Как устроен простейший генератор переменного тока – Генератор переменного тока — Генератор переменного тока состоит он из неподвижной части, которая называется статор или якорь и вращающейся части — ротор или индуктор

  • 08.12.2020

Содержание

Устройство Генератора Переменного Тока и Принцип Действия

Мощный тяговый генератор переменного тока – строение

Мощный тяговый генератор переменного тока – строение

Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.

Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.

Теоретическая часть

Основной принцип работы альтернатора

Основной принцип работы альтернатора

Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.

Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.

Базовые принципы

Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.

  • Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
  • Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.
Строение простейшего электромагнитного генератора

Строение простейшего электромагнитного генератора

  • Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.
Генератор переменного тока - как устроен

Генератор переменного тока — как устроен

  • Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
  • Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
  • Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
  • Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.

Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.

Переменный ток

В его честь была названа частота тока

В его честь была названа частота тока

Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.

Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.

Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.

Мощнейшие генераторы, установленные на Пушкинской ГЭС

Мощнейшие генераторы, установленные на Пушкинской ГЭС

Строение генератора переменного тока

Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.

Основные рабочие части и их подключение

Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины,  а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

Устройство и принцип действия генератора переменного тока

Устройство и принцип действия генератора переменного тока

  • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
  • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
  • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.
Трехфазные генераторы переменного тока и устройство их

Трехфазные генераторы переменного тока и устройство их

Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

  • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
  • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

  • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.
Синхронный генератор электрического тока и принцип действия этого устройства

Синхронный генератор электрического тока и принцип действия этого устройства

  • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
  • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
  • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

Вращать легче центральную часть

Вращать легче центральную часть

Виды генераторов переменного тока

Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.

Трехфазные генераторы

Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.

Схема трехфазного генератора

Схема трехфазного генератора

  • Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
  • Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.
Смещение синусоид на 1/3 такта

Смещение синусоид на 1/3 такта

  • Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
  • Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
  • Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
  • Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.
Варианты соединения обмоток у трехфазного генератора

Варианты соединения обмоток у трехфазного генератора

  • Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
  • Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
  • В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
  • Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.
Принципиальная схема генератора тока

Принципиальная схема генератора тока

Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.

Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.

Различие по виду

Отличаются генераторы и по виду, которых существует 2:

Синхронный генератор

Синхронный генератор

  • Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.
Принцип действия и устройство синхронного генератора.

Принцип действия и устройство синхронного генератора.

  1. Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
  2. На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
  3. Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
  4. К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
  5. Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
  6. К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
  7. Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.
Асинхронный электрический двигатель

Асинхронный электрический двигатель

  • Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
  1. Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
  2. Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.

Способы возбуждения обмотки

Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.

Тут можно выделить 4 типа:

  1. Питание на обмотку подается через сторонний источник.
  2. Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
  3. Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу. Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
  4. Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.

Применение генераторов переменного тока на практике

Промышленное производство мощных генераторов

Промышленное производство мощных генераторов

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото - электрический генератор для автомобиля

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Принципиальная схема автомобильного генератора

Принципиальная схема автомобильного генератора

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Генератор на жидком топливе

Бензиновый генератор

Бензиновый генератор

Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.

Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.

Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.

Панель управления генератора

Панель управления генератора

На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…

На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов  максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.

Генератор переменного тока — устройство, принцип работы и применение

Когда люди присмотрелись к возможностям электричества, сразу начали придумывать, как бы серьезно поставить на службу эту интересную энергию. И появилась целая гамма приборов, устройств, установок, способных создавать на двух металлических концах электрическое напряжение. К концам сразу же прикрутили два болтика и начали подвешивать к ним все, что вызывало теперь массу интересных эффектов. Устройства эти в целом назвали источниками электроэнергии, или генераторами. А то, что к ним подключалось — электрической цепью. А по мере роста цепей и занятия ими все более значимого и постоянного места в человеческой жизни, их стали называть уже электрическими сетями.

Именно генераторы создали всю нашу электроиндустрию. Чем принцип работы генератора переменного тока отличается от принципов работы первых источников? Некой надежностью и постоянством, происходящими от надежности и всеобщей доступности той энергии, из которой они вырабатывают электричество. Это механическое движение. А у нас мир весь полон движения. И вполне естественно было заставить роторы крутиться, а движение для этого брать из чего-то еще. Из тепла. Сгорает топливо, ротор крутится — генератор тока работает.

Первоначальный источник же был продуктом первых экспериментов. Химия (аккумуляторы), электризация (электрофорные машины) — все это как-то слабо. Потому что непропорционально дорого, сравнительно с количеством энергии, которое потребовали сети. Сначала осветительные, а потом почти сразу трамвайные. Вот трамвай и толкнул генераторы тока вперед в развитии.

