Аэродинамика машины – От автомобилей-крыльев до автомобилей-пылесосов. История аэродинамики — часть II — Лаборатория — Motor

  • 18.12.2020

Содержание

Коэффициент аэродинамического сопротивления автомобиля — Википедия

Материал из Википедии — свободной энциклопедии

Коэффицие́нт аэродинами́ческого сопротивле́ния — безразмерная величина, равная отношение силы лобового сопротивления автомобиля F{\displaystyle F} к произведению скоростного напора Q{\displaystyle Q} на площадь миделевого сечения автомобиля S{\displaystyle S}. Обычно обозначается как Cx{\displaystyle C_{x}}:

Cx=FQ⋅S.{\displaystyle C_{x}={\frac {F}{Q\cdot S}}.}

Скоростной, или аэродинамический напор, имеет размерность давления (в СИ измеряется в паскалях) и определяется как:

Q=ρv22,{\displaystyle Q={\frac {\rho v^{2}}{2}},}
где v{\displaystyle v} — скорость, м/с;
ρ{\displaystyle \rho } — плотность воздуха, кг/м3.

Лобовое аэродинамическое сопротивление:

F=Cxρv22S.{\displaystyle F=C_{x}{\frac {\rho v^{2}}{2}}S.}
{\displaystyle F=C_{x}{\frac {\rho v^{2}}{2}}S.} Коэффициент аэродинамического сопротивления сферы в зависимости от числа Рейнольдса. Приведены графики для гладкой (smooth) и шероховатой (rough) сфер. Развитая турбулентность потока у гладкой сферы развивается при бо́льших скоростях потока.

Cx{\displaystyle C_{x}} зависит только от формы автомобиля и числа Рейнольдса, при равенстве всех критериев подобия, в данном случае существенно число Рейнольдса, одинаков для всех геометрически подобных тел, независимо от их конкретных размеров. Cx{\displaystyle C_{x}} в широком диапазоне чисел Рейнольдса (Re), от ~1000 до ~105 приблизительно постоянно. При малых Re Cx{\displaystyle C_{x}} увеличивается из-за перехода обтекающего потока в ламинарное течение, для автомобиля такое Re соответствует скорости нескольким десяткам сантиметрам в секунду. При Re>105 наступает полное развитие турбулентности как на лобовой, так и на тыльной сторонах обтекаемого тела и Cx{\displaystyle C_{x}} снижается.

Чем меньше Cx{\displaystyle C_{x}}, тем меньше лобовое сопротивление движению автомобиля и меньше расход топлива при прочих равных условиях. Cx{\displaystyle C_{x}} современных легковых серийно выпускаемых автомобилей лежит в пределах от 0,2 до 0,35. У грузовых автомобилей и внедорожников, из-за плохо обтекаемого воздухом массивного кузова — до 0,5 и более.

Некоторые производители указывают в спецификациях эффективную площадь сопротивления автомобиля Seff{\displaystyle S_{eff}}:

Seff=Cx⋅S.{\displaystyle S_{eff}=C_{x}\cdot S.}

Эта величина равна площади тонкой плоской пластины, ориентированной перпендикулярно набегающему потоку и испытывающей равную силу сопротивления с автомобилем, движущемся с той же скоростью, так как Cx{\displaystyle C_{x}} тонкой пластины близок к 1. Эффективная площадь зависит не только от формы, но и от размеров автомобиля, точнее, от площади его миделева сечения. Эффективная площадь современных серийных составляет от 0,5 м

2 для легковых до 2 и более квадратных метров у внедорожников и грузовиков.

Коэффициент сопротивления определяется экспериментальным путём продувкой макетов автомобилей в аэродинамической трубе, либо расчётным путём с помощью компьютерного моделирования.

Мощность двигателя, затрачиваемая на преодоление сопротивления воздуха[править | править код]

Мощность, затрачиваемая на перемещение тела с силой F{\displaystyle F} равна произведению этой силы на скорость v{\displaystyle v}:

Pa=F⋅v.{\displaystyle P_{a}=F\cdot v.}

Так ка сила аэродинамического сопротивления пропорциональна квадрату скорости, то часть мощности двигателя, идущей на преодоление сопротивления воздуху пропорциональна кубу скорости, т. е увеличение скорости в два раза требует увеличения мощности на преодоление сопротивления в восемь раз:

Pa=Cxρv32S=ρv32Seff.{\displaystyle P_{a}=C_{x}{\frac {\rho v^{3}}{2}}S={\frac {\rho v^{3}}{2}}S_{eff}.}
Пример

У автомобиля в летний день (плотность воздуха ~1,2 кг/м3), с эффективной площадью 1 м2, движущегося со скоростью 10 м/с (36 км/час) двигатель затрачивает на преодоление сопротивления воздуха около 600 Вт, а при движении со скоростью 30 м/с (108 км/час) уже ~16 кВт (~22 л. с.).

