели были весьма непритязательными к качеству топлива. Современные дизельные моторы требуют очень чистой солярки для сохранения достойных показателей своей работы. Чистота горючего сейчас – одно из основных и непременных условий эффективной работы двигателя. Топливо подаётся только в том случае, если в системе нет воздуха.

После фильтрации солярка попадает в магистраль высокого давления. Эта часть топливной системы обеспечивает подачу и впрыскивание необходимого количества топлива в цилиндры двигателя в определённые моменты. Топливный насос высокого давления, в соответствии с порядком работы цилиндров, по топливопроводам высокого давления подаёт солярку к форсункам.

Форсунки, размещённые в головках цилиндров, впрыскивают и распыляют горючее в камеры сгорания двигателя. Так как топливоподкачиваюший насос постоянно подаёт топливному насосу высокого давления топлива «с запасом», то есть несколько больше, чем нужно, то его избыток, а с ним – и попавший в систему воздух, по специальным дренажным трубопроводам, отводится обратно в бак.

Основная функция топливной системы, описание её работы01

Для обеспечения синхронного впрыска горючего устроена специальная топливная рамка, к которой и подсоединяются форсунки. Они своими головками находятся во впускной трубе и распыляют топливо, сразу же в момент его подачи.

ТНВД создаёт необходимый для впрыска показатель давления, и топливо распределяется по всем цилиндрам мотора. Количество впрыскиваемого топлива, а вместе с ним – и мощностной режим работы двигателя, варьируются нажатиями на педаль акселератора. В современных дизельных двигателях просто нажатием педали «газа» объём подаваемого топлива не увеличивается, а меняется лишь программа, по которой работают регуляторы.

Да, нажимая на педаль, водитель или механизатор уже не увеличивает этим непосредственную подачу топлива, как это было в карбюраторных движках прошлых лет. А только изменяет тем самым программы работы регуляторов, которые уже сами варьируют объём единовременной подачи горючего, по строго определённым зависимостям от числа оборотов, давления наддува, от положения рычага регулятора и т.п.

Главные составные части топливной системы дизельного двигателя

Итак, помимо топливного бака и магистральных топливопроводов, с которыми всё более или менее ясно, основными составными частями топливной системы дизельного мотора являются: топливоподкачивающий насос, фильтры грубой и тонкой очистки горючего, топливный насос высокого давления (ТНВД) и форсунки.

Топливоподкачивающий насос

Топливоподкачивающий насос

Устройство подкачивающего насоса дизельного топлива довольно несложное. Оно представляет собою две находящиеся в постоянном зацеплении шестерни. Когда происходит процесс вращения, зубья этих шестерней выполняют функцию лопастей, создавая и поддерживая ток горючего по направлению к ТНВД. Главным же действующим элементом подкачивающего насоса, который и непосредственно нагнетает топливо, является поршень. Как уже было отмечено, производительность топливоподкачивающего насоса устроена превышающей производительность насоса высокого давления, поэтому и оборудованы специальные топливопроводы для слива излишков обратно в топливный бак.

Топливный насос высокого давления

ТНВД предназначается для подачи топлива к форсункам под давлением, в соответствии со строго определенной программой, в зависимости от заданных режимов работы двигателя и от управляющих действий водителя. По своей сути, современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления работой двигателя и, в то же время, главного исполнительного механизма, реагирующего на команды шофера.

Благодаря внедрению в производство топливных насосов высокого давления с электронными системами управлением, а также 2-хступенчатого впрыска топлива и оптимизации процесса сгорания, получилось добиться достаточно устойчивой работы дизеля с неразделённой камерой сгорания на оборотах до 4500 в минуту, оптимизировать его экономичность, снизить показатели шума и вибрации.

Далее: по всей длине насоса, во внутренней его полости, расположен вращающийся вал, снабжённый специальными кулачками. Этот вал ТНВД получает энергию вращения от распределительного вала двигателя. Его кулачки при движении воздействуют на толкатели, которые, в свою очередь, и стимулируют нагнетающую работу поршня-плунжера. При своём продвижении вверх этот плунжер создаёт высокое давление топлива внутри цилиндра. Сила этого давления и выталкивает горючее, которое направляется по топливной магистрали к форсункам.

Для сравнения: на участке топливной системы низкого давления, где топливоподкачивающий насос гонит солярку через фильтры к ТНВД, давление составляет 3 атмосферы. А топливный насос высокого давления толкает горючее к форсункам с силой давления до 2000 атмосфер! Это нужно для того, чтобы обеспечить качественные впрыск и распыление топливной смеси в камеры сгорания цилиндров мотора.

Внутри корпуса, или гильзы, топливного насоса высокого давления расположен плунжер, иначе – специальный поршень, обладающий диаметром, значительно меньшим, чем его длина. Это называется плунжерной парой. Её детали притёрты друг к другу таким образом, что зазор не превышает 4-х мкм.

Топливный насос высокого давления

Поскольку работа дизеля в разных режимах и на разных оборотах требует, соответственно, и разного количества горючего, устройство плунжера было немного изменено: по его поверхности «пустили» специальную спиральную выточку, позволяющую менять величину активного хода при помощи механизма поворота плунжеров.