Трамвайная линия — это то, где электроэнергия сама производит движение. Плюсом такого подхода оказалась очень удобная подача такого «топлива» на большие довольно расстояния. И очень органично вписалась в затраты по изготовлению самой трамвайной линии. Когда кладут железные пути, что уж там не проложить вдоль них еще и проволоку, подводящую ток к трамваям, которые могут теперь находиться на линии в любом месте и с одинаковой легкостью получать эту энергию.

Преобразование оказалось симметричным: устройство генератора переменного тока практически такое же, как и у двигателя. Только у генератора назначение — вырабатывать электричество, вращая ротор, а у другого электроэнергия крутит почти такой же ротор, а уже он — колеса трамвая.

О такой передаче энергии механики прошлых веков только мечтали. Ведь когда-то с помощью водяного колеса вращали валы обрабатывающих станков в целых цехах. А энергию механическую передавали тоже механически: с помощью валов, шкивов, ремней, шестеренок… Тут же всего-то — два проводочка. А в случае с трамваями вообще один. Второй — сами рельсы.

Ток переменный и ток постоянный

Сначала открыли электрический ток, когда увидели, что он, себя проявляя, действует. Потом только обнаружили, что ток бывает постоянный, но может быть и переменным.

Собственно говоря, генерация тока всегда и происходит от изменения магнитного поля, проходящего через обмотку. И напряжение, которое при этом возникает, просто обязано быть переменным. Потому что технически просто немыслимо заставить магнитное поле изменяться строго равномерно. Источники тока, полученные другим путем, основывались на стационарных процессах (или квазистационарных — учитывая разряд аккумуляторов), поэтому они и давали исключительно постоянный ток. Когда изобрели телеграф — наверное, первое электрическое изобретение, толкнувшее к созданию масштабных электрических линий, — этот самый ток в них был постоянным, хотя и прерывистым. Постоянный ток не очень высокого напряжения дает в передаче на дальние расстояния огромные потери от сопротивления в проводниках. С этим столкнулся уже Самюэль Морзе, когда протягивал свою первую телеграфную линию в 1844 году от Балтимора до Вашингтона. Они с другом сумели с этим справиться, используя «активное усиление» сигнала с помощью реле.

Усиление сигнала с помощью реле Усиление сигнала с помощью реле

Трамвайные линии, как известно, поначалу унаследовали эту традицию — питаться постоянным электрическим током, хотя конструкция из магнитов и вращающихся в их поле проводников, будучи использована в качестве генератора, легче и проще производит именно переменный ток.

Назначение генератора — выработка напряжения, постоянного и переменного, отсюда его устройство и принцип работы.

А типы вырабатываемого напряжения и определили строение и принцип действия генераторов.

Поэтому и различаются генераторы типами — генератор постоянного тока и генератор переменного тока.

В генераторах постоянного тока этого постоянства достигают конструкционными ухищрениями: путем создания определенной конфигурации магнитного поля, путем увеличения количества якорных рамок в роторе, в которых наводится разность потенциалов и снятие его с них с помощью многоконтактного коллектора, путем организации особых режимов тока возбуждения на специальных обмотках возбуждения, установленных на магнитах статора, и т.д.

Но, оказалось, проще добиться того же эффекта другим путем: индукционный генератор переменного тока напряжение вырабатывает, а потом оно «выпрямляется» обычной схемой диодного выпрямителя. Что и делает, например, генератор автомобиля.

Принцип работы устройства

Генератор переменного тока — это механико-индукционная машина, создающая переменное электрическое напряжение на своих выходных контактах в ответ на вращение своей подвижной части посторонней силой.

Подвижная часть генератора (или альтернатора) называется ротором, неподвижная — статором.

Две части генератора производят следующее: одна из них создает магнитное поле, а вторая часть содержит проводники, расположенные так, что при изменении относительно них этого магнитного поля (назовем его генерирующим), на их противоположных концах возникает разность потенциалов. Она снимается и переправляется с этих проводников на выходные контакты.

Виды генераторов переменного тока

Отсюда возможны два варианта конструкций генератора переменного тока, в которых:

  • генерирующее магнитное поле создается в статоре и неподвижно;
  • генерирующее магнитное поле создается в роторе и вращается вместе с ним.

В любом случае напряжение, возникающее в результате генерации, нужно снимать не с той части генератора, где создается магнитное поле, а с противоположной.

Первоначально — начиная с опытов по вращению рамки из проводника в неподвижном магнитном поле — ротор и служил для наведения в его обмотках (или рамках) электрической индукции, порождавшей движение электронов к разным концам этих проводников, отчего и возникало напряжение.

