Цикл двс – 2. Расчет и исследование термодинамических циклов двигателей внутреннег сгорания и газотурбинных установок

  • 29.08.2020

Содержание

Теоретические циклы двигателей внутреннего сгорания

При анализе термодинамических циклов делаются следующие допущения:

    1. химический состав и количество рабочего тела – постоянны;

    2. процесс горения топлива заменен обратимым процессом подведения теплоты;

    3. выпуск продуктов сгорания заменен обратимым процессом отведения теплоты в окружающую среду;

    4. температура рабочего тела не зависит от температуры окружающей среды;

    5. рабочее тело находится в равновесии с источником теплоты и охладителем (окружающей средой).

Основные циклы ДВС:

    • со смешанным подводом теплоты при постоянном объеме и давлении (цикл Сабатэ) – отражает процесс

      дизеля без компрессора, который наиболее близок к реальным условиям сгорания топлива;

    • с подводом теплоты при постоянном давлении (цикл Дизеля) – отражает процесс тихоходного дизеля;

    • с подводом теплоты при постоянном объеме (цикл отто) – отражает процесс двигателя быстрого сгорания (карбюраторного и газового).

    Теоретические циклы, давая максимально возможное превращение теплоты в работу при приведенных выше условиях, схематизируют действительные явления и позволяют изучать эти явления, отмечая главные факторы, которые влияют на экономику этих явлений.

    Цикл со смешанным (комбинированным) подводом теплоты (рисунок 1)

    смешанный цикл, в котором подвод теплоты осуществляется частично при v = const, а частично при р = const был предложен советским инженером Г.В. Тринклером. Работающие по этому циклу двигатели называются без компрессорными дизелями. в настоящее время дизели строятся только с комбинированным подводом тепла.

    По этой схеме цикла ДВС работают с внутренним смесеобразованием и воспламенением рабочей смеси.

    Рисунок 1– Смешанный цикл ДВС в pv и Ts координатах

    В этом виде цикла (рисунок 1) в процессе 1-2 происходит адиабатное сжатие рабочего тела, после чего подводится теплота сначала при v =const (линия 2-3), а затем при р = const (линия 3-4). Далее происходит адиабатное расширение (линия 4-5) и, наконец, отвод теплоты при v =const (линия 5-1).

    Процессы всасывания (линия 0-1) и выхлопа (линия 1-0) в термодинамике не рассматриваются, так как это механические процессы.

    Характеристики цикла:

    ; (2)

    . (3)

    Термический кпд цикла (см. прямой цикл Карно – )

    ; (4)

    и ; (5)

    термический КПД: , если поделить числитель и знаменатель на на сv, то получим:

    . (6)

    Выразим T2, T3, T4, T5 через T1.

    Рассмотрим процессы.

    1-2 – процесс адиабатического сжатия:

    T2 = T1ε k – 1. (7)

    2-3 – процесс нагрева при ν = const:

    ;

    T3 = T

    2λ;

    T3 =T1ε k – 1λ. (8)

    3-4 – процесс нагрева при р= const:

    ;

    T4 = T3ρ;

    T4 = T1ε k – 1λρ; (9)

    4-5 – процесс адиабатического расширения: ,

    v5 = v1, а v4 = v2, тогда .

    . (10)

    Подставив в формулу (6) t2,t3,t4

    ,T5 через t1 из формул (7), (8), (9), (10) получим:

    . (11)

    из уравнения (11) видно, что ηt растет с увеличением ε и k.

    Таблица 1 – Значения р2 и T2при различных значениях ε

    k

    ε

    8

    9

    12

    13

    14

    15

    16

    17

    1,30

    p2

    13,42

    15,70

    22,70

    25,20

    27,80

    30,30

    33,00

    35,80

    T2

    708

    734

    801

    822

    840

    856

    873

    889

    1,35

    p2

    14,90

    17,50

    25,70

    28,80

    31,80

    34,90

    38,20

    41,40

    T2

    795

    850

    901

    932

    956

    980

    1 004

    1 020

    Цикл с подводом теплоты при постоянном давлении

    в таких двигателях топливо распыляется сжатым воздухом.

    если сжимать один воздух, а топливо вводить в цилиндр после сжатия, то степень сжатия может быть значительно большей. Такая схема применяется в дизель-моторах, и была предложена инженером Дизелем в 1897 г.

    в цикле с подводом тепла при р = const первоначальное состояние рабочего тела в pv-координатах характеризуется точкой 1 (рисунок 2).

    В течение первого хода справа налево совершается сжатие воздуха, которое происходит без теплообмена с внешней средой (линия 1-2). На участке 2-3 к рабочему телу подводится тепло q1 таким образом, что давление при этом остается постоянным (так как увеличивается объем), что приближенно соответствует реальным условиям сгорания трудно сгораемого топлива.

    Дальнейшее расширение рабочего тела (линия 3-4) происходит без теплообмена с внешней средой (по адиабате). Для приведения рабочего тела в первоначальное состояние 1, от него отводится тепло q2 при v =const (линия 4-1).

    Рисунок 2 – Цикл ДВС в pv и Ts- координатах с подводом тепла при р = const

    Теоретический цикл – (1-2-3-4). процессами 0-1 (процесс всасывания) и 1- 0 (процесс выхлопа) – пренебрегают, считая, что в цилиндре находится

    постоянное количество газа (механические процессы).

    В рассматриваемом цикле степень повышения давления при сгорании топлива .