Это сделано было для того, чтобы плунжер мог не только нагнетать топливо под давлением по направлению к форсункам, но и регулировать количество, объём этой подачи. Для этого служит подвижная часть плунжера, которая, в зависимости от изменения параметров, может открывать или закрывать канавки внутри него. Данная подвижная часть соединена с педалью «газа» в кабине механизатора.

Топливный насос высокого давления01

В зависимости от того, каков угол поворота плунжера, устанавливается и соответствующая степень открытия каналов прохождения топлива, и его непосредственное количество, подаваемое на форсунки.

Форсунки

Другой важнейший элемент топливной системы дизельного двигателя – это форсунки, на каждом из его цилиндров. Они, совместно с ТНВД, обеспечивают подачу строго дозированного количества топлива в камеры сгорания. Регулировки давления открытия форсунки формируют рабочее давление в топливной системе, а типы распылителей определяют форму факела топлива, которая имеет важное значение для активизации процессов самовоспламенения и сгорания. В современных дизельных моторах обычно применяются форсунки двух типов: со шрифтовым, или с многодырчатым распределителем.

Форсунки

Форсункам на двигателе приходится работать в очень тяжёлых условиях: игла распылителя совершает возвратно/поступательные движения с частотою в половину меньшей, чем обороты двигателя, и при этом распылитель всё время непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из специальных, высоко-жаропрочных сплавов, делается с особой точностью и является прецизионным элементом.

Распределитель форсунок выполняет функцию равномерного поступления топлива в камеры сгорания и наиболее эффективное его воспламенение. Чем более мелко распыляется топливная смесь, тем устойчивее, в целом, получается работа силового агрегата. Не менее важный фактор – это равномерность распыления горючего, во всех возможных направлениях. Современные форсунки производятся с многочисленными мельчайшими отверстиями, как раз для того, чтобы распыление топливной смеси происходило во всех направлениях, и в равномерном режиме.

Кроме того, работа форсунок поддерживает следующие процессы, с которыми напрямую связана эффективная работа двигателя:

  • Обеспечение высокого давления и температуры в камерах сгорания;
  • Смешивание солярки с воздухом в оптимальном объёме;
  • Соответствие угла опережения впрыска частоте вращения коленчатого вала мотора.

Форсунки01

Форсунки бывают с механическим, либо с электромагнитным управлением. В обычных форсунках открытие отверстия распылителя связано с тем давлением, которое имеется на тот момент в топливной магистрали. Отверстие форсунки перекрывается иглой, соединённой со специальным поршнем вверху форсунки. Пока давления нет, игла перекрывает выход топлива через отверстие распылителя. Когда происходит поступление топлива под давлением, поршень перемещается вверх и тянет за собою иглу. Отверстие раскрывается, и распыление начинается.

В современных дизельных двигателях используются форсунки с электромагнитной системой управления. Их работа регулируется уже не по механическому принципу, а с помощью электромагнитных импульсов, поступающих от блока управления. Каждая из форсунок снабжена электромагнитным клапаном, открывающим либо закрывающим распыление топлива.

На эти электромагнитные элементы форсунок поступают сигналы от электронного бока управления (ЭБУ), который, в соответствии с информацией от целого ряда датчиков, подаёт ту или иную команду на установку нужной степени распыления.

Несколько слов о системе «КоммонРэйл»

Говоря о топливной системе современных дизельных двигателей, нельзя не упомянуть такую её модификацию, как «Аккумуляторная топливная система CommonRail» («Общая рамка», или «Общая магистраль» в переводе с английского). Она проявляет очень хорошие показатели экономичности и эффективности, и вполне заслуженно завоёвывает всё большую популярность. В первую очередь – на дизельных двигателях коммерческого автотранспорта, разумеется.

В ней также используется ТНВД, подающий горючее в напорную магистраль, которая играет роль аккумулятора давления. Электронный блок управления регулирует производительность насоса, для поддержания необходимого давления в магистрали по мере расхода топлива.

Несколько слов о системе «КоммонРэйл»

В «КоммонРэйл» управляемые электроникой электрогидравлические форсунки с электромагнитным или пьезоэлектрическим приводом управляющих клапанов впрыскивают выверенные дозы дизельного топлива под высоким давлением в рабочие полости цилиндров.

Компьютерная система управления подачей горючего позволяет впрыскивать его в камеры сгорания цилиндров максимально точно дозированными дозами. Сначала впрыскивается микроскопическая, всего лишь в районе миллиграмма, порция, которая своим сгоранием накаляет температуру в камере, а за ней следует основной «заряд». Как результат – дизельные двигатели, оснащённые системой «КоммонРэйл», показывают лучшую экономичность (до 20 процентов). Доля новых дизельных двигателей, оснащённых системой «CommonRail», год от года неуклонно растёт.

Заключение

В целом, именно усовершенствованиям, которым подверглась топливная система дизельных двигателей в наше время, значительно укрепили позиции дизельных двигателей на рынке и в экономике. Дизели стали более экономичными и менее шумными, чем были прежде, а потому завоёвывают всё больше сегментов своего непосредственного применения на рынке.

Принцип работы дизельного двигателя.