Некоторые примеры коэффициентов аэродинамического сопротивления современных автомобилей:

Серийно выпускаемые автомобили[править | править код]

  • Cx=0,29{\displaystyle C_{x}=0,29} — Peugeot 308, 2007

  • {\displaystyle C_{x}=0,29}

    Cx=0,28{\displaystyle C_{x}=0,28} — Porsche 997, 2004

  • {\displaystyle C_{x}=0,28}

    Cx=0,27{\displaystyle C_{x}=0,27} — Infiniti G35, 2002 (Cx=0,26{\displaystyle C_{x}=0,26} «aero package»)

  • Cx=0,26{\displaystyle C_{x}=0,26} — Lexus LS 430, 2001 (0,25 air suspension)

  • {\displaystyle C_{x}=0,26}

    Cx=0,25{\displaystyle C_{x}=0,25} — Audi A2 1.2 TDI, 2001

Несерийные и уникальные автомобили[править | править код]

  • {\displaystyle C_{x}=0,25}

    Cx=0,2{\displaystyle C_{x}=0,2} — Loremo, 2007

  • {\displaystyle C_{x}=0,2}

    Cx=0,18{\displaystyle C_{x}=0,18} — Acabion, 2006

Аэродинамика автомобиля

Почему на автомобиль действует подъемная сила, которая стремится оторвать машину от дороги?

На первый взгляд действительно странно, что с ростом скорости автомобиль стремится оторваться от дороги. Но на самом деле все просто – посмотрите на машину в профиль. Не правда ли, она отдаленно напоминает крыло самолета? В этом и кроется разгадка.

Набегающий на автомобиль поток воздуха разделяется на два основных “течения”. Одно проходит снизу под днищем, другое – по капоту, крыше и багажнику. Понятно, что верхний путь значительно длиннее, поэтому по законам аэродинамики здесь образуется разрежение, которое и тянет машину вверх, стремясь оторвать ее от дороги.

Причем чем выше скорость машины и ближе к вертикали стоят панели кузова (например, решетка радиатора, ветровое стекло), тем большая подъемная сила будет на него действовать. В этом случае воздух, наталкиваясь на края капота, крыши или багажника как бы не находит дальнейшей опоры и начинает завихряться. Поэтому здесь тоже образуется вредное разрежение.

Чем антикрыло отличается от спойлера?

Спойлер на переднем бампере изменяет направление набегающего воздушного потока.

Эти аэродинамические устройства используются для разных целей.

Антикрыло призвано создавать силу, прижимающую автомобиль к земле. В профиль оно похоже на перевернутое крыло самолета. То есть набегающий поток воздуха стремится не оторвать машину от дороги, а наоборот, сильнее “вдавить” ее в полотно. В результате улучшаются устойчивость и управляемость автомобиля. Но только на высоких скоростях. Если ехать медленнее 90-100 км/ч, антикрыло практически бесполезно.

Также для эффективной работы этого элемента необходимо, чтобы воздух обтекал его с обеих сторон – сверху и снизу. Поэтому антикрыло обычно устанавливается на специальных стойках отдельно от кузова.

Спойлер же лишь меняет направление течения воздушного потока. Например, отсекает его часть для охлаждения тормозов или для снижения завихрений за кормой. Подъемная сила при этом обычно не уменьшается, зато коэффициент аэродинамического сопротивления может упасть очень заметно. А это, в свою очередь, улучшает экономичность машины и повышает максимальную скорость.

В отличие от антикрыла спойлер порой имеет весьма замысловатую форму, но всегда крепится непосредственно к кузову. Частенько он даже изготавливается вместе с каким-либо кузовным элементом. Например, бампером.

 

Что такое “граундэффект”?

Еще в 70-х годах прошлого века создатели гоночных “формул” поняли, что для увеличения прижимной силы можно использовать не только антикрылья, но и разрежение, возникающее под автомобилем. Впервые эту идею использовал знаменитый конструктор Колин Чепмен на болидах команды “Lotus”.

Суть заключается в следующем. Днищу машины придается специальная выгнутая в сторону дороги форма. Часть набегающего воздуха с помощью спойлеров направляется под автомобиль. Поскольку ближе к середине кузова дорожный просвет плавно уменьшается, воздушный поток начинает ускоряться. Это приводит к падению давления, которое “присасывает” машину к трассе. Ближе к корме днище снова расширяется, и воздух через диффузор выходит наружу. По такому же принципу работает карбюратор. Но в аэродинамике это явление получило название “граунд-эффект”.

Однако на серийных моделях он практически не используется. Почему? Во-первых, для его реализации днище должно быть гладким. На обычных машинах это почти невозможно. А любая выступающая часть шасси может нарушить воздушный поток, что приведет к росту подъемной силы. Во-вторых, с увеличением клиренса разрежение уменьшается, и “граундэффект” опять же перестает действовать..

Пожалуй, единственный класс, где машины способны “присасываться” к дороге – это эксклюзивные суперкары вроде “Ferrari Enzo”.

Слышал, что если ехать вплотную за впередиидущим автомобилем, то так можно снизить расход топлива, да и на обгон будет проще выходить. Так ли это?

Антикрыло на высокой скорости создает дополнительное усилие, прижимающее автомобиль к дороге.

Действительно, в автоспорте часто используется подобный прием. Он называется “слипстрим”.

Дело в том, что движущийся автомобиль как бы рассекает набегающий поток, образуя за собой “воздушный мешок” – область низкого давления. Аэродинамическое сопротивление в ней очень мало, поэтому пилот идущей сзади машины экономит топливо и ему легче разогнаться при выходе на обгон.