    Основные величины этого цикла:

    (12)

    Тогда подставив в уравнение (173) λ = 1 в ηt цикла с комбинированным подводом теплоты получим:

    . (13)

    Выводы:

    1. термический КПД двигателя Дизеля зависит от степени предварительного расширения ρ и с увеличением  уменьшается экономичность цикла;

    2. с увеличением степени сжатия ε увеличивается термический КПД цикла.

    Таблица 2– Значения термического КПД цикла Дизеля при различных значениях и k = 1,35

    ε

    10

    12

    14

    16

    18

    ρ = 1,5

    ηt

    0,52

    0,54

    0,57

    0,59

    0,61

    ρ = 2,1

    ηt

    0,49

    0,52

    0,55

    0,57

    0,58

    ρ = 2,5

    ηt

    0,46

    0,49

    0,52

    0,54

    0,56

    Цикл с подводом теплоты при постоянном объеме

    13. Циклы двигателей внутреннего сгорания

    В поршневых двигателях внутреннего сгорания (ДВС) в качестве рабочего тела используются продукты сгорания органического топлива. Цилиндры этих двигателей выполняют функции камеры сгорания и устройств для сжатия и расширения рабочего тела. В качестве холодного источника теплоты в ДВС используется внешняя среда (выхлоп продуктов сгорания в атмосферу).

    Для упрощения термодинамического анализа циклов ДВС принимается ряд допущений.

    1. Количество рабочего тела в цикле ДВС будем считать неизменным и равным расходу воздуха. Это допущение объясняется малым процентным массовым расходом топлива по отношению к расходу воздуха.

    2. Свойства рабочего тела будем считать соответствующими свойствам идеального двухатомного воздуха с постоянными изобарными и изохорными теплоемкостями.

    3. Процессы выхлопа отработавших газов и процесс забора новой порции воздуха взаимно компенсируют друг друга (их нет). Это возможно, т.к. оба эти процесса идут практически при постоянном давлении окружающей среды в противоположных направлениях.

    4. Процесс отвода теплоты от рабочего тела в окружающую среду заменяется изохорным процессом охлаждения рабочего тела до температуры окружающей среды. То есть условно считается цикл замкнутым, а охлаждение рабочего тела осуществляется прямо в цилиндре при закрытых клапанах до температуры окружающей среды.

    5. Процессы расширения и сжатия рабочего дела соответствуют адиабатным процессам. Эти процессы быстротечны, поэтому можно считать их адиабатными.

    6. Процессы подвода теплоты к рабочему телу считаются в зависимости от типа двигателя изохорными или изобарными.

    Цикл двс с подводом теплоты к рабочему телу при постоянном объеме

    Цикл ДВС с подводом теплоты при постоянном объеме соответствует карбюраторному двигателю. В этом двигателе в цилиндр поступает топливно-воздушная смесь, которая сжимается и за счет искры в электрической свече воспламеняется. Процесс горения топлива быстротечен и происходит практически при постоянном объеме.

    Исходя из принятых допущений идеальный цикл ДВС с подводом теплоты при постоянном объеме можно показать в T,s — диаграмме в виде рис. 13.1.

    Для термодинамического анализа экономичности таких циклов ДВС используются следующие отношения объемов и давлений рабочего тела:

    –степень адиабатного сжатия;

    –степень повышения давления.

    Эти относительные величины позволяют по известным параметрам рабочего тела в точке 1 (состояние равновесия с внешней средой) определить все термические параметры в характерных точках цикла ДВС.

    Используя данные соотношения, определяются основные величины, характеризующие экономичность цикла:

    количество удельной теплоты, подведенной к рабочему телу,

    ; (13.1)

    количество удельной теплоты, отведенной от рабочего тела,

    ; (13.2)

    удельная работа цикла

    ; (13.3)

    термический КПД цикла

    . (13.4)

    Цикл двс с подводом теплоты к рабочему телу при постоянном давлении

    Увеличить степень сжатия в ДВС можно путем сжатия в цилиндре только воздуха с последующим впрыскиванием в него топлива. При сжатии воздуха отсутствует ограничение на температуру самовоспламенения топлива, а высокая температура воздуха в конце процесса сжатия позволяет осуществить самовоспламенение топлива, впрыскиваемого в цилиндр, без электрической свечи. Такой ДВС был предложен Дизелем (Германия), поэтому в настоящее время эти двигатели называют дизелями. Цикл дизельного ДВС показан в T,s — диаграмме на рис. 13.2.

    Определяющими характеристиками данного цикла являются: степень сжатия и степень предварительного расширения.Используя эти характеристики и параметры первой точки, можно определить остальные параметры цикла в характерных точках.

    Термический КПД цикла

    , (13.5)

    где – коэффициент Пуассона.

    Выразив температуры в выражении (13.5) через Т1 и характеристики цикла , , термический КПД ДВС

    . (13.6)

    Идеальные циклы поршневых двигателей внутреннего сгорания.

    Идеальные циклы поршневых двигателей

    

    Понятие о цикле двигателя внутреннего сгорания

    Последовательность термодинамических процессов в любом современном поршневом двигателе внутреннего сгорания в той или иной степени приближена к одному из трех характерных циклов, называемых идеальными циклами Отто, Дизеля и Сабатэ – Тринклера (Сабатье – Тринклера).
    При этом принципиальное различие этих циклов проявляется лишь в характере процесса сгорания топлива (подвода теплоты), который в идеальном цикле Отто протекает в условиях постоянного объема камеры сгорания, в цикле Дизеля – при постоянном давлении в цилиндре, а в цикле Сабатэ – последовательно по изохорному, а затем по изобарному процессам.