Видимо, это связано с тем, что магниты выбирали побольше и потяжелее, дабы создавать сильное поле с большим градиентом, а рамочки с током были совсем легкие. Но теперь и ротор, и статор — это точно пригнанные друг к другу массивные части. Напряжение с вращающегося ротора (или якоря) необходимо снять с помощью специального механизма и отправить на неподвижные выходные контакты. Такой механизм называется коллектором (от лат. «сборщик»), в нем неподвижные подпружиненные щетки, «протянутые» от статора, плотно прижимаются к вращающимся вместе с ротором контактам.

Принцип устройства генераторов электрического тока Принцип устройства генераторов электрического тока

Быть может, конструктивно это самая узкая часть электродвигателей и генераторов. Она требует специального исполнения, при вращении детали ее стираются, от плохих контактов — при стертых пластинах контактов, или промежутков между ними, или стертых щетках (которые изготовляются обычно из графита — а от него токопроводящая пыль) — начинается искрение при вращении, и это никому не нравится.

Поэтому самым удобным вариантом генераторов переменного тока является второй. Это когда магнитное поле вращается ротором, а напряжение возникает в неподвижном статоре. И его не надо снимать никаким замысловатым образом.

Однофазные и многофазные

Принцип работы

Магнитное поле можно гонять (изменять, вращать) над одной системой проводников (имеющих два полюса) или над несколькими.

Схема простейшего генератора Схема простейшего генератораСхема простейшего генератора Схема простейшего генератора

Из рисунка понятно, как устроен простейший генератор переменного тока. Из чего состоит генератор? Основные части — ротор и статор. Мы видим, что ротор с установленным в нем магнитом N–S вращается. При этом полюса магнита, то N, то S, попеременно совсем близко от катушек с обмотками. Обмотки последовательно соединяются друг с другом и потом с выходными контактами. Направление и поток магнитного поля, проходящий через обмотки, при вращении изменяется. От чего и возникает переменное напряжение на выходных контактах с частотой f вращения ротора. Происходит генерирование напряжения, а при подключении к контактам нагрузки возникает переменный ток частоты f.

Схема эта — наипростейшая. Она только чуть сложнее, чем те рамочки, которые крутили когда-то в поле двух магнитов. Только теперь, наоборот, магнит, установленный на роторе, вращается, а неподвижные катушки дают напряжение.

Напряжение получается синусоидальным, достигает максимума и минимума, когда около катушек проходят полюса магнита — около них поток магнитного поля наиболее плотен, и поэтому происходит самое быстрое изменение поля. И на контактах в это время будет наведено максимальное по величине напряжение U, или — U . Когда же ротор повернется так, что магнит будет проходить горизонтальное положение, выходное напряжение будет пересекать нулевое значение.

Трехфазный генератор переменного тока

Однако мы видим, что в этой простой электрической машине еще очень много свободного места. Что ж, можно по периметру статора поставить не одну пару, а несколько пар катушек. Но придется тогда от каждой пары катушек отводить отдельные контакты для напряжений, чтобы напряжения разных пар не гасили друг друга. Получится как бы несколько генераторов в одном, каждый из них будет давать синусоидальное напряжение, но так как катушки повернуты относительно друг друга, и синусоиды будут сдвинуты ровно на такой угол, на какой сдвинуты пары катушек относительно нашей первоначальной.

Схема трехфазного генератора  Схема трехфазного генератора Схема простейшего генератора Схема простейшего генератора

Катушки распределены по периметру статора равномерно, то есть друг от друга отстоят на угол 120⁰. Точно такой сдвиг фаз получается и у напряжений. Напряжение U1 с нулевым сдвигом (это наша первая пара катушек), напряжение U2 — 120⁰ и напряжение U3 — 240⁰.

Такое напряжение называется трехфазным. Его возможно передавать с помощью единой системы проводов — три провода по одной на каждую фазу, а ноль всех трех объединяется в один. Это можно сделать двумя способами: соединив обмотки катушек по типу «треугольник» или «звезда».

Можно придумать и другие схемы генерации переменного напряжения, например, установив не три пары катушек, а только две. Тогда разница фаз между ними получится в 90⁰.

Применение нашла именно трехфазная система генерации.