Но в обычной жизни данная тактика малоприменима. Опытным путем установлено, что размер “воздушного мешка”, как правило, не превышает длину автомобиля. То есть обычный легковой автомобиль оставляет за собой максимум 5-6 метров разреженного пространства. Естественно, если приблизиться к впередиидущей машине на это расстояние, то дистанция сократится до минимума. Что небезопасно..

Другое дело, если вы едете по загородной трассе за длинным грузовиком. В его “воздушном мешке” с легкостью спрячется какая-нибудь малолитражка. В этом случае “слипстрим” действительно может оказаться эффективным.  

 

 

Почему заднее стекло у одних автомобилей быстро загрязняется, а у других – остается чистым в любую погоду?

Ничего удивительного в этом нет. Чистота заднего стекла зависит от угла его наклона. Чем вертикальнее оно стоит, тем быстрее загрязняется. “Пограничным” считается угол 30о. При большей величине происходит срыв воздушного потока, образуются завихрения. Именно они, словно мощный пылесос, затягивают на стекло грязь и пыль.

Также на “чистоплотность” машины влияет форма кузова. Универсалы в этом смысле самые грязные. Ведь у них очень длинная крыша. На протяженной плоской поверхности воздух успевает ускориться, а поскольку задняя стенка почти вертикальная, за кормой такого автомобиля образуется маленький тайфун.

Другое дело – седаны, хэтчбеки и купе. Сильно наклонить стекло у них не всегда получается (иначе головам задних пассажиров не останется места), зато плавный переход от крыши к багажнику не дает воздушному потоку возможности закрутиться волчком.

Можно ли улучшить аэродинамику машины установкой специального комплекта?

Да, но к выбору аэродинамического обвеса следует подходить очень тщательно. Изготовить его на глазок нельзя. Должны проводиться кропотливые расчеты и долгие испытания. Финансировать подобные разработки по силам лишь крупным тюнинговым ателье вроде “Brabus” или “Alpina”. Такие комплекты действительно способны улучшить аэродинамику автомобиля.

Большинство же продукции на рынке – это кустарно выполненные поделки неизвестных азиатских компаний. Как правило, они привлекают клиентов агрессивным внешним видом. Но на этом их достоинства заканчиваются и начинаются недостатки.

Прежде всего однозначно вырастет расход топлива, поскольку дополнительные спойлеры и антикрылья сильно увеличивают аэродинамическое сопротивление автомобиля. Но главное – сделанный на коленке комплект может так изменить распределение подъемных сил по осям, что на высокой скорости машина станет просто небезопасной.

Когда менеджер автосалона представлял мне машину, он долго ходил вокруг, показывая на какие-то незначительные детали кузова. По его словам, они улучшают аэродинамику автомобиля и делают его комфортнее. Неужели эти мелочи так важны?

Через диффузор под задним бампером воздух выходит из-под днища машины.

Еще 8-10 лет назад к вопросам аэродинамики автомобиля действительно подходили глобально. Но теперь ситуация изменилась. Современным компаниям удалось добиться приемлемой обтекаемости своих моделей, поэтому на первый план сегодня выходят, казалось бы, незначительные мелочи.

Например, долгое время считалось, что щетки стеклоочистителя находятся в “мертвой зоне” и не влияют на аэродинамику кузова. Исследования показали, что это не так. Обратите внимание – у многих современных моделей “дворники” в нерабочем состоянии прячутся за край капота.

Другая проблема – загрязнение боковых стекол в плохую погоду – тоже связана с обтекаемостью машины. Ведь щетки смахивают грязь ближе к передним стойкам, а затем уже воздух уносит ее на боковины кузова. Оказалось, достаточно сделать по краям стоек небольшие желобки, и грязь начнет уходить на крышу.

Также тщательно прорабатывается форма зеркал заднего вида, поскольку они – один из главных источников шума на высоких скоростях. Иногда в поле зрения аэродинамиков попадают самые неожиданные детали. Например, на новом “Mercedes-Benz” C-класса по краям задних фонарей сделаны отверстия, через которые выводится часть воздушного потока изпод днища автомобиля. Этот “ветерок” призван уменьшать загрязнение светотехники.

 

Хочу установить на свой автомобиль передний бампер с большими воздухозаборниками, как на гоночных машинах. Это улучшит охлаждение двигателя?

Вовсе нет. При проектировании автомобиля инженеры учитывают экстремальные режимы работы двигателя и в соответствии с ними рассчитывают систему охлаждения. Поэтому, если мотор вашей машины перегревается, – ищите неполадку.

А увеличив приток воздуха в моторный отсек, вы рискуете еще больше поднять в нем температуру. Ведь нагретый воздух еще надо отводить из-под капота (как правило, под днище автомобиля). И штатные каналы могут с ним не справиться..

Кроме того, на гоночных машинах большие воздухозаборники на переднем бампере, как правило, направляют воздух вовсе не к двигателю, а для охлаждения тормозов.

Автор
Юрий УРЮКОВ
Издание
Клаксон №13 2007 год
Фото
фото Алексея БАРАШКОВА и “Mercedes-Benz”

Аэродинамика автомобиля

В соответствии с законами физики движение любого механизма является результатом взаимодействия нескольких сил. Причем при различных внешних условиях, вклад тех или иных воздействий будет отличаться. В применении к ТС часто приходится пользоваться таким понятием как аэродинамика автомобиля. Что это такое – ясно интуитивно, а вот коснуться некоторых подробностей будет, как минимум, просто интересно.