    Исходя из приведенных характеристик, циклы Отто, Дизеля и Сабатэ – Тринклера иногда называют, соответственно, циклами быстрого, постоянного и смешанного сгорания, которые положены в основу работы карбюраторного, компрессорного и бескомпрессорного двигателей.

    Приведенные ниже идеальные циклы тепловых двигателей внутреннего сгорания описывают последовательность термодинамических процессов, протекающие по двухтактному сценарию, т. е. поршень в цилиндре совершает за один цикл два хода — вверх и вниз. Реальные тепловые двигатели могут работать и по двухтактному, и по более эффективному четырехтактному циклу.

    ***

    Цикл Отто

    Идеальный цикл теплового двигателя внутреннего сгорания с принудительным воспламенением горючей смеси, который обычно называют циклом Отто, на самом деле был описан и предложен еще в 1862 году французским инженером Альфонсом Бо Де Роша (1815-1891), т. е. задолго до создания Николаусом Августом Отто своего знаменитого двигателя, первый образец которого был изготовлен спустя полтора десятилетия — в 1878 году. Поэтому заслуга Отто заключается лишь в осуществлении указанного цикла на практике.

    В своем двигателе Отто первым применил сжатие рабочей смеси для поднятия максимальной температуры цикла, которое осуществлялось по адиабате (т. е. без теплообмена с внешней средой). Последовательность термодинамических процессов в цикле Отто можно проследить по приведенной ниже диаграмме (рис. 1).
    После сжатия газо-топливной смеси она воспламенялась от внешнего источника (свечи), после чего начинался процесс подвода теплоты, который протекал практически по изохоре (т. е. при постоянном объеме цилиндра двигателя). Этот процесс на диаграмме представлен в виде вертикального участка, начинающегося с момента воспламенения горючей смеси в цилиндре.
    Изохорный характер процесса подвода теплоты объясняется тем, что воспламенившаяся газо-топливная смесь сгорает очень быстро, при этом процесс сопровождается резким повышением (скачком) давления и температуры в цилиндре.

    Далее следовало адиабатическое расширение, в процессе которого двигателем осуществлялась полезная работа (рабочий ход поршня). В конце процесса расширения следовал изохорный отвод теплоты (открывание клапанов и продувание цилиндра). На этом цикл завершался, после чего следовало повторение указанной последовательности процессов, составляющих череду аналогичных циклов.

    Как указывалось выше, А. Отто первым применил сжатие рабочей смеси перед воспламенением, благодаря чему КПД его двигателя значительно превышал КПД двигателя Э. Ленуара, в котором сжатие не предусматривалось. Современные двигатели, работающие по схеме цикла Отто, имеют степень сжатия (в зависимости от конструктивных особенностей) от 8 до 12,5. По такому циклу работают двигатели с принудительным воспламенением горючей смеси, использующие в качестве топлива бензин или газ.
    Более высокая степень сжатия в таких двигателях приводит к детонационному самовоспламенению смеси, т. е. теряется контроль над процессом воспламенения и сгорания топлива, а сам двигатель, по существу, начинает «превращаться» в беспорядочно работающий дизель со всеми вытекающими от детонации последствиями.

    Из-за относительно невысокой степени сжатия горючей смеси в цилиндрах, термический КПД таких двигателей ниже, чем в дизельных двигателях, и достигает 30-35 %.

    Двигатели, работающие по циклу Отто, в настоящее время широко применяются в автомобилях, лодочных моторах, маломощных летательных аппаратах и т. п.

    ***

    

    Цикл Дизеля

    Другой характерный идеальный цикл для ДВС называют циклом Дизеля, по имени изобретателя дизельного двигателя. Этот цикл характеризуется подводом теплоты (сгоранием топлива) по изобаре, т. е. при постоянном давлении в цилиндре двигателя.

    Как и в случае с циклом Отто, называть цикл, в котором сгорание топлива осуществляется по изобаре, циклом Дизеля будет не совсем справедливо.
    Изначально Р. Дизель предлагал осуществлять сжигание топлива по изотерме (как в идеальном цикле Карно) и запатентовал именно такой способ подвода тепла к рабочему телу.
    Однако, уже первые практические испытания показали, что цикл, предложенный Р. Дизелем, не имеет никакого практического и теоретического значения. Всякое приближение процессов горения к изотерме в цикле Дизеля приводило к увеличению расхода топлива.
    И лишь некоторое время спустя анализ диаграммы рабочего цикла дизельного двигателя, построенного в России на заводе «Л.Нобеля» показал, что линия сгорания топлива в нем протекает по изобаре. При этом достигался наиболее высокий КПД.
    Тем не менее, название цикл Дизеля установилось и теперь навсегда связано с именем знаменитого изобретателя конструкции тепловых двигателей уникального типа.