Принцип работы дизельного двигателя совсем иной, чем у мотора, работающего на бензине. Этим и объясняется принцип его питания. В двух словах – работа дизельного мотора строится на воспламенении топливной смеси от сильного сжатия, поскольку высокая температура вызывает ее возгорание.

Ремонт дизельных двигателей – дело не такое сложное, если знать, как он устроен, и на чем построена работа дизельного двигателя.

дизель двигательдизель двигатель

Порядок работы системы дизельного двигателя

Сначала цилиндры дизельного двигателя наполняются воздухом. Поршни в них движутся вверх, создавая очень высокое давление, от сжатия воздух раскалится до того, что дизельное топливо, будучи смешанным с ним, воспламенится.

Температура достигает максимального значения, когда поршень заканчивает движение вверх, затем дизтопливо впрыскивается посредством форсунки, она подает его не струйкой, а распыляет. Далее, из-за высокой степени нагрева сдавленного воздуха, воздушно-горючая смесь взрывается. Давление из-за взрыва достигает критической отметки и заставляет поршень опускаться вниз. На языке физики – совершается работа.

Система дизельного двигателя устроена так, что подает горючее в мотор, обеспечивая одновременно и несколько других функций.

Части системы дизельного двигателя, механизм его действия

Дизель состоит из:

  • бака для горючего,
  • насоса, подкачивающего дизтопливо,
  • фильтров,
  • топливного насоса, который подает горючее под высоким давлением,
  • свечи накаливания
  • основной части двигателя, которой является форсунка.

Подкачивающий насос отвечает за забор дизельного топлива из бака и отправляет его в топливный насос, а сам этот насос для подачи горючего под давлением – состоит из нескольких секций (их столько же, сколько двигатель ДВС имеет цилиндров – одна секция отвечает за обслуживание одного цилиндра).

Устройство насоса для подачи горючего под воздействием давления таково: внутри него по низу во всю длину располагается вал с кулачками, который совершает вращения от распредвала мотора. Кулачки воздействуют на толкатели, заставляющие функционировать плунжер (поршень). Поднимаясь, плунжер способствует давлению горючего в цилиндре. Таким образом и происходит выталкивание горючего посредством ТНВД в ту главную рабочую часть двигателя, которой и является форсунка.

Поступающему в магистраль дизельному топливу необходимо давление, чтобы продвинуться к форсунке для распыления через нее. Для этого и нужен поршень – он захватывает горючее внизу и продвигает к секционной верхушке. Поступающее под напором – горючее уже может качественно распыляться в камере сгорания. В этом насосе сила давления достигает 2000 атмосфер.

как работает ДВСкак работает ДВС

Одна из функций плунжера – контролировать объем подачи дизтоплива на форсунку своей двигающейся частью, открывающей и закрывающей канальца внутри него, эта часть соединяется с педалью, отвечающей за подачу газа в салоне машины. То, насколько открыты каналы подачи горючего и его объем – обусловлено углом, под которым повернут поршень. Его поворот осуществляет рейка, соединяющаяся с педалью газа.

Вверху насоса, подающего под давлением горючее, расположен клапан, он устроен так, чтобы открываться под давлением и захлопываться, если оно мало. Таким образом, когда поршень внизу, клапан – в захлопнутом положении, и горючее из шланга, к которому подсоединена форсунка, поступать в насос не может. Давление, образующееся в секции, достаточно для впрыскивания горючего в цилиндр, тогда топливо и доставляется по шлангу в форсунку, а она – производит распыление его в цилиндре.

работа топливно дизельного двигателяработа топливно дизельного двигателя

Форсунка – назначение и виды

Очень часто ремонт дизельных двигателей связан с диагностикой работы форсунок и их починкой или заменой.

Они бывают двух видов:

  • управляемые механически
  • электромагнитные

В управляемых механически – отверстие, которое распыляет горючее, открывается в зависимости от силы давления в шланге. Ее отверстие закрывает игла, соединенная с поршеньком на верхушке форсунки. Пока не возникло давления, игла не позволяет горючему выйти через распылитель. Когда горючее поступает под напором, плунжер поднимается и оттягивает иголку. Отверстия распылителя раскрываются, и горючее выбрызгивается в цилиндр.

В нем установлены свечи накаливания, воспламеняющие горючее с воздухом. Они раскаляют воздух в специализированном отсеке, прежде, чем он окажется в цилиндре. По сути, свечи только облегчают запуск мотора ДВС, поскольку перед попаданием в цилиндр воздух уже достаточной температуры. Именно поэтому, когда на улице тепло, или если мотор еще не остыл после выключения зажигания, его запуск происходит и без участия свечей, а когда холодно – это невозможно.

Оснащенный электромагнитными форсунками дизель – более современный вариант. В таком случае – в насосе, подающем горючее, отсутствуют для каждого цилиндра своя секция, а шланг – один на все форсунки, и обеспечивает нужное давление и впрыск горючего сразу во все форсунки цилиндров ДВС.

дизельный двигательдизельный двигатель

При данной системе ДВС – на форсунки воздействуют электрические импульсы, поступающие от блока управления автомобилем: их клапаны, открывающие и закрывающие выходы для впрыска горючего – электромагнитные. Сам блок управления мотором считывает информацию со специальных датчиков, а затем дает команду электромагнитному управлению форсунками.