Несколько слов о самом движении

Хотим мы этого или нет, но машине при движении требуется преодолевать противодействие внешней среды. На нее действуют силы тяжести, инерции, сцепления с дорожным полотном, трения сопротивления качения, но для нас сейчас более интересны те из них, которые имеют отношение к аэродинамике. Для автомобиля с этой точки зрения актуальны:

  • сила сопротивления среды;
  • подъемная сила, образованная воздушным потоком;
  • прижимная сила.

Именно их соотношение (равнодействующая) определяет устойчивость, маневренность и экономичность автомобиля на дороге. Величина отмеченных сил во многом зависит от параметров движения. Сопротивление, оказываемое встречным потоком, определяется квадратом скорости и соответствующими коэффициентами. Но характер поведения других сил, обусловленных аэродинамикой, более сложный.аэродинамика автомобиля

аэродинамика автомобиля

При разгоне и движении ТС, препятствующий этому воздух делится на несколько потоков. Один из них обтекает машину сверху и прижимает ее к дороге. Другой проходит под днищем, по закону Бернулли он является более плотным и приподнимает машину, а остальные обтекают ее с боков.

Это самое краткое и минимальное описание сил аэродинамики. Как пример можно привести их распределение, действующих на автомобиль при определенной скорости в зависимости от формы машины и наличия внешних элементов.подъемная сила

подъемная сила

Простое сравнение результатов показывает, что даже минимальное улучшение, такое как изменение формы кузова и использование внешних элементов (спойлеров), приводит к тому, что аэродинамика автомобиля может поменяться самым кардинальным образом. Но относиться к этому надо достаточно осторожно, и вряд ли целесообразно экспериментировать самому.

Немного теории

Коэффициент аэродинамического сопротивления автомобиля указывается в величине Cx, обычно она меньше 1. Чем он будет меньше, тем меньше мощностей он будет затрачивать для движения. Так показатель Cx у AUDI A8 — 0.37, Lexus LS 460 — 0.26. Весьма странным может показаться тот факт, что у спорткаров этот показатель значительно выше (Porsche 911 Turbo 997 — 0.31, Bugatti Veyron — 0.42). На самом же деле все довольно просто. Мощные двигатели требуют охлаждения, в том числе и воздушными потоками. Добиться этого можно увеличив площадь радиатора, а значит и поперечное сечение машины.

Улучшение аэродинамики автомобиля

Машина движется в воздушной среде, преодолевая ее сопротивление. Оно во многом определяется формой автомобиля, наличием и конструкцией внешних устройств. Для первых представителей авто, например «жестянка Лиззи», это не имело никакого значения, скорости движения были невелики, и время думать о том, что надо улучшать аэродинамику автомобиля, еще не пришло.жестянка лиззи

жестянка лиззи

Однако по мере взросления автопрома росли скорости и мощности моторов, так что для дальнейшего развития и совершенствования автомобиля, вопросы, затрагивающие улучшение его аэродинамики, становились все более и более актуальными.

Главные цели улучшения аэродинамических показателей — увеличение скоростей и экономия топлива. В таблице показано как меняется сопротивление воздуха в зависимости от скорости.соотношение скорости и мощности

соотношение скорости и мощности

Первыми с этим столкнулись спортивные машины, именно там стали появляться обтекаемые формы, позволившие снизить сопротивление внешней среды, благодаря чему повысились скорости движения. Надо сразу отметить, что в тот момент именно скоростные характеристики стояли на первом месте, об экономичности речи еще не шло.

Но со временем именно топливная экономичность, вопросы безопасности и управляемости стали решающими. За счет оптимальных форм кузова, а также обтекаемости внешних элементов отделки и дизайна (фар, ручек, решеток и т.д.) удалось поднять скорость движения и повысить топливную эффективность автомобиля.

Как пример – в таблице приведены некоторые данные о влиянии внешних элементов на расход топлива.как улучшить аэродинамику

как улучшить аэродинамику

Так что со временем улучшение эксплуатационных характеристик автомобиля, стало просто невозможно без учета влияния на них его аэродинамики. И достигается это кропотливым трудом многочисленных специалистов на специальных стендах.

Аэродинамика автомобиля имеет отношение практически ко всему спектру вопросов существования современного ТС. Дело не только в наличии внешних атрибутов, таких как спойлеры, колесные диски или зеркала специальной формы. Во многих случаях аэродинамика играет едва ли не решающую роль в управляемости и безопасности движения. И собираясь улучшать аэродинамику автомобиля самостоятельно, стоит понимать, что этим занимался производитель еще на этапе производства.

Аэродинамика автомобиля. Как это работает.

Аэродинамика автомобиля,к числу первых автомобилей с кузовами удобообтекаемых форм следует отнести автомобили, построенные Женетти, Бергманом, Альфа-Ромео, Румплером и Яраем, появившиеся не столько в связи с изучением законов аэродинамики, сколько в результате чисто механического заимствования форм, используемых в снарядо-, корабле-, дирижабле- и самолетостроении. Наибольшего внимания заслуживает автомобиль конструкции инженера Ярая, который считал, что для тела, движущегося в непосредственной близости к поверхности дороги, в качестве теоретически наивыгоднейшей формы может служить разделенный пополам корпус дирижабля со слегка выпуклой нижней стороной и тщательно закругленными краями.