    Цикл Дизеля протекает по следующему сценарию (см. диаграмму на рис. 1).
    Сжатие осуществляется по адиабате, как и в цикле Отто, с той лишь разницей, что степень сжатия и давление в конце такта значительно выше. Это прослеживается на приведенной диаграмме.
    В конце такта сжатия происходит впрыск топлива и начинается его горение (подвод теплоты), которое осуществляется по изобаре, т. е. при постоянном давлении.
    Именно в этом заключается принципиальное отличие цикла Дизеля от цикла Отто, где теплота подводится изохорно (при постоянном объеме), поскольку топливо сгорает очень быстро, а его воспламенение (от искры) начинается чуть раньше, чем поршень достигал верхнего положения.
    Изобарное сжигание топлива в дизельном двигателе связано с относительно медленным (лавинообразным) воспламенением – сначала сгорают легкие фракции, затем более тяжелые. В результате процесс горения растягивается во времени и поршень успевает «убежать» от верхней мертвой точки, при этом давление в цилиндре остается неизменным.
    Далее, как и в цикле Отто, следовало адиабатическое расширение, а затем изохорный отвод теплоты (выпуск газов и продувка цилиндра после открывания клапанов).

    Принципиальное и конструктивное отличие заключалось в том, что Дизель предложил сжимать в цилиндре не топливовоздушную смесь, как в двигателях Отто, а воздух. В конце такта сжатия температура воздуха поднималась настолько, что впрыскиваемое в цилиндр топливо возгоралось самостоятельно, т. е. происходило самовоспламенение топлива.
    Для осуществления самовозгорания приходилось значительно увеличить степень сжатия, которая в дизельных двигателях в 2-3 раза выше, чем в карбюраторных двигателях.
    Дизель, проектируя свой двигатель, предполагал применить стократную степень сжатия, но, как показали первые же испытания, тепловая и механическая напряженность деталей двигателя при таких нагрузках превышала допустимые значения. Опытные образцы не выдерживали нагрузки и разрушались даже при значительном утяжелении конструкции с целью повышения прочности.
    Тем не менее, современные разработки по усовершенствованию дизельных двигателей направлены, в том числе, на значительное увеличение степени сжатия, поскольку это напрямую связано с повышением КПД и экономичности двигателя.

    По легенде считается, что Р. Дизель изобрел свой знаменитый двигатель, накачивая ручным насосом колесо велосипеда. После нескольких энергичных манипуляций насосом, он заметил, что его корпус-цилиндр сильно нагрелся, и даже обжигал руку. Это и натолкнуло изобретателя на идею, которая принесла ему мировую славу и бессмертие в памяти благодарного человечества.

    Особенностью системы питания Дизеля, в его первозданном виде, было компрессорное пневматическое распыливание топлива, на смену которому со временем пришло механическое распыливание посредством топливных насосов высокого давления (ТНВД) и форсунок, предложенных в 1898 году французом Сабатэ.

    Отказ от пневматического (компрессорного) впрыска был связан с тем, что на привод компрессора приходилось 10-15% полезной работы двигателя, в связи с чем расход топлива у таких дизелей был не совсем приемлемым, т.е. эффективные показатели были ниже, чем у цикла Сабатэ – Тринклера. Кроме того, гидравлический впрыск топлива позволял увеличить динамические показатели работы дизельного двигателя.
    Однако индикаторные и экологические показатели компрессорного («чистого») дизельного двигателя были выше, чем у двигателей, работающих по циклу Сабатэ – Тринклера (о них речь пойдет ниже). Связанно это было с более качественным смесеобразованием – в цилиндр подавалась топливовоздушная смесь, а не топливо в жидкой фазе как у современных дизелей.

    Повсеместный переход от пневматического на механическое (бескомпрессорное) распыливание топлива и соответственно с цикла Дизеля на цикл Сабатэ — Тринклера начался в 30-х годах прошлого столетия.
    В настоящее время двигатели, работающие по «чистому» циклу Дизеля не производятся, за исключением экспериментальных и опытных образцов.

    ***

    Цикл Сабатэ – Тринклера

    Цикл, включающий два последовательных термодинамических процесса сгорания топлива – сначала по изохоре, а затем по изобаре, называют циклом Сабатэ – Тринклера. Пожалуй, это название цикла тоже можно оспорить, поскольку французский инженер Сабатэ (Сабатье) запатентовал в 1898 году не цикл, а механическое устройство (форсунку с распылителем), которое должно было подавать жидкое топливо непосредственно в цилиндры в два этапа. По замыслу Сабатэ это должно привести к более полному и быстрому сгоранию топлива.

    В начале прошлого века российский инженер Густав Тринклер изобрел принципиально новый двигатель, опытный образец которого был изготовлен в 1902 году на Путиловском заводе. Снятая с работающего двигателя индикаторная диаграмма показала, что сгорание топлива в нем происходило по смешанному циклу – сначала по изохоре (при постоянном объеме), а затем по изобаре (при постоянном давлении).
    Таким образом, первым в мире двигателем с самовоспламенением, работающим по циклу смешанного сгорания, был двигатель конструкции Г. Тринклера, изготовленный в России.

    Термодинамические процессы в цикле Сабатэ – Тринклера осуществляется в следующей последовательности (см. диаграмму на рис. 1).
    Сжатие воздуха, как и в цикле Дизеля, осуществлялось по адиабате. Теплота подводится смешанно: изохорно (вертикальный участок на p-V диаграмме), а затем изобарно (горизонтальный участок на диаграмме).
    Далее следовало адиабатическое расширение, после чего изохорный отвод теплоты (вертикальный отрезок в конце такта расширения на диаграмме).