При потреблении трехфазного напряжения часто выделяют отдельные фазы и раздают их разным потребителям. Когда потребителей много, то случайным образом «раздавать» фазы можно — в среднем обычно получается одинаковая нагрузка на все фазы. Но это должно отслеживаться. Потому что если потребление по разным фазам сильно отличается или оно очень неравномерно себя ведет во времени, наступает такое явление, как «перекос фаз». Напряжение по разным фазам начинает отличаться. А это ведет к очень многим плохим последствиям: перерасходу электроэнергии, выходу из строя трансформаторов, электроприборов, двигателей. На электростанции — к падению КПД генераторов (они начнут как бы «хромать») и даже выходу из строя генераторов электроэнергии. Чтобы минимизировать такого рода ущерб, нулевой провод обычно хорошо заземляют, но и следить должны энергетики за таким неприятным явлением.

Возбуждение генератора

Реальный генератор отличается от тут нарисованного еще и тем, что в качестве источника магнитного поля использовать постоянные магниты — занятие бесполезное. Магнитное поле в промышленной установке должно быть строго определенной и строго выдерживаемой напряженности. А как добиться строго одинаковой напряженности магнитов на разных фазах в трехфазном генераторе переменного тока? Иначе и напряжения на них будут разные, и будут фазы «вечно хромающими». Поэтому на роторе вместо магнитов используют электромагниты с сердечниками. К ним подводится постоянное напряжение, и они во время работы генератора возбуждают электромагнитное поле строго заданной интенсивности. Постоянное напряжение подается от независимого источника — это может быть аккумулятор или другой источник постоянного тока. Тут опять проблема: или взгромоздить на ротор еще и аккумулятор для питания катушек возбуждения, или снова заморачиваться с коллекторами для передачи напряжения возбуждения. Решение можно назвать соломоновым: сделать на одном роторе как бы сразу два генератора, только второй питает током обмотки возбуждения первого. А в статоре, соответственно, добавляются еще электромагниты для возбуждения магнитного поля в этом втором генераторе, ток от которого используется только в самом роторе, следовательно, снаружи никому и не нужен. И не надо городить никаких коллекторов для его съема. Такая конструкция стала называться «бесщеточный синхронный генератор переменного тока».

Синхронным он называется потому, что оба источника — и генератор тока возбуждения, и генератор-устройство, дающее конечный результат — напряжение на выходе, работают одновременно на одном и том же роторе.

С помощью тока возбуждения можно влиять на напряжение, которое дает генератор-устройство: при увеличении тока возбуждения соответственно усиливается и магнитное поле, возбуждаемое ротором, отчего главные обмотки генератора и будут вырабатывать переменное напряжение более высокой амплитуды.

Этим пользуются для регулировки напряжения, так как скорость вращения ротора менять нельзя, иначе изменится и частота, а она задана жестко техническими характеристиками всей нашей сети электроэнергии.

Наша энергосистема вырабатывает напряжение частотой строго 50 Гц, ее и производят генераторы электростанций — все они вращают свои роторы со скоростью, кратной 50 Гц. А конструкция ротора выводит напряжение, изменяющееся 50 раз в секунду.

Однако во многих случаях, где высокая точность частоты вырабатываемой энергии не критична, используют асинхронные генераторы. Они проще и дешевле синхронных, но дают напряжение с большим разбросом параметров. Это неважно там, где оно последующими схемами все равно будет преобразовано в постоянное.

Похожие статьи:

устройство, принцип работы и схемы подключения, виды генераторов, особенности их конструкции и работы

Генераторный узел представляет собой электродвигатель, предназначенный для преобразования механической энергии в электрическую. В зависимости от типа и назначения габариты, устройство и принцип работы генераторов переменного тока могут будут отличаться.

Содержание

Открытьполное содержание

[ Скрыть]

Как работает генератор переменного тока?

Работа генератора заключается в создании электродвижущей силы в проводнике под действием изменяющегося магнитного поля.

Схема и устройство простейшего генератора

По конструкции электрогенератор включает в себя следующие элементы:

  • вращающаяся индукторная составляющая, называющаяся рамкой;
  • движущая щеточная часть;
  • коллекторное приспособление, оснащенное щетками, предназначенное для отвода напряжения;
  • магнитное поле;
  • контактные кольца.

Схема простейшего генераторного устройства переменного тока

Принцип действия

Образование электродвижущей силы в обмотках статорного механизма осуществляется после появления электрополя. Для последнего характерны вихревые образования. Данные процессы происходят в результате изменения магнитного потока. Причем последний меняется из-за быстрого вращения роторного механизма.

Ток от него поступает в электроцепь посредством контактных элементов, выполненных в виде деталей скольжения. Для более упрощенного прохождения напряжения к концам обмотки производится подсоединение колец. К этим контактным составляющим подключаются неподвижные щеточные элементы. С их помощью между электропроводкой и обмоткой роторного устройства появляется связь.