Такая система подачи топлива в дизельный двигатель еще и намного экономичней.

Форсунки начали использовать в производстве моторов еще в тридцатых годах XX столетия, их устанавливали сначала на авиамоторы, затем стали применять в двигателях гоночных машин. А массовое применение в автомобилестроении они получили лишь в семидесятые-восьмидесятые годы прошлого века. Тому послужили топливный кризис и осознание необходимости сбережения природы: чтобы сделать авто более мощными – специально переобогащали воздушно-горючую смесь, но это приводило к увеличению расхода топлива и переизбытку продуктов сгорания в газовых выхлопах автомобилей. И в 1967-м проблема была решена – тогда и была изобретена электромагнитная форсунка, в которой впрыск осуществляется электронной командой. Вне всяких сомнений, электроника всегда лучше механики, поскольку имеет перед ней массу очевидных преимуществ.

Схема системы питания двигателя | Схемы автомобильные

Схема системы питания двигателя

Рис. Схема системы питания двигателя:
1 — воздухоочиститель; 2 — топливопровод перепуска топлива из головки топливного насоса в топливоподкачивающий насос; 3 — пробка для выпуска воздуха; 4 — топливный насос высокого давления; 5 — топливоподкачивающий насос; 6 — трубка дренажная; 7 — пробка сливная; 8 — регулятор частоты вращения; 9 — пробка контрольная; 10 — фильтр грубой очистки топлива; 11 — топливопровод от бака к фильтру грубой очистки; 12 — пробка заливная; 13 — фильтр тонкой очистки топлива 2СТФ-3; 14 — топливопроводы низкого давления; 15 — коллектор выпускной; 16 — топливопровод слива; 17 — форсунка; 18 — топливопровод высокого давления; 19 — коллектор впускной.

Система питания трактора ДТ75-М состоит из топливного насоса высокого давления со всережимным регулятором числа оборотов, топливоподкачивающего насоса, форсунок, фильтров грубой и тонкой очистки, топливопроводов низкого и высокого давления, воздухоочистителя.

Топливо засасывается топливоподкачивающим насосом из бака через фильтр грубой очистки и подается через фильтр тонкой очистки к топливному насосу высокого давления. Топливный насос, в соответствии с порядком работы цилиндров, подает топливо по топливопроводам высокого давления к форсункам, которые распыляют его в цилиндрах двигателя. На топливопроводы для уменьшения их вибрации устанавливаются соединительные планки. Эксплуатация двигателя без соединительных планок на топливопроводах запрещается.

Принцип работы дизельного двигателя

Дизельный двигатель – двигатель внутреннего сгорания, изобретенный Рудольфом Дизелем в 1897 году. Устройство дизельного двигателя тех лет позволяло использовать в качестве топлива нефть, рапсовое масло, и твердые виды горючих веществ. Например, каменноугольную пыль.

Принцип работы дизельного двигателя современности не изменился. Однако моторы стали более технологичными и требовательными к качеству топлива. Сегодня в дизелях используется только высококачественное ДТ.

Рудольф Дизель

Рудольф Дизель

Моторы дизельного типа отличаются топливной экономичностью и хорошей тягой при низких оборотах коленвала, поэтому получили широкое распространение на грузовых автомобилях, кораблях и поездах.

С момента решения проблемы высоких скоростей (старые дизели при частом использовании на высоких скоростях быстро выходили из строя) рассматриваемые моторы стали часто устанавливаться на легковые авто. Дизели, предназначенные для скоростной езды, получили систему турбонаддува.

Принцип работы двигателя Дизеля

Принцип действия мотора дизельного типа отличается от бензиновых моторов. Здесь отсутствуют свечи зажигания, а топливо подается в цилиндры отдельно от воздуха.

Цикл работы такого силового агрегата можно представить в следующем виде:

  • в камеру сгорания дизеля подается порция воздуха;
  • поршень поднимается, сжимая воздух;
  • от сжатия воздух нагревается до температуры около 800˚C;
  • в цилиндр впрыскивается топливо;
  • ДТ воспламеняется, что приводит к опусканию поршня и выполнению рабочего хода;
  • продукты горения удаляются с помощью продувки через выпускные окна.

От того, как работает дизельный двигатель, зависит его экономичность. В исправном агрегате используется бедная смесь, что позволяет сэкономить количество топлива в баке.

Как устроен дизельный двигатель

Основным отличием конструкции дизеля от бензиновых моторов является наличие топливного насоса высокого давления, дизельных форсунок и отсутствие свечей зажигания.

Общее устройство этих двух разновидностей силового агрегата не различается. И в том, и в другом имеются коленчатый вал, шатуны, поршни. При этом у дизельного мотора все элементы усилены, так как нагрузки на них более высокие.

На заметку: некоторые движки дизельного типа имеют свечи накаливания, которые ошибочно принимаются автолюбителями за аналог свечей зажигания. На самом деле, это не так. Свечи накаливания используются для нагрева воздуха в цилиндрах в мороз.