    Смешанный цикл в двигателе Тринклера имел место благодаря применению гидравлического впрыска топлива посредством форсунок, а также предварительному воспламенению топлива не в цилиндре, а в отдельной небольшой камере, соединенной каналом с объемом цилиндра. Именно в эту камеру бескомпрессорным (гидромеханическим) способом впрыскивалось топливо, где и начинался процесс его горения.
    Применение отдельной камеры позволяло поддерживать в ней более высокую температуру, чем в цилиндре, поскольку ее стенки не успевали остыть при отводе теплоты из цилиндра. Благодаря этому процесс горения топлива в камере протекал очень быстро (практически, по изохоре, как в цикле Отто), а затем горение распространялось в цилиндр и здесь уже протекало по изобарному сценарию, как в цикле Дизеля.
    Двигатели Тринклера чаще называют бескомпрессорными или форкамерными дизелями или просто дизелями.

    Как упоминалось выше, все выпускающиеся в настоящее время дизельные двигатели на самом деле работают по циклу Сабатэ — Тринклера, т. е. циклу со смешанным подводом теплоты и с механическим распыливанием топлива.

    Степень сжатия у безнаддувных двигателей достигает значения 18-22; у наддувных высокофорсированных двигателей — 13-15.
    Замечено, что с увеличением рабочего объема цилиндров дизельного двигателя и с уменьшением его оборотистости возрастает экономичность, т. е. КПД.

    Область применения этих двигателей очень широкая. Их устанавливают в генераторных, насосных, энергетических установках и на электростанциях, в легковых и грузовых автомобилях, тракторах, сельскохозяйственной и дорожной технике, на тепловозах, судах, самолетах и т. д.

    ***

    Сравнение эффективности идеальных циклов

    Попробуем сравнить эффективность рассмотренных выше идеальных циклов с помощью диаграммы T-s (рис. 2), описывающей зависимость между энтропией и температурой рабочего тела. Анализ будет наиболее наглядным при одинаковых степенях сжатия в рассматриваемых двигателях (представим, что такое возможно).

    Из приведенной диаграммы (рис. 2б) видно, что процессы сжатия 1-2 у всех трех типов двигателей (карбюраторного, дизельного и бескомпрессорного) совпадают, а если отводить одинаковое количество теплоты, то будут совпадать и процессы 4-1.

    Следует отметить, что на диаграмме T–s изохора всегда проходит круче изобары, следовательно, в карбюраторном двигателе при одинаковом количестве подведенной теплоты будет совершаться больше работы на величину заштрихованной площади. Исходя из этого, можно сделать вывод: изохорное сжигание топлива эффективнее изобарного.

    Однако в действительности названные двигатели работают при разных степенях сжатия, и практический интерес представляет сравнение их эффективности при одинаковых максимальных температурах сгорания, поскольку именно они определяют в основном температурную напряженность машины и ее КПД.

    Следующая диаграмма T-s (рис. 2в) показывает циклы Отто, Дизеля и Сабатэ-Тринклера при одной и той же максимальной температуре. В этом случае на диаграмме T–s должны совпадать точки 3, что соответствует одинаковой максимальной температуре в цикле и одинаковому количеству отводимой за цикл теплоты.

    Здесь отрезки 1–2, 1–2′ и 1–2″ изображают адиабатное сжатие в циклах Отто, Дизеля и Сабатэ-Тринклера соответственно, 2–3 – изохорный подвод теплоты в цикле Отто, 2’–3 – изобарный в цикле Дизеля, 2″–3′ и 3’–3 – изохорный и изобарный в цикле Сабатэ-Тринклера. Остальные процессы – адиабатное расширение (рабочий ход) 3–4 и изохорный отвод теплоты 4–1 – при рассматриваемых условиях одинаковы для всех трех циклов.

    Как видно из этой диаграммы, максимальная теплота q0 (площадь, заключенная внутри контура цикла), преобразуемая в полезную работу и, следовательно, максимальный термодинамический КПД имеет место в случае цикла Дизеля, минимальный – в случае цикла Отто. Цикл Сабатэ-Тринклера по эффективности преобразования теплоты в полезную работу занимает промежуточное положение.

    Конечно, наиболее ценные результаты дает сопоставление циклов при одинаковых максимальных температурах и одинаковых расходах топлива (одинаковых количествах подводимой за цикл теплоты). Но сделать это с помощью диаграммы T–s практически невозможно, поскольку пришлось бы так подбирать количество отводимой теплоты, чтобы площади каждого из сравниваемых циклов были одинаковы.
    Такой анализ может быть проведен с помощью моделирования на компьютере.

    ***

    Термодинамика поршневого двигателя

    Скачать теоретические вопросы к экзаменационным билетам
    по учебной дисциплине «Основы гидравлики и теплотехники»
    (в формате Word, размер файла 68 кБ)

    Скачать рабочую программу
    по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

    Скачать календарно-тематический план
    по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

    

    Термодинамические циклы поршневых двигателей внутреннего сгорания

    В термодинамических циклах поршневых ДВС процессы сжатия и расширения рабочего тела принимаются адиабатными, а рабочим телом является идеальный газ. Различают термодинамические циклы поршневых ДВС с изохорным подводом теплоты – цикл Отто (рис. 3а), изобарным подводом теплоты – цикл Дизеля (рис. 3б) и со смешанным подводом теплоты – цикл Сабатэ–Тринклера (рис. 3в).