В витках магнитного элемента происходит образование поля, в нем формируется ток небольшой величины. По сравнению с напряжением, которое выдает простейший генераторный агрегат на внешнюю электроцепь. Если узел характеризуется небольшой мощностью, то в нем поле образует постоянный магнит, который может прокручиваться. Благодаря такому устройству и принципу работы генератора переменного тока в целом упрощается вся система. Поэтому из конструкции можно убрать щетки и контактные элементы.

Канал «Top Generators» наглядно и схематично в видеоролике показал принцип функционирования агрегата.

Основные виды генераторов переменного тока

Между собой устройства, позволяющие генерировать напряжение, делятся на синхронные и асинхронные. Они могут использоваться в различных сферах жизнедеятельности, но работать будут по разному принципу.

Синхронный генератор

Одним из свойств такого типа устройств является то, что частота тока, который оно воспроизводит, пропорциональна скорости вращения роторного механизма.

Между собой синхронные агрегаты делятся на несколько типов:

  1. Повышенной частоты. В основе принципа функционирования устройства лежит процесс изменения магнитного потока, достигающегося путем вращения роторного механизма касательно неподвижного статора. Такой тип агрегатов используется преимущественно для питания антенн длинноволновых станций на расстоянии до 3 км. Подключать устройства для работы с более короткими волнами не получится, поскольку необходимо увеличить значение частоты.
  2. Гидротурбинные агрегаты работают за счет активации гидравлической турбины, которая приводит в движение узел. В таких устройствах роторный механизм устанавливается на одном шкиве с колесом турбинного элемента. Его мощность может составить до 100 тысяч кВт, если скорость вращения будет 1500 оборотов в минуту, а напряжение — до 16 тыс. В. По массе и габаритам такой тип агрегатов считается самым большим, поскольку в них диаметр одного ротора составляет 15 метров. На величину мощности кружения турбины влияют три параметра — скорость вращения, длина электролинии, а также маховый момент роторного механизма.
  3. Паротурбинные агрегаты, которые приводятся в действие посредством активации паровой турбины. Такой тип устройств функционирует со скоростью вращения 1,5-3 тысячи оборотов в минуту и они бывают двухполосными и четырехполосными. Роторный механизм выполнен в виде большого железного цилиндра, оснащенного прямоугольными пазами, внутри элемента располагается обмотка возбуждения. Корпус статорного устройства всегда неразъемный и выполнен из стали. Общий диаметр агрегата составляет до 1 метра, однако длина его ротора может быть до 6,5 м.
Схема и устройство

Синхронный агрегат конструктивно включает в себя два основных элемента:

  1. Ротор. Это подвижная составляющая оборудования. Она предназначена для преобразования системы вращающихся электрических магнитов, которые питаются от внешнего источника.
  2. Статорный механизм или неподвижная составляющая агрегата. В обмотке этого устройства посредством образования магнитного поля появляется ЭДС, которая идет на наружную электроцепь оборудования. Благодаря таким конструктивным особенностям в цепях нагрузок синхронных электрогенераторов не используются скользящие контакты. Магнитный поток от оборудования, который появляется посредством вращения ротора, возбуждается от стороннего источника. Последний монтируется на общем валу или может подключаться к нему с помощью муфты либо ременной передачи.

Схематическое устройство синхронного генераторного агрегата

Особенности работы

Принцип действия может незначительно отличаться в зависимости от типа устройства — явнополюсного либо неявнополюсного. Количество пар полюсных элементов роторного механизма определяется скоростью вращения узла. Если частота образующейся ЭДС составляет 50 Гц, то при 3 тысячах об/мин неявнополюсное устройство обладает одной парой полюсов. В явнополюсных агрегатах, вращающихся при 50-750 оборотах в минуту, количество пар полюсных элементов составит от 60 до 4.

В маломощных синхронных агрегатах питание обмотки возбуждения осуществляется посредством воздействия выпрямленного тока. Электроцепь появляется в результате активации трансформаторных устройств, которые входят в общую цепь нагрузки узла. Также она включает в себя полупроводниковый выпрямительный блок, который может собираться по любой схеме, но обычно как трехфазный мост. Основная электроцепь включает в себя обмотку возбуждения агрегата с регулировочным реостатным устройством.

Процедура самовозбуждения оборудования состоит в следующем:

  1. При запуске установки в магнитной составляющей образуются небольшие ЭДС, это происходит благодаря явлению остаточной индукции. Одновременно в рабочей обмотке агрегата появляется ток.
  2. В результате ЭДС образуется во вторичных электрообмотках трансформаторных устройств. А в электроцепи появляется небольшой ток, который способствует усилению общей индукции магнитного поля.
  3. Увеличение параметра ЭДС осуществляется до момента, пока магнитная система агрегата не возбудится до конца.