Обязательно почитайте

При этом дизель легче заводится. Свечи зажигания в бензиновых моторах применяются для воспламенения топливовоздушной смеси в процессе работы двигателя.
Свеча накаливания

Свеча накаливанияСистему впрыска на дизелях делают прямой, когда топливо поступает непосредственно в камеру, или непрямой, когда воспламенение происходит в предкамере (вихревая камера, фор-камера). Это небольшая полость над камерой сгорания, с одним или несколькими отверстиями, через которые туда поступает воздух.Вихревая камераВихревая камера

Такая система способствует лучшему смесеобразованию, равномерному нарастанию давления в цилиндрах. Зачастую именно в вихревых камерах применяются калильные свечи, призванные облегчить холодный пуск. При повороте замка зажигания, автоматически запускается процесс нагрева свечей.

Плюсы и минусы дизельного мотора

Как и любой другой тип силового агрегата, дизельный мотор имеет положительные и отрицательные черты. К «плюсам» современного дизеля относят:

  • экономичность;
  • хорошую тягу в широком диапазоне оборотов;
  • больший, чем у бензинового аналога, ресурс;
  • меньшее количество вредных выбросов.

Дизель не лишен и недостатков:

  • моторы, не оснащенные свечами накаливания, плохо заводятся в мороз;
  • дизель дороже и сложнее в обслуживании;
  • высокие требования к качеству и своевременности обслуживания;
  • высокие требования к качеству расходных материалов;
  • большая, чем у бензиновых движков, шумность работы.

Дизельный двигатель с турбонаддувом

Принцип работы турбины на дизельном двигателе практически не отличается от такового на бензиновых моторах. Суть заключается в нагнетании в цилиндры дополнительного воздуха, что закономерно увеличивает количество поступающего топлива. За счет этого отмечается серьезный прирост мощности мотора.Дизельная турбина

Дизельная турбина

Устройство турбины дизельного двигателя также не имеет существенных отличий от бензинового аналога. Устройство состоит из двух крыльчаток, жестко связанных между собой, и корпуса, внешне напоминающего улитку. На корпусе турбокомпрессоров имеется 2 входных и 2 выходных отверстия. Одна часть механизма встраивается в выпускной коллектор, вторая во впускной.

Схема работы проста: газы, выходящие из работающего мотора, раскручивают первую крыльчатку, которая вращает вторую. Вторая крыльчатка, вмонтированная во впускной коллектор, нагнетает атмосферный воздух в цилиндры. Увеличение подачи воздуха приводит к увеличению подачи топлива и росту мощности. Это позволяет мотору быстрее набирать скорость даже на низких оборотах.

Турбояма

В процессе работы турбина может совершать до 200 тысяч оборотов в минуту. Раскрутить ее до необходимой скорости вращения моментально невозможно. Это приводит к появлению т.н. турбоямы, когда с момента нажатия на педаль газа до начала интенсивного разгона проходит некоторое время (1-2 секунды).

Проблема решается доработкой турбинного механизма и установкой нескольких крыльчаток разного размера. При этом маленькие крыльчатки раскручиваются моментально, после чего их догоняют элементы большого размера. Такой подход позволяет практически полностью ликвидировать турбояму.

Турбина VNT

Турбина VNTТакже производятся турбины с изменяемой геометрией, VNT (Variable Nozzle Turbine), призванные решать те же проблемы. В настоящий момент существует большое количество модификаций подобного типа турбин. Коррекция геометрии успешно справляется и с обратной ситуацией, когда оборотов и воздуха становится слишком много и необходимо притормозить обороты крыльчатки.

Интеркуллер

Было замечено, что если при смесеобразовании используется холодный воздух, КПД двигателя увеличивается до 20%. Это открытие привело к появлению интеркуллера – дополнительного элемента турбин, повышающего эффективность работы.

После всасывания воздуха он проходит через радиатор, и в охлажденном состоянии попадает во впускной коллектор. Мы уже публиковали статью, в которой можно подробно ознакомиться со схемой работы интеркуллера.

Интеркуллер

ИнтеркуллерЗа турбиной современного автомобиля необходимо должным образом ухаживать. Механизм крайне чувствителен к качеству моторного масла и перегреву. Поэтому смазочный материал рекомендуется менять не реже, чем через 5-7 тысяч километров пробега.

Кроме того, после остановки машины следует оставлять ДВС включенным на 1-2 минуты. Это позволяет турбине остыть (при резком прекращении циркуляции масла она перегревается). К сожалению, даже при грамотной эксплуатации ресурс компрессора редко превышает 150 тысяч километров.

На заметку: оптимальным решением проблемы перегрева турбины на дизельных моторах является установка турботаймера. Устройство оставляет двигатель запущенным на протяжении необходимого времени после выключения зажигания. После окончания необходимого периода электроника сама выключает силовой агрегат.

Строение и принцип действия дизельного двигателя делают его незаменимым агрегатом на тяжелом транспорте, которому необходима хорошая тяга «на низах». Современные дизели с равным успехом работают и в легковых автомобилях, главное требование к которым: приемистость и время набора скорости.

Сложный уход за дизелем компенсируется долговечностью, экономичностью и надежностью в любых ситуациях.

Лекция 18. Общее устройство и работа системы питания дизельного двигателя.

Лекция 18. Общее устройство и работа системы

питания дизельного двигателя.