    Основными характеристиками термодинамических циклов поршневых ДВС являются:

    Рис. 3. Термодинамические циклы поршневых ДВС:

    а) Отто, б) Дизеля, в) Сабатэ–Тринклера

    Термический КПД цикла ДВС со смешанным подводом теплоты определяется по соотношению

    . (36)

    Анализ соотношения (36) свидетельствует, что термический КПД цикла возрастает с повышением степени сжатия , показателя адиабаты, степени повышения давленияи с уменьшением степени предварительного расширения.

    При одинаковых исходных значениях параметров рабочего тела и степени сжатия справедливо следующее неравенство:

    . (37)

    В то же время следует отметить, что более корректно проводить сравнение значений термического коэффициента полезного действия циклов в условиях одинаковых максимальных параметров рабочего тела (,).

    В этом случае справедливо неравенство

    . (37а)

    Термический КПД циклов ДВС может достигать 60–65%.

    В реальных двигателях внутреннего сгорания, вследствие необратимых потерь работы, действительный КПД меньше термического и в среднем составляет 30-40% для дизелей и 20-30% для карбюраторных двигателей.

    Термодинамические циклы газотурбинных установок

    Различают два термодинамических цикла ГТУ: циклы с изобарным подводом теплоты – цикл Брайтона (рис. 4а) и с изохорным подводом теплоты – цикл Гемфри (рис. 4б).

    Рис. 4. Термодинамические циклы ГТУ:

    а) Брайтона, б) Гемфри

    Основными характеристиками термодинамических циклов ГТУ являются:

    Термический коэффициент полезного действия цикла Гемфри может быть определен из соотношения

    , (38)

    а термический КПД цикла Брайтона по формуле

    . (39)

    Сопоставление значений термических КПД циклов газотурбинных установок при одинаковых исходных параметрах и степени повышения давления рабочего тела в процессе сжатия показывает, что

    . (40)

    Следует отметить, что циклы поршневых ДВС характеризуются изохорным отводом, а циклы ГТУ – изобарным отводом теплоты.

    В реальных ГТУ и ДВС процессы сжатия и расширения не являются адиабатными. С достаточной для технических расчетов точностью их можно считать политропными с постоянными показателями политропы.

    1Цикл двс с подводом теплоты при постоянном объеме (цикл Отто)

    В качестве топлива в таких двигателях применяются легкое топливо и газообразное (бензин, керосин, генераторный или светильный газ).

    В поршневых двигателях рабочим телом являются смесь воздуха и паров жидкого топлива (на начальном участке цикла) и газообразные продукты сгорания на остальных участках цикла.

    На рис.11.1 приведен термодинамический цикл ДВС с подводом теплоты при постоянном объеме в vP— и sT-диаграммах для 1 кг рабочего тела.

    Цикл состоит из следующих процессов: 1-2 – адиабатное сжатие рабочего тела в цилиндре; 2-3 – подвод теплоты при постоянном объеме; 3-4  адиабатное расширение рабочего тела; 4-1 – отвод теплоты при постоянном объеме.

    Параметрами, характеризующими данный цикл, являются:

    — степень адиабатного сжатия; — степень повышения давления. Термический КПД цикла определяется по формуле:

    . (11.3)

    Рис. 11.1. Термодинамический цикл двигателя внутреннего сгорания с подводом

    Теплоты при постоянном объеме:

    а — в vP— диаграмме; б – в sT-диаграмме.

    Количество теплоты, подводимое к рабочему телу в процессе 2-3:

    . (11.4)

    Количество теплоты, отводимое в изохорном процессе 4-1:

    . (11.5)

    Количество подведенной теплоты и отведеннойможно определить через параметры цикла. Для этого температурыивыражаются через температуруи параметры циклаи.

    Таблица 11.1 — Определение температуры в характерных точках цикла с изохорным подводом теплоты

    Процесс

    Формулы

    1-2 — адиабатный

    2-3 – изохорный

    3-4- адиабатный

    После преобразований:

    ; .

    . (11.6)

    Из выражения (11.6) видно, что термический КПД цикла с подводом теплоты при зависит от степени сжатия рабочего тела(конструкции двигателя) и показателя адиабатыk рабочего тела, совершающего цикл. От степени повышения давления термический КПД не зависит. В современных двигателях=712. При значениях =1012 темп возрастания уменьшается. Степень сжатия ограничивается температурой самовоспламенения горючей смеси. При высоких степенях сжатия значительно повышаются температура и давление в конце сжатия. Так, при некоторых значенияхчасто еще до прихода поршня в левое крайнее положение происходит воспламенение горючей смеси, т.е. возникает ее детонация. При этом процесс сгорания нарушается, мощность двигателя падает, расход топлива возрастает. Поэтому каждому виду топлива соответствует своя степень сжатия.

    На рис. 11.2 приведены два цикла с различной степенью сжатия . Из рисунка видно, что при равенствепл. 67810 = пл. 6235, но при разных степенях сжатиятермический КПД больше у цикла с большей степенью сжатия, т.к. в окружающую среду отводится меньшее количество теплоты, т.е. пл. 61910 пл. 6145.

    Работа цикла:

    (11.7)

    Из выражения (11.7) видно, что работа, получаемая за цикл, зависит от начальной температуры и параметров циклаи.

    Рис. 11.2. Влияние степени сжатия на величинуцикла двигателя внутреннего сгорания

    С подводом теплоты при и

    11.2 Цикл двс с подводом теплоты при постоянном давлении (цикл Дизеля)

    В двигателях с подводом теплоты при производится раздельное сжатие воздуха и жидкого топлива (горючего), что исключает самовоспламенение и позволяет получить высокие степени сжатия. Давление в конце сжатия порядка 3-4 МПа. Степень сжатия=1418.