Асинхронный генератор

Такой узел представляет собой устройство, производящее электроэнергию с использованием принципа действия асинхронного двигателя. Данный тип агрегатов именуется индукционным. Асинхронное устройство обеспечивает оперативный поворот роторного механизма, а его скорость вращения намного выше по сравнению с синхронным. Простой двигатель может применяться в качестве генераторной установки без дополнительных настроек.

Асинхронные агрегаты используются в разных сферах:

  • для моторов ветровых электрических станций;
  • для автономного питания жилых помещений и частных домов либо в качестве миниатюрных ГЭС-станций;
  • для инверторных агрегатов сварки;
  • с целью организации бесперебойного питания от переменного тока.
Схема и устройство

Схематическое подключение асинхронного агрегата

Основными составляющими элементами данного типа устройств считаются статорный механизм и ротор. Первый является неподвижным, а второй прокручивается внутри него. Ротор отделен от статорного механизма воздушным зазором. Чтобы снизить величину вихревых токов, сердечники составляющих элементов делаются из отдельных листов электротехнической стали. Их толщина в зависимости от производителя может составить от 0,35 до 0,5 мм. Сами листы оксидируются при изготовлении, то есть подвергаются термической обработке, что позволяет увеличить их поверхностное сопротивление.

Сердечник статорного механизма устанавливается внутрь станины, которая является наружной частью агрегата. На внутренней стороне детали располагаются пазы, в них находится обмотка. Статорная электрообмотка зачастую выполняется из катушек с небольшим шагом. В ее основе используется медный изолированный проводник.

Особенности работы

Асинхронный тип двигателей производит электроэнергию при увеличенной скорости прокручивания роторного механизма. Этот параметр всегда выше, чем у синхронных агрегатов. При прокручивании роторного устройства и выработки электричества потребуется сильный крутящий момент. Если в двигателе используется так называемый вечный холостой ход, это обеспечит равную скорость прокручивания в течение всего ресурса эксплуатации установки.

Схемы подключения

По числу использующихся фаз все генераторные агрегаты делятся на две группы:

  • однофазные;
  • трехфазные.

Однофазный генератор

Схема подключения оборудования с одной фазой

Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.

Самые простые конструкции состоят из:

  • магнитного поля;
  • прокручивающейся рамки;
  • коллекторного устройства, предназначенного для отвода тока.

Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.

Трехфазный генератор

Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.

Это обусловлено следующими преимуществами:

  1. В основе агрегата используется вращающееся круговое магнитное поле. Это обеспечивает возможность хорошей экономии при разработке оборудования.
  2. Трехфазные генераторы состоят из уравновешенной системы. Это обеспечивает ресурс эксплуатации агрегата в целом.
  3. В работе трехфазного устройства одновременно используется два напряжения — линейное и фазовое. Оба применяются в единой системе.
  4. Одно из основных преимуществ — повышенные экономические показатели. Это обеспечивает снижение материалоемкости силовых проводов, а также трансформаторных агрегатов. Благодаря данной особенности упрощается процедура передачи электричества на большие расстояния.
Схема соединения «звездой»

Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).

Схема типа «звезда» для подключения трехфазного оборудования

Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.

Схемы соединения «треугольником»

Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.

При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.

Электросхемы соединений агрегата «треугольником»

Особенности генераторов с разными типами двигателя

Автомобильные и бытовые установки могут разделяться между собой в соответствии с видом топлива, на котором они функционируют. Генераторный узел может работать на бензине или дизеле.

Бензогенераторы

В таких устройствах источником механической энергии является двигатель. Агрегат относится к классу четырехконтактных карбюраторных ДВС. В бензогенераторах используются двигатели, рассчитанные на 1-6 кВт. В продаже можно встретить агрегаты, разработанные для функционирования при 10 кВт, с их помощью можно обеспечить питание всех световых и электроприборов в частном доме.

Бензогенераторы могут похвастаться невысокой стоимостью и длительным ресурсом эксплуатации, хотя по сравнению с дизельными — они немного меньше. Выбор агрегата осуществляется с учетом нагрузок, в условиях которых он будет функционировать. Если узел работает с большим пусковым током и применяется для электросварки, то лучше отдать предпочтение синхронным устройствам. При выборе асинхронного типа агрегата двигатель сможет справиться с пусковыми токами. Но важно, чтобы генераторная установка была полностью загружена, в противном случае топливо будет расходоваться нецелесообразно.