Главные цели автомобильной аэродинамики это:
*Уменьшение сопротивления воздуха и, как следствие, увеличение максимальной скорости и снижение расхода топлива.
*Снижение уровня шума.
*Предотвращение появления поднимающих сил (обеспечение прижимной силы) и других проявлений аэродинамической неустойчивости.
Аэродинамика автомобилей изучается двумя основными методами — испытаниями в аэродинамической трубе и компьютерным моделированием. Аэродинамические трубы для испытания автомобилей иногда оснащаются подвижной дорожкой, имитирующей движущееся дорожное полотно. Кроме того, колеса испытываемого автомобиля приводятся во вращение. Эти меры принимаются для того, чтобы учесть влияние дорожного полотна и вращающихся колес на потоки воздуха.

Аэродинамическое сопротивление-№1

Наверное, каждый слышал о том, что сила сопротивления воздуха пропорциональна квадрату скорости – столь быстро нарастает противодействие движению в процессе разгона. Впечатляет, но как это соотнести с параметрами автомобиля? Для этого нужно лишь перейти в термины механической работы, и тогда получится, что отбираемая от двигателя мощность находится аж в кубической зависимости от скорости! Только представьте, с каким трудом даются автомобилю последние десятки километров в час. В таких условиях даже значительная прибавка мощности мотора не в состоянии существенно увеличить максимальную скорость.

Таким образом, задача снижения лобового сопротивления – приоритетная задача не только для аэродинамики, но, в свете борьбы за экологию, и для всего автомобилестроения в целом.
Решение можно искать по двум направлениям. Первое – это уменьшение площади поперечного сечения автомобиля, иными словами, создание более узкого и низкого кузова. Путь весьма эффективный, ибо сопротивление воздуха напрямую зависит от размеров объекта, но, к сожалению, совершенно расходящийся с нынешней тенденцией к увеличению габаритов автомобилей. И увеличению, стоит отметить, немалому, ведь в моду активно входят кроссоверы, вторгающиеся даже в совершенно чуждый им сегмент спортивных, скоростных автомобилей, где требования к аэродинамике предельно высоки.

А значит остается второй и единственный вариант – оптимизация процесса обтекания кузова, критерием совершенства которого как раз и является коэффициент аэродинамического сопротивления Cx (или Cw, как иногда встречается в литературе).

Величина Cx определяется опытным путем. Например, у так называемого обтекаемого тела, похожего на вытянутую каплю воды, Cx равен 0,04, у сферы – 0,47, у куба, грань которого перпендикулярна потоку, — 1,05, а если его повернуть, так чтобы угол между воздушным потоком и гранями составлял 45 градусов, то Сх снизится до 0,8. Примерно в том же диапазоне находится и Сх практически всех автомобилей, разве что нижняя граница поднимается примерно до 0,25.

Факторов, влияющих на Cx автомобиля, несколько: во-первых, это внутреннее сопротивление, возникающее при прохождении воздуха через подкапотное пространство и салон, во-вторых, сопротивление трения между воздушным потоком и поверхностью кузова, и, в-третьих, сопротивление формы, проявляющееся главным образом в избыточном давлении перед автомобилем и разряжением позади него.

Внутреннее сопротивление составляет около 12% от общей величины, и пока особых успехов в этой области не наблюдается: напротив, все более и более мощные моторы современных автомобилей требуют все больше воздуха для охлаждения. Например, в пределе 300-сильный бензиновый двигатель выделяет в виде тепла около 450кВт – этого хватило бы для отопления нескольких особняков! Соответственно, растут размеры радиаторов, уплотняются моторные отсеки, увеличивается сопротивление воздуха… Существенные же улучшения здесь возможны лишь при переходе на более эффективные электродвигатели, но пока они так и остаются технологией будущего.
Сопротивление поверхностного трения так же вносит свой 10-процентный вклад в величину Cx. Вообще, наличие столь ощутимого трения между воздухом и кузовом может показаться странным, но оно действительно имеет место: прилегающий к поверхности слой воздуха сталкивается с микронеровностями покрытия и тормозиться — образуется так называемый пограничный слой. Пока это течение находится в ламинарном состоянии, то есть все его частицы движутся в одном направлении, толщина пограничного слоя невелика (около нескольких миллиметров) и сопротивление трения небольшое. Но с переходом в турбулентное состояние, когда поток «спотыкается» о более крупное препятствие, и траектории его частиц становятся хаотичными, пограничный слой расширяется, а вместе с ним увеличивается и трение – воздух словно становится более вязким. Таким образом, от разработчиков в данном случае требуется обеспечение гладкости кузова, дабы пограничный слой дольше оставался ламинарым. А для этого нужно уменьшать зазоры кузовных элементов, закрывать уплотнителями щели между деталями. Помогает и придание поверхностям небольшой кривизны – прилегающий поток ускоряется, давление в нем падает, и траектории частиц упорядочиваются. К сожалению, в целях экономии этими мерами в последнее время частично пренебрегают, например, уплотнители по периметру лобового стекла или вокруг фар сейчас встретишь нечасто.