Дизели — двигатели с внутренним смесеобразованием. В ци­линдры дизеля воздух и топливо подаются раздельно и, смешива­ясь в них с отработавшими газами, образуют рабочую смесь. При этом процесс смесеобразования совершается за очень малое вре­мя (порядка 0,001 с).

Топливо для дизелей. Дизельное топливо имеет следующие ос­новные марки:

Л — летнее топливо, предназначено для работы двигателя при температуре окружающего воздуха выше 0 °С;

3 — зимнее топливо, предназначено для работы двигателя при температуре окружающего воздуха от 0 до -30 «С;

А — арктическое, предназначено для работы двигателя при температуре окружающего воздуха ниже -30 °С.

Температура замерзания дизельного топлива должна быть на 10… 15 °С ниже температуры окружающего воздуха района экс­плуатации. Чем ниже температура замерзания топлива, тем на­дежнее работа дизеля.

Температура воспламенения дизельного топлива составляет 300… 350 °С.

Качество дизельного топлива оценивается цетановым числом, которое условно принято равным 100 единицам.

Цетан — быстровоспламеняющееся топливо.

Для дизельных топлив цетановое число должно быть в преде­лах 40 … 45 единиц. Чем выше цетановое число дизельного топли­ва, тем экономичнее и мягче работает двигатель. Для повышения цетанового числа в дизельное топливо добавляют специальную присадку — изопропиленнитрат.

Система питания дизеля состоит из трех следующих систем: питания топливом, питания воздухом и выпуска отработавших газов.

Конструкция и работа системы питания дизеля топливом. Сис­тема питания топливом служит для очистки топлива и равномер­ного его распределения дозированными порциями в цилиндры двигателя. В эту систему входят топливный бак, фильтры грубой и тонкой очистки, топливоподкачивающий насос, топливный на­сос высокого давления, форсунки и топливопроводы.

Топливоподкачивающий насос 7 (рис. 2.51) засасывает топли­во из бака 2 через фильтры грубой 4 и тонкой очистки и направ­ляет его к насосу 5 высокого давления. В соответствии с порядком работы цилиндров двигателя насос высокого давления подаст топ­ливо к форсункам 11, которые распыляют и впрыскивают топли­во в цилиндры 12 двигателя.

Топливоподкачивающий насос 7 подаст к насосу высокого дав­ления топлива больше, чем не­обходимо для работы двигателя. Избыточное топливо отводится по топливопроводу 3 обратно в топливный бак. По топливопро­воду 10 в бак отводится топли­во, просочившееся из форсунок.

Рис. 2.51. Схема системы питания дизеля топливом:

1 — топливоприемник; 2 — бак; 3, 9, 10 — топливопроводы; 4,8 — фильтры; 5, 7— насосы; 6— рукоятка; 11 — фор­сунка; 12 — цилиндр

Топливный насос высокого давления служит для подачи че­рез форсунки в цилиндры дви­гателя под большим давлением (20…50 МПа) требуемых пор­ций топлива в определенные мо­менты времени. Насос состоит из одинаковых по конструкции секций, число которых равно числу цилиндров двигателя. Каж­дая секция насоса соединена то­пливопроводом 13 (рис. 2.52) с форсункой 16. Плунжер 6 и гильза 5 секций насоса изготовлены с высокой точностью и чистотой поверхности. Зазор между ними не превышает двух микрон. На плунжере имеются вертикальный паз 9, ско­шенная кромка 11и кольцевая проточка 7. Шестерня 2, закреп­ленная на плунжере, находится в зацеплении с зубчатой рейкой 3, перемещением которой поворачивается плунжер в гильзе. Пружи­на 4 прижимает плунжер к эксцентрику 1 кулачкового вала насо­са, который приводится во вращение от коленчатого веша. В гильзе имеются впускное 8 и выпускное 10 отверстия, а в верхней ее части установлен нагнетательный клапан 12. Пружина 1^прижи­мает иглу 15 форсунки к соплу 18 и закрывает полость 17, которая заполнена топливом. При нижнем положении плунжера 6’отвер­стия 8 и 10 открыты и через них над плунжером циркулирует топливо. Нагнетательный клапан 12 в этом случае закрыт и в по­лости 77форсунки поддерживается избыточное давление топлива. При движении плунжера вверх при вращении кулачка пере­крывается выпускное отверстие 10, а затем впускное отверстие 8: Под давлением топлива открывается клапан 12 и в полости 17 форсунки создается высокое давление. При этом игла 15форсунки преодолевает сопротивление пружины 14, поднимается вверх и через открывшееся сопло 18 топливо впрыскивается в цилиндр двигателя.

Впрыск топлива заканчивается, когда кромка 11 открывает выпускное отверстие 10. При этом давление топлива уменьшает­ся, игла 15 опускается вниз и закрывает сопло 18. Одновре­менно закрывается клапан 12 и в полости 17форсунки топ­ливо остается под избыточным давлением.

Поворотом плунжера 6 в гильзе 5 изменяют конец по­дачи топлива и его количе­ство, впрыскиваемое за один ход плунжера. Подача топлива прекращается при совмещении вертикального паза 9 с выпускным отверстием 10, и двига­тель останавливается. С топливным насосом высокого давления соединены муфта опережения впрыска топлива, всережимный регулятор частоты вращения коленчатого вала двигателя и топливоподкачивающий насос с насосом ручной подкачки топлива.