Канал «Olifer TV» рассказал о выборе агрегатов для частного дома в соответствии с типом горючего, на котором он будет использоваться.

Дизельные генераторы

Такой агрегат приводит в действие мотор, функционирующий на дизеле.

В его основе используется:

  • механическая составляющая;
  • панель с кнопками, предназначенная для управления;
  • система подачи топлива;
  • охладительный узел;
  • система смазки трущихся компонентов и узлов.

Мощность генераторной установки полностью определяется аналогичным параметром самого двигателя. Если она будет невысокой, к примеру, для запитки бытового электрооборудования, то лучше отдать предпочтение бензиновым установкам. Дизельный тип агрегатов целесообразно использовать там, где требуется высокая мощность. Двигатели внутреннего сгорания обычно применяются с верхней установкой клапанов. Они обладают более компактными размерами, а также высокой надежностью.

Кроме того, дизельные ДВС при функционировании выделяют меньше токсичных газов, опасных для здоровья человека, и более удобны в плане ремонта. Специалисты рекомендуют отдать предпочтение агрегатам, корпус которых выполнен из стали, так как пластмасса имеет меньший ресурс использования.

Более надежными являются генераторные дизельные установки, не оснащенные щетками.

Напряжение, которое они вырабатывают, стабильнее. В среднем, если бак заправлен дизельным горючим под завязку, это обеспечит возможность работы генератора в течение семи часов. Если агрегат будет установлен стационарно, то его конструкцию можно дополнить внешним резервуаром для залива топлива.

Канал «Фабрика Тока» продемонстрировал работу дизельного агрегата, использующегося для обеспечения энергией частного дома.

Инверторные генераторы

Производство электрической энергии осуществляется аналогично, как на любой классической модели генератора. В первую очередь производится выработка переменного тока. Он выпрямляется и подается на инверторный узел, а затем преобразуется опять в переменный, только с необходимыми техническими параметрами.

В основе агрегата используется электронный модуль, включающий в себя:

  • выпрямительный узел;
  • микропроцессорное устройство;
  • преобразовательный механизм.

По типу выходного напряжения инверторные агрегаты могут разделяться на:

  1. Прямоугольные. Такой вид устройств считается наиболее дешевым. Его энергии хватит только для запитки электроинструментов и маломощных приборов.
  2. Устройства с трапецеидальным сигналом. Могут использоваться для питания большинства электроприборов, кроме высокочувствительной техники. Стоимость таких агрегатов средняя.
  3. Устройства, работающие с синусоидальным напряжением. Такие генераторы характеризуются стабильными характеристиками и подходят для большинства электрических приборов.
  1. Прямоугольные. Такой вид устройств считается наиболее дешевым. Его энергии хватит только для запитки электроинструментов и маломощных приборов.
  2. Устройства с трапецеидальным сигналом. Могут использоваться для питания большинства электроприборов, кроме высокочувствительной техники. Стоимость таких агрегатов средняя.
  3. Устройства, работающие с синусоидальным напряжением. Такие генераторы характеризуются стабильными характеристиками и подходят для большинства электрических приборов.

Инверторные агрегаты могут функционировать без перерыва либо промежутками. В качестве объектов потребления энергии обычно выступают учреждения, где нельзя допустить перепадов напряжения.

Основные преимущества инверторных установок:

  • маленькие размеры и масса;
  • низкий расход горючего в результате регулировки выработки определенного объема электричества, необходимого в конкретный момент времени;
  • инверторные агрегаты могут функционировать в течение короткого временного интервала с перегрузкой.

Минусы:

  • высокая стоимость устройств по сравнению с классическими вариантами генераторных установок;
  • повышенная чувствительность к температурным изменениям в электронной составляющей;
  • невысокий уровень мощности установки;
  • дорогостоящий ремонт электронного модуля при его поломке.

Использование инверторных устройств актуально в случае, когда требуемая величина мощности составляет не больше 6 кВт. Если агрегат будет использоваться на постоянной основе, то лучше отдать предпочтение классическому типу.

Канал «Garage КАХОВКА» протестировал бензиновую установку инверторного класса от производителя «ПилоД».

Как сделать генератор переменного тока своими руками

Для самостоятельного изготовления асинхронного агрегата понадобится следующее:

  1. Мотор. Двигатель можно соорудить своими руками, но эта процедура слишком длительная и трудоемкая. Поэтому лучше использовать агрегат от старого неработающего бытового электрооборудования. Оптимальным вариантом будет применение двигателя от дренажного насосного устройства, стиральной машинки либо пылесоса.
  2. Статорный механизм. Рекомендуется приобрести готовое устройство, оборудованное обмоткой.
  3. Комплект электрических проводов.
  4. Изолента, допускается применение термоусадочных трубок.
  5. Трансформаторный узел или выпрямительный блок. Этот элемент потребуется в случае, если на выходе генератора переменного тока энергия будет иметь разную мощность.