И, наконец, сопротивление формы или сопротивление давления – главный фактор, определяющий значение Cx. Причина его возникновения понятна – спереди на автомобиль давит набегающий поток воздуха, а позади его «оттягивает» назад зона разряжения, образующаяся в результате отрыва потока от резко заканчивающегося кузова. Решение проблемы тоже, казалось бы, очевидно – нужно придать автомобилю такую форму, чтобы он плавно рассекал воздух и опять-таки плавно, без отрыва потока от поверхности, позволял ему сойтись позади себя. Но загвоздка в том, что в соответствии с такими требованиями автомобиль должен напоминать дирижабль (точнее, его половину, отрезанную в продольной плоскости), то есть иметь минимум граней и, главное, очень длинную, постепенно сужающуюся заднюю часть. Разумеется, о рациональной компоновке в данном случае говорить трудно. Так что задача перед инженерами стояла непростая…

Аэродинамика автомобиля — Википедия

Материал из Википедии — свободной энциклопедии

Аэродина́мика автомоби́ля — это раздел аэродинамики, изучающий аэродинамику автомобилей и другого дорожного транспорта. К числу первых автомобилей с кузовами удобообтекаемых форм следует отнести автомобили, построенные Женетти, Бергманом, Альфа-Ромео, Румплером и Яраем, появившиеся не столько в связи с изучением законов аэродинамики, сколько в результате чисто механического заимствования форм, используемых в снарядо-, корабле-, дирижабле- и самолетостроении. Наибольшего внимания заслуживает автомобиль конструкции инженера Ярая, который считал, что для тела, движущегося в непосредственной близости к поверхности дороги, в качестве теоретически наивыгоднейшей формы может служить разделенный пополам корпус дирижабля со слегка выпуклой нижней стороной и тщательно закругленными краями.

Главные цели

Главные цели автомобильной аэродинамики это:

  • Уменьшение сопротивления воздуха и, как следствие, увеличение максимальной скорости и снижение расхода топлива.
  • Снижение уровня шума.
  • Предотвращение появления поднимающих сил (обеспечение прижимной силы) и других проявлений аэродинамической неустойчивости.
  • Оптимизация процесса охлаждения некоторых агрегатов автомобиля.
  • Уменьшение загрязнения дорожной грязью стёкол, некоторых элементов охлаждения и воздушного фильтра автомобиля.

Особенности

Есть отличия в аэродинамике автомобилей и аэродинамике воздушного транспорта. Во-первых, характерная форма дорожного транспорта намного менее обтекаемая в сравнении с воздушным транспортом. Во-вторых, для автомобилей необходимо учитывать влияние дорожного покрытия на потоки воздуха. В-третьих, скорости наземного транспорта намного меньше. В-четвертых, у наземного транспорта меньше степеней свободы чем у воздушного, и его движение меньше зависит от аэродинамических сил. В-пятых, Наземный транспорт имеет особые ограничения во внешнем виде, связанные с высокими требованиями безопасности. И, наконец, большинство водителей наземного транспорта менее обучены чем пилоты и обычно водят, не стремясь достичь максимальной экономичности.

Сила сопротивления воздуха

Сила сопротивления воздуха вычисляется по формуле:

F=12⋅Cx⋅ρ⋅S⋅V2{\displaystyle F={{1 \over 2}\cdot {C_{x}}\cdot \rho \cdot {S}\cdot {V^{2}}}}

Где ρ{\displaystyle \rho } — плотность воздуха, S —площадь поперечной проекции автомобиля, Cx{\displaystyle C_{x}} — коэффициент аэродинамического сопротивления. Из формулы видно, что сила сопротивления воздуха пропорциональна квадрату скорости. На больших скоростях сила сопротивления воздуха превосходит другие силы сопротивления. Из формулы также видно, что уменьшить силу сопротивления можно путём уменьшения коэффициента Cx и уменьшения площади поперечной проекции. Наличие силы сопротивления воздуха объясняется тем, что при движении автомобиль сжимает воздух, находящийся перед ним, и там образуется область повышенного давления, и разрежает воздух позади себя, где образуется область пониженного давления.

Существует также сила поверхностного трения, возникающая из-за трения между неровностями поверхности автомобиля и воздухом.

Внутренние объемы автомобиля также оказывают влияние на коэффициент сопротивления, и, следовательно, на силу сопротивления воздуха.

Способы изучения аэродинамики автомобиля

Аэродинамика автомобилей изучается двумя основными методами — испытаниями в аэродинамической трубе и компьютерным моделированием. Аэродинамические трубы для испытания автомобилей иногда оснащаются подвижной дорожкой, имитирующей движущееся дорожное полотно. Кроме того, колеса испытываемого автомобиля приводятся во вращение. Эти меры принимаются для того, чтобы учесть влияние дорожного полотна и вращающихся колес на потоки воздуха.

См. также

Диффузор

Ссылки

Примечания

Аэродинамика автомобиля — Википедия

Материал из Википедии — свободной энциклопедии

Аэродина́мика автомоби́ля — это раздел аэродинамики, изучающий аэродинамику автомобилей и другого дорожного транспорта. К числу первых автомобилей с кузовами удобообтекаемых форм следует отнести автомобили, построенные Женетти, Бергманом, Альфа-Ромео, Румплером и Яраем, появившиеся не столько в связи с изучением законов аэродинамики, сколько в результате чисто механического заимствования форм, используемых в снарядо-, корабле-, дирижабле- и самолетостроении. Наибольшего внимания заслуживает автомобиль конструкции инженера Ярая, который считал, что для тела, движущегося в непосредственной близости к поверхности дороги, в качестве теоретически наивыгоднейшей формы может служить разделенный пополам корпус дирижабля со слегка выпуклой нижней стороной и тщательно закругленными краями.