Рис. 2.52. Схема подачи топлива и цилиндр дизеля:

1 — эксцентрик; 2 — шестерня; 3 — рейка; 4, 14— пружины; 5— гильза; б— плунжер; 7— проточка; 8, 10 — отверстия; 9— паз; 11— кромка; 12 — клапан; 13 — топлипопровод; 15 — игла; 16— форсунка; 17— полость; 18 — сопло.

Муфта опережения впрыска топлива служит для автоматиче­ского изменения угла опережения впрыска топлива в зависимос­ти от частоты вращения коленчатого вала. Муфта повышает эко­номичность дизеля при различных режимах работы и улучшает его пуск. Муфта устанавливается на переднем конце кулачкового вала топливного насоса высокого давления и с ее помощью насос приводится в действие.

На взаимное положение ведущих и ведомых частей муфты ока­зывают влияние грузы 2 (рис. 2.53), находящиеся в корпусе 1. Гру­зы установлены на осях 3 и поджимаются пружинами 4, которые упираются в проставки 5. При работе двигателя и увеличении ча­стоты вращения коленчатого вала грузы под действием центро­бежных сил преодолевают сопротивление пружин и расходятся, поворачивая при этом кулачковый нал насоса высокого давления по ходу его вращения. В результате этого увеличивается угол а опе­режения впрыска топлива, и топливо поступает в цилиндры раньше. При уменьшении частоты вращения коленчатого вала двигателя грузы сходятся «под действием пружин и поворачивают кулачко­вый вал насоса в сторону, противоположную его вращению, что уменьшает угол опережения впрыска топлива. Всережимный регулятор слу­жит для автоматического под­держания постоянной частоты вращения коленчатого вала со­ответственно положению педа­ли подачи топлива при различ­ной нагрузке двигателя.

Регулятор также устанавли­вает минимальную частоту вра­щения коленчатого вала на хо­лостом ходу и ограничивает максимальную частоту враще­ния. Регулятор приводится в действие от кулачкового вала топливного насоса высокого давления. Педаль 6 (рис. 2.54) подачи топлива соединена с рычагом 2 управления рейкой 1 насоса растянутую пружину 3, действующую на рычаг с усилием Рир. При работе двигателя на рычаг 2 через под­пятник 7 передается сила Qvp от вращающихся грузов, шарнирно закрепленных на валу 9, который соединен с кулачковым валом насоса высокого давления.

Рис. 2.53. Муфта опережения впрыс­ка топлива:

1 — корпус; 2 — груз; 3 — ось; 4 — пру­жина; 5 — проставка


Рис. 2.54. Всережимный регуля- тор частоты вращения коленча­того вала:

1 — рейка; 2 — рычаг; 3 — пружи­на; 4, 5 — упоры; 6— педаль; 7 — подпятник; 8 — груз; 9 — вал высокого давления через

Если двигатель работает с частотой вращения коленчатого вала, соответствующей данному положению педали 6, то сила грузов 8 уравновешивается усилием пружины 3. При увеличении частоты вращения коленчатого вала грузы регулятора расходятся. Они пре­одолеют сопротивление пружины и переместят рейку 1. При этом подача топлива уменьшится и час­тота вращения не будет возрастать. При уменьшении частоты враще­ния коленчатого вала грузы будут сходиться, рейка 1усилием Р11Р пру­жины переместится в обратном на­правлении и подача топлива увели­чится, а частота вращения коленча­того вала возрастет до значения, заданного положением педали 6. Минимальная частота при рабо­те на холостом ходу и максималь­ная частота вращения коленчатого вала двигателя ограничиваются со­ответственно регулируемыми упора­ми 5 и 4.


Рис. 2.55. Схема работы топливоподкачивающих насосов:

А, Б — полости; 1,2— поршни; 3, 5, 6, 10 — пружины; 4, 9 — клапа­ны; 7 — шток; 8 — эксцентрик

Топливоподкачивающий насос слу­жит для создания требуемого давле­ния топлива и подачи его в необхо­димом количестве к насосу высоко­го давления.

Насос — поршневого типа и приводится в действие от кулачко­вого вала насоса высокого давления. В корпусе насоса находится поршень 1 (рис. 2.55), который прижат к штоку 7пружиной 5. Шток через ролик опирается на эксцентрик 8кулачкового вала. В корпусе насоса имеются впускной 4 и нагнетательный 9 клапаны.

Когда под действием пружины 5 поршень перемещается к экс­центрику, топливо из полости Б вытесняется в фильтр тонкой очистки и насос высокого давления. Одновременно увеличиваю­щаяся полость Л заполняется топливом, которое поступает из топ­ливного бака через фильтр грубой очистки и впускной клапан 4. При движении поршня в противоположном направлении под дей­ствием эксцентрика 8топливо из полости А через нагнетательный клапан 9 поступает в полость Б.

При неработающем двигателе топливо в насос высокого дав­ления подкачивают поршнем 2 ручного насоса при помощи руко­ятки.