    На рис. 11.3 приведен термодинамический цикл ДВС с подводом теплоты при постоянном объеме в vP— и sT-диаграммах для 1 кг рабочего тела.

    Цикл состоит из следующих процессов: 1-2 – адиабатное сжатие рабочего тела в цилиндре; 2-3 – подвод теплоты при постоянном давлении; 3-4  адиабатное расширение рабочего тела; 4-1 – отвод теплоты при постоянном объеме.

    Рис. 11.3. Термодинамический цикл двигателя внутреннего сгорания

    Термодинамические циклы двигателей внутреннего сгорания (ДВС)

     

    Первые поршневые двигатели внутреннего сгорания (ДВС) работали на газообразном топливе, используя светильный газ. Значительный вклад в развитие таких двигателей внес немецкий изобретатель Н.Отто, разработавший двигатель с предварительным сжатием и искровым зажиганием.

    Несколько позднее Рудольф Дизель разработал двигатель, до сих пор носящий его имя, в котором используется специальное дизельное топливо. Благодаря высокой концентрации энергии в единице объема, оно практически вытеснило газообразное топливо в двигателях внутреннего сгорания.

    Рассмотрим следующие основные циклы ДВС, работающие на жидком топливе при различных способах воспламенения топлива или при различных способах подвода теплоты.

    Различают следующие циклы ДВС. Двигатели с подводом теплоты при постоянном объеме (V = const), двигатели с подводом теплоты при постоянном давлении (Р = const) и двигатели, работаю-

    щие по смешанному циклу.

    Идеальный цикл ДВС при подводе теплоты V = const (цикл Отто) в P-V и T-S диаграммах представлен на рис.7.1.

     

    Рис.7.1. Идеальный цикл двигателя внутреннего сгорания с подводом теплоты при V = const в P-V и T-S диаграммах

     

    В этом цикле процесс сжатия рабочей смеси происходит по адиабате 1-2. Изохора 2-3 соответствует горению топлива, воспламеняемого от электрической искры и подводу теплоты q1. Рабочий ход поршня осуществляется при адиабатическом расширении продуктов сгорания, изображен линией 3-4. Отвод теплоты q2 осуществляется по изохоре 4-1, соответствующей выхлопу отработанных газов в атмосферу.

    Термический КПД рассматриваемого цикла, характеризующий эффективность использования теплоты сжигаемого топлива, вычисляется следующим образом:

    . (7.1)

    Сравнение адиабат 1-2 и 3-4 позволяет сделать вывод, что

    (7.2)

    и, следовательно, получить

    . (7.3)

    Отношение всего объема рабочего цилиндра V1 к объему камеры сжатия V2 называется степенью сжатия и является основной характеристикой цикла Отто

    . (7.4)

    Для адиабатического процесса справедливо следующее соотношение, устанавливающее связь между V и Т:

    , (7.5)

    которое позволяет записать уравнение для термического КПД в следующем виде:

    . (7.6)

    Из последнего соотношения видно, что термический КПД двигателей, работающих по циклу Отто, зависит только от степени сжатия и с ее увеличением возрастает. При этом температура в конце сжатия Т2 не должна достигать температуры самовоспламенения горючей смеси. Поэтому степень сжатия в реальных двигателях такого типа не превышает 10 и зависит от характеристик применяемого топлива.

    Степень сжатия в цикле может быть повышена, ес­ли сжимать не горючую смесь, а воздух, и затем, полу­чив высокие давление и температуру, обеспечить само­воспламенение распыленного в цилиндре топлива. В этом случае процесс горения затягивается и двигатели такого типа характеризуются постепенным (или медленным) сгоранием топлива при постоянном давлении. Идеальный цикл такого двигателя внутреннего сгорания называется циклом Дизеляи осуществляется следую­щим образом (рис. 7.2). Рабочее тело (воздух) сжи­мается по адиабате 1-2, изобарный процесс 2-3 соот­ветствует процессу горения топлива, т.е. подводу теп­лоты q1 а рабочий ход выражен адиабатным расшире­нием продуктов сгорания 3-4. Наконец, изохора 4-1характеризует отвод теплоты q2, заменяя для четырех­тактных двигателей выхлоп продуктов сгорания и вса­сывание новой порции воздуха.

    Формула для расчета термического КПД в этом слу­чае принимает вид

    . (7.7)

    Кроме степени сжатия , у цикла Дизеля имеется еще одна характеристика — степень предварительного расширения :

    . (7.8)

     

    Рис.7.2. Идеальный цикл двигателя внутреннего сгорания с подводом теплоты при Р = const (цикл Дизеля) в P-V и T-S диаграммах

     

    Для изобары 2-3 можно записать V3/V2=Т32. Рас­сматривая изохору 4-1 и учитывая, что P4Vk4=P3Vk3, P1Vk1=P2Vk2 и V4=V1 , получаем

    . (7.9)

    Окончательно с учетом соотношения (7.9) формула для расчета термического КПД цикла Дизеля имеет вид:

    . (7.10)

    Выражение (7.10) показывает, что основным факто­ром, определяющим экономичность двигателей, рабо­тающих по циклу Дизеля, также является величина степени сжа­тия , с увеличением которой термический КПД цикла возрастает. Как указывалось, нижний предел опреде­лен необходимостью получения в конце сжатия темпе­ратуры, значительно превышающей температуру само­воспламенения топлива. Верхний предел (до 20) огра­ничен допустимым давлением в цилиндре, превышение которого приводит к утяжелению конструкции и увели­чению потерь на трение. Повышение степени предварительного расширения вызывает снижение термиче­ского КПД цикла с подводом теплоты при постоянном давлении. Отсюда следует, что с увеличением нагрузки и удлинением процесса горения топлива экономичность двигателя уменьшается. Это следует учитывать наряду с другими обстоятельствами при определении оптималь­ного режима работы двигателя.