Главные цели

Главные цели автомобильной аэродинамики это:

  • Уменьшение сопротивления воздуха и, как следствие, увеличение максимальной скорости и снижение расхода топлива.
  • Снижение уровня шума.
  • Предотвращение появления поднимающих сил (обеспечение прижимной силы) и других проявлений аэродинамической неустойчивости.
  • Оптимизация процесса охлаждения некоторых агрегатов автомобиля.
  • Уменьшение загрязнения дорожной грязью стёкол, некоторых элементов охлаждения и воздушного фильтра автомобиля.

Видео по теме

Особенности

Есть отличия в аэродинамике автомобилей и аэродинамике воздушного транспорта. Во-первых, характерная форма дорожного транспорта намного менее обтекаемая в сравнении с воздушным транспортом. Во-вторых, для автомобилей необходимо учитывать влияние дорожного покрытия на потоки воздуха. В-третьих, скорости наземного транспорта намного меньше. В-четвертых, у наземного транспорта меньше степеней свободы чем у воздушного, и его движение меньше зависит от аэродинамических сил. В-пятых, Наземный транспорт имеет особые ограничения во внешнем виде, связанные с высокими требованиями безопасности. И, наконец, большинство водителей наземного транспорта менее обучены чем пилоты и обычно водят, не стремясь достичь максимальной экономичности.

Сила сопротивления воздуха

Сила сопротивления воздуха вычисляется по формуле:

F=12⋅Cx⋅ρ⋅S⋅V2{\displaystyle F={{1 \over 2}\cdot {C_{x}}\cdot \rho \cdot {S}\cdot {V^{2}}}}

Где ρ{\displaystyle \rho } — плотность воздуха, S —площадь поперечной проекции автомобиля, Cx{\displaystyle C_{x}} — коэффициент аэродинамического сопротивления. Из формулы видно, что сила сопротивления воздуха пропорциональна квадрату скорости. На больших скоростях сила сопротивления воздуха превосходит другие силы сопротивления. Из формулы также видно, что уменьшить силу сопротивления можно путём уменьшения коэффициента Cx и уменьшения площади поперечной проекции. Наличие силы сопротивления воздуха объясняется тем, что при движении автомобиль сжимает воздух, находящийся перед ним, и там образуется область повышенного давления, и разрежает воздух позади себя, где образуется область пониженного давления.

Существует также сила поверхностного трения, возникающая из-за трения между неровностями поверхности автомобиля и воздухом.

Внутренние объемы автомобиля также оказывают влияние на коэффициент сопротивления, и, следовательно, на силу сопротивления воздуха.

Способы изучения аэродинамики автомобиля

Аэродинамика автомобилей изучается двумя основными методами — испытаниями в аэродинамической трубе и компьютерным моделированием. Аэродинамические трубы для испытания автомобилей иногда оснащаются подвижной дорожкой, имитирующей движущееся дорожное полотно. Кроме того, колеса испытываемого автомобиля приводятся во вращение. Эти меры принимаются для того, чтобы учесть влияние дорожного полотна и вращающихся колес на потоки воздуха.

Ссылки

Примечания

Аэродинамика автомобиля, улучшение за счет выбора аэродеталей

Улучшая аэродинамику автомобиля мы одновременно и улучшаем его эксплуатационные качества, которые выражаются в улучшении его динамических характеристиках и уменьшении расхода топлива.

Уменьшение сопротивляемости встречному воздушному потоку положительно влияет на скоростные показатели машины, не зря практически на всех спорт-карах установлена какая-либо аэродеталь.

Чаще всего авто оборудуются диффузорами, спойлерами, сплиттерами или антикрыльями.

И если профессиональные спортсмены прекрасно знают назначение, функции и последствия установки каждого из дополнительных элементов, то для новичков данный факт зачастую является загадкой. Но это не беда.

В данной статье мы разберемся, какие бывают детали, которые улучшаю аэродинамику автомобиля, и в каких случаях их необходимо ставить.

Основные действующие силы

Если вспомнить законы физики, то можно констатировать – во время движения на машину действует две основные силы – прижимная и подъемная.

При этом многое зависит от формы объекта, сталкиваясь с которым воздух поднимается или опускается к земле.

Сегодня есть множество моделей машин, у которых из-за неправильной формы кузова проявляется дополнительная подъемная сила. Последняя всеми силами пытается оторвать переднюю часть от земли. И чем выше скорость движение, тем мощнее данная сила.

Когда автомобиль сталкивается с потоком воздуха, у последнего есть всего два пути – уйти вверх или отправиться под днище транспортного средства.

Действующие силы

Самое интересное, что во время езды давление воздуха под авто зачастую гораздо выше, чем над ним. Здесь проявляется так называемый «эффект Бернулли».

Молекулы воздуха быстрее перемещаются над верхним кузовом авто, поэтому там давление ниже. Под машиной плотность воздуха много больше, поэтому выше и давление.

Какой можно сделать вывод? На большой скорости потоки воздуха стараются оторвать переднюю часть от земли, но этому явлению сопротивляется сила тяжести.