Форсунки служат для впрыскивания под определенным давле­нием и распыления топлива в цилиндрах двигателя.

Форсунки устанавливают и закрепляют в головке цилиндров.

Корпус 4 (рис. 2.56) и распылитель 1форсунки соединены гай­кой 2. Внутри распылителя находится игла 9, закрывающая его сопловые отверстия. Па иглу через штангу 3 действует нажимная пружина 8, затяжку которой регулируют шайбами 7.

Топливо подастся к форсунке через сетчатый фильтр 6 и поступает в полость иглы 9, Под давлением топлива игла, пре­одолевая усилие пружины 8, перемещает­ся вверх, открывает сопловые отверстия распылителя и через них топливо впрыс­кивается в цилиндр двигателя. При этом топливо, просочившееся между иглой и распылителем, отводится из форсунки по каналам в се корпусе.

Конструкция и работа системы питания дизеля воздухом. Система питания возду­хом служит для забора окружающего воз­духа, его очистки от пыли и распределе­ния по цилиндрам двигателя.

Рис. 2.56. Форсунка:

1 — распылитель; 2 — гайка; 3 — штанга; 4 — кор­пус; 5— уплотнительное кольцо; б— фильтр; 7 — шайбы; 8 — пружина; 9 — игла


Рис. 2.57. Схема системы пи­тания дизеля воздухом:

1 — воздушный фильтр; 2 — фильтрующий элемент; 3 — ре­шетка; 4 — труба; 5 — колпак; 6 — эжектор; 7 — двигатель

истема питания воздухом включает в себя воздушный фильтр и впускной трубопровод. Она может быть с турбонаддувом или без турбонаддува.

Воздух поступает через сетку колпака 5 (рис. 2.57) и трубу 4 воздухозаборника в воздушный фильтр 1. В фильтре воздух прохо­дит через инерционную решетку 3 и резко изменяет направление движения. Сначала воздух освобождается от крупных частиц пыли, которые под действием инерции и вакуума выбрасываются через эжектор 6, установленный в выпускной трубе глушителя, в окру­жающий воздух. Более мелкие частицы пыли задерживаются в кар­тонном фильтрующем элементе 2. Очи­щенный воздух по впускному трубо­проводу подастся в цилиндры двига­теля 7.

Воздушный фильтр (рис. 2.58) состо­ит из корпуса 3, крышки 1 и сменно­го фильтрующего элемента 2, состоя­щего из двух перфорированных сталь­ных кожухов и гофрированного кар­тона между ними. Патрубок 1предназ­начен для отсоса пыли из корпуса фильтра.

Рис. 2.58. Воздушный фильтр:

1 — крышка; 2— фильтрующий элемент; 3 — корпус; 4 — крон­штейн; 5— 7 — патрубки

Воздух поступает в фильтр через патрубок 5, очищается в нем и выхо­дит через патрубок 6.

Наддув представляет собой подачу воздуха в цилиндры двигателя при такте впуска под давлением, созда­ваемым компрессором. При наддуве увеличивается количество воздуха, поступающего в цилиндры двигате­ля, количество сжигаемого топлива и повышается на 20…40% мощность двигателя. В дизелях обычно применяется газотурбинный наддув (рис. 2.59) турбокомпрессором. При работе двигателя воздух в цилиндры 1 нагнетается под давлением центробежным компрессором 6, рабо­чее колесо которого приводится во вращение турбиной 5.

Рабочее колесо турбины, установленное на одном валу с рабо­чим колесом компрессора, приводится во вращение отработав­шими газами до их поступления в глушитель. Для ограничения давления воздуха при наддуве предназначен перепускной клапан 4. При достижении требуемого давления (обычно 0,2 МПа) воздух давит на мембрану 2, клапан открывается и перепускает часть отработавших газов мимо турбины 5.

На V-образных дизелях для турбонаддува устанавливают от од­ного до двух турбокомпрессоров. При двух турбокомпрессорах каж­дый из них обслуживает свой ряд цилиндров двигателя.


Рис. 2.59. Схема турбонадцу-ва дизеля воздухом:

1 — цилиндр; 2 — мембрана; 3 — пружина; 4 — клапан; 5 — тур­бина; 6 — компрессор

Система выпуска отработавших газов дизеля. Система выпуска служит для отвода газов из цилиндров двигателя и снижения шума выпуска. Одновременно система выпуска обеспечивает отсос пыли из воздушного фильтра.

Отработавшие газы из выпускных трубопроводов двигателя по­ступают в приемные трубы 2 и 3 глушителя (рис. 2.60) и далее через гибкий металлический рукав 6 в глушитель 7. Из глушителя газы через выпускную трубу 8 и эжектор 10 выбрасываются в ок­ружающий воздух. Через патрубок 9 производится отсос пыли из воздушного фильтра в эжектор.

В системе выпуска отработавших газов устанавливается вспомогательный (моторный) тормоз-замедлитель

Рис. 2.60. Система выпуска отработавших газов дизеля:

1 — уплотнительное кольцо; 2, 3, 8 — трубы; 4 — моторный тормоз; 5 — пнев-моцилиндр; 6 — рукав; 7 — глушитель; 9 — патрубок; 10 — эжектор

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*