    Цикл Тринклера или цикл со смешанным подводом теплоты, по которому работают современные беском­прессорные дизели (рис.7.3), осуществляется по сле­дующей схеме. Адиабата 1-2соответствует сжатию в цилиндре воздуха до температуры, превышающей тем­пературу самовоспламенения топлива. Изохора 2-3 со­ответствует процессу горения топлива, впрыскиваемого в цилиндр, а изобара 3-4 изображает процесс горения остальной части топлива по мере поступления его из форсунки. Расширение продуктов сгорания идет по адиабате 4-5, а изохора 5-1соответствует выхлопу отработавших газов в атмосферу. Таким образом, теп­лота q1подводится в двух процессах 2-3 и 3-4.

    q1= q11 + q12 . (7.11)

     

     

    Рис.7.3. Идеальный цикл Тринклера со смешанным подводом теплоты в P-V и T-S диаграммах

     

    Выражение для термического КПД цикла со смешанным подводом теплоты записывается в следующем виде:

    . (7.12)

    Параметр называется степенью повышения давления в изохорном процессеи рассчитывается по формуле

    = Рз/Р2 . (7.13)

    В двигателях, работающих по циклу Тринклера, рас­пыление топлива производится топливным насосом высоко­го давления, а компрессор, применяемый при пневма­тическом распылении топлива, отсутствует. Степень сжатия в рассматриваемом цикле может достигать 18.

    Выражение (7.12) является об­щим для циклов поршневых ДВС и при =1 и =1 пе­реходит в соответствующие формулы для термического КПД циклов с подво­дом теплоты при постоян­ном давлении или посто­янном объеме. Сравнение эффектив­ности рассмотренных цик­лов проведем с помощью T-S диаграммы (рис. 7.4), пред­положив, что в каждом из них достигается одинако­вая максимальная темпе­ратура Т3. Одинаковы и количества отведенной теплоты q2в каждом цикле (площадь 14ав). При таких условиях полезно используемая теплота цикла, равная полезной ра­боте цикла, будет наибольшей для цикла Дизеля 12’34 и наименьшей для цикла Отто 1234. Цикл Тринклера 1dс34занимает промежуточное положение.

     

    Рис.7.4. Идеальные циклы ДВС при V=const, P=const и цикл Тринклера с одинаковой температурой Т3

     

    Таким образом, термический КПД, характеризую­щий степень термодинамического совершенства цикла, будет наибольшим для цикла с подводом теплоты при постоянном давлении и наименьшим для цикла с под­водом теплоты при постоянном объеме.

     



    Дата добавления: 2017-04-05; просмотров: 9290;


    Похожие статьи:

    Цикл Дизеля — Википедия

    Термодинамические циклы
    Thermodynamics navigation image.svg
    • Эдвардса
    • Аткинсона
    • Брайтона/Джоуля
    • Гирна
    • Дизеля
    • Калины
    • Карно
    • Ленуара
    • Миллера
    • Отто
    • Ренкина
    • Стирлинга
    • Тринклера
    • Хамфри
    • Эрикссона
    Статья является частью серии «Термодинамика».
    См. также
    «Физический портал»
    править

    Цикл Дизеля — термодинамический цикл, описывающий рабочий процесс двигателя внутреннего сгорания с воспламенением впрыскиваемого топлива от разогретого рабочего тела (сжатого поршнем воздуха), цикл дизельного двигателя.
    Идеальный цикл Дизеля состоит из четырёх процессов:

    Thermodynamics navigation image.svg p-V диаграмма цикла Дизеля
    • 1—2 адиабатное сжатие рабочего тела;
    • 2—3 изобарный подвод теплоты к рабочему телу;
    • 3—4 адиабатное расширение рабочего тела;
    • 4—1 изохорное охлаждение рабочего тела.

    КПД цикла Дизеля η=1−1k(mk−1m−1)1nk−1{\displaystyle \eta =1-{\frac {1}{k}}\left({\frac {m^{k}-1}{m-1}}\right){\frac {1}{n^{k-1}}}},
    где n=V1/V2{\displaystyle n=V_{1}/V_{2}} — степень сжатия,

    m=V3/V2{\displaystyle m=V_{3}/V_{2}} — коэффициент предварительного расширения,
    k{\displaystyle k} — показатель адиабаты.

    Идеальный цикл лишь приблизительно описывает процессы, происходящие в реальном двигателе, но для технических расчётов в большинстве случаев точность такого приближения удовлетворительна.

    • Поршневой двигатель внутреннего сгорания
    • Термодинамический цикл
    • Термодинамические циклы разных двигателей
    • Циклы двигателей внутреннего сгорания (двс)
    Наиболее известная формула из ОТО — закон сохранения энергии-массыЭто заготовка статьи по физике. Вы можете помочь проекту, дополнив её.

    alexxlab

    E-mail : alexxlab@gmail.com

        Submit A Comment

        Must be fill required * marked fields.

        :*
        :*