Применение аэродинамики в спорте

Под капотом автомобиля огромный вес, но это не мешает встречному потоку воздуха приподнимать кузов и ухудшать сцепление колес с дорогой.

В автоспорте данное явление недопустимо. Неточное вхождение в поворот, небольшая неровность на дороге, и авто может вылететь с трассы.

Вполне логично, что мастера вынуждены всяческими методами бороться с неприятными явлениями.

Делается это путем генерации дополнительной прижимной силы, путем грамотного подбора и установки аэродинамических деталей.

Применение аэродинамики в спорте

Как подобрать аэродеталь для своего авто

У большинства автолюбителей есть одна общая ошибка — при выборе они исходят из внешнего вида детали, не обращая внимания на ее функциональные особенности.

С таким подходом можно не только не добиться большей устойчивости на дороге, но и усугубить ситуацию.

Следовательно, необходимо знать некоторые тонкости выбора аэродинамических деталей для каждого конкретного вида авто.

Двигатель спереди, передний привод

В таких машинах вся мощность концентрируется в передней части. Чтобы исключить негативное действие воздушных масс, необходимо обзавестись передним сплиттером, который часто называют «губой на бампер».

Передний сплиттер

Еще одна полезная деталь для создания прижимной силы – дефлектор на бампер (также устанавливается на передней части авто).

Этих двух делателей достаточно, чтобы дать автомобилю дополнительную прижимную силу и снизить потери мощности.

Компоновка – среднемоторная, привод – задний

Особенность таких автомобилей – центр тяжести, который находится где-то в центральной части автомобиля.

Передок машины намного легче, что может привести к неконтролируемому заносу задней части авто или перевороту последнего.

Но столь негативные явления можно сбалансировать, если установить подходящие аэродинамические детали на передке машины (о них мы уже упоминали выше).

Передний сплиттер

Не стоит забывать о задней части автомобиля, где диффузоры, спойлеры и антикрылья также могут пригодиться. С их помощью создается прижимная сила на заднюю ось.

Снова-таки, рассмотрим два основных типа авто.

Мотор – спереди, привод – передний

Мы уже упоминали, что нагрузка у такого авто находится в передней части, поэтому зад оказывается уж слишком легким.

Чтобы добиться оптимального результата, его также необходимо «нагрузить» с помощью специальных деталей.

В частности, для этих целей можно установить антикрылья и задние спойлеры.

Задний спойлер

Компоновка – среднемоторная, привод – задний

В таких авто мощность сосредоточена в большей степени у задних колес. Чтобы сохранить ее в полном объеме и добиться лучшей сцепки колес с дорогой, задней части также необходима дополнительная прижимная сила, которую обеспечивает спойлер или антикрыло.

Антикрылья

На какой высоте устанавливать антикрыло

Малоопытные водители часто удивляются высокому расположению элементов, считая это решение глупым и бессмысленным. На самом деле при движении на треке подобный тип установки является оправданным.

Крыло в этом случае располагается в зоне «чистого воздуха», то есть на пути следования потока над крышей авто.

Во время движения в задней части машины давление воздуха разрежено и прижимной силы практически нет.

Антикрыло ставится таким образом, чтобы через него проходил «чистый воздух» и выполнял свою функцию. Если поставить девайс ниже, то от него попросту не будет толка.

Антикрыло

Но, исходя из вышесказанного, возникает вопрос по поводу оптимальной высоты для установки антикрыла.

Здесь есть несколько вариантов (в зависимости от типа кузова).

Седан.

Практически на всех авто такого типа угол «скоса» заднего стекла очень большой. Следовательно, разреженность воздуха над багажником проявляется намного больше.

Ставить спойлер на низких «ножках» в таком авто бессмысленно. Лучший выход – монтаж аэродетали на максимально допустимую высоту.

Антикрыло на автомобиле седан

Лифт-, фастбэк или купе.

У таких авто заднее стекло довольно «покатое», угол небольшой. Следовательно, разрежение воздуха над задней частью машины не так заметно. В этом случае антикрылья должны ставиться на среднюю высоту.

Антикрыло на автомобиле купе

Универсал, хэтчбек.

Все авто такого класса имеют одну общую особенность – у них нет багажников в том виде, в каком мы привыкли их видеть.

В этом случае спойлер должен устанавливаться как раз на краю крыши, чтобы через аэродеталь проходили потоки «чистого воздуха».

Антикрыло на автомобиле хэтчбек

Для чего нужен диффузор?

Многие автолюбители так и не знают, для чего нужен диффузор. Его задача – создание дополнительной прижимной силы. Установка данного элемента часто производится вместе со спойлером. В этом случае и эффект будет максимальным.

Задний диффузор

Выводы

Хорошая аэродинамика автомобиля безусловно это здорово, но как правило, начальные аэродинамические характеристики машины уже заложены в нее на этапе конструирования.

Аэродинамические характеристики машины

Поэтому если вы придерживаетесь любительского стиля езды, то установка аэродинамических деталей не обязательна.

Но для спортсменов такие дополнения – настоящие спасители, ведь с их помощью можно не только гарантировать необходимую мощность, но и удержать автомобиль на дороге в случае резкого маневра.

Но если есть желание установить спойлер или диффузор ради тюнинга автомобиля – право ваше.

Не все так просто, как проверяют аэродинамику в компании Мерседес.

В этом нет ничего плохого.

Оцените статью

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*