Перед началом работ необходимо сделать несколько манипуляций, которые позволят правильно выполнить расчет параметра мощности агрегата:

  1. Использующийся двигатель подключается к электросети для определения скорости вращения. Чтобы выполнить эту задачу, потребуется специальное устройство — тахометр. После считывания информации полученное значение надо записать и прибавить к нему еще 10%. Это — компенсаторная величина. Если добавить 10% к скорости вращения, это позволит предотвратить перегрев агрегата во время функционирования.
  2. Выполняется подбор конденсаторных элементов с учетом требуемой величины мощности. Если на этом этапе возникли сложности, можно воспользоваться таблицей.
  3. Генераторная установка во время работы продуцирует электроэнергию, соответственно, заранее необходимо продумать заземление устройства. При его отсутствии и некачественной изоляции агрегат не только износится быстрее, но и может представлять опасность для человека.
  4. После подготовки выполняется процедура сборки, она не займет много сил. К двигателю, который будет использоваться в основе, подключаются конденсаторные элементы в соответствии со схемой. В ней указана очередность подсоединения компонентов. Надо учесть, что величина емкости каждой конденсаторной детали соответствует предыдущему устройству.
Схема сборки простого генератора переменного тока
Таблица выбора емкости конденсатора для агрегата

Полученный узел сможет обеспечить энергией электрическую пилу, циркулярку или болгарку, т. е. любой маломощный инструмент.

При использовании самодельного генератора переменного тока нельзя допустить перегрева двигателя, иначе это приведет к его поломке и даже взрыву.

В процессе сборки и эксплуатации надо учитывать следующие нюансы:

  1. Если коэффициент полезного действия падает прямо пропорционально в соответствии с длительностью работы, это норма. Данный нюанс связан с тем, что периодически генераторный агрегат должен отдыхать и остывать. Важно время от времени снижать температуру двигателя до 40 градусов Цельсия.
  2. Поскольку в простой схеме устройства не используется автоматика, потребитель должен сам контролировать все процессы работы приспособления. Время от времени к агрегату необходимо подключать измерительное оборудование — тахометр, вольтметр.
  3. Перед выполнением сборки нужно правильно подобрать электроприборы в соответствии с расчетом его технических параметров и свойств. Приведенная схема наиболее простая в плане реализации.

Видео «Принцип действия генераторного устройства»

Канал «Halyk Smart» рассказал о нюансах функционирования агрегата переменного тока.

Загрузка ...Загрузка ... Загрузка …

Генератор переменного тока: устройство, принцип работы, назначение

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.

генератор переменного тока устройство [

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила — ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

  • Корпуса. Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
  • Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
  • Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
  • Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.
принцип работы генератора переменного тока

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

генератор 220 в

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

электрический генератор переменного тока

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

  • Машины синхронные.
  • Машины асинхронные.

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

  1. Контактным.
  2. Бесконтактным.

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

синхронный генератор переменного тока

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

  • звездой;
  • треугольником.

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

частота генератора переменного тока

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока — вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.

 схема генератора переменного тока

Заключение

Человек до конца не познал природу магнетизма, который пронизывает все вокруг. И электрическая энергия – это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!

Трехфазный генератор переменного тока

Тот, кто незнаком с генераторами, объясняем, что это агрегат, в котором из одного вида энергии получается другая. А, точнее, из механической электрическая. При этом эти приборы могут генерировать как ток постоянный, так и ток переменный. До середины двадцатого века использовались в основном генераторы постоянного тока. Это были аппараты больших размеров, которые работали не очень хорошо. Появление на рынке диодов полупроводникового типа позволило изобрести трехфазный генератор переменного тока. Именно диоды позволяют выпрямить переменный ток.

Трехфазный генератор

Принцип работы

В основе работы трехфазного генератора лежит закон Фарадея – закон электромагнитной индукции, который гласит, что электродвижущая сила будет обязательно индуцироваться во вращающейся прямоугольной рамке, которая установлена между двумя магнитами. При этом делается оговорка, что магниты будут создавать вращающееся магнитное поле. Направление вращения и рамки, и магнитного поля обязательно совпадают. Но электродвижущая сила будет возникать и в том случае, если рамка останется неподвижной, а внутри нее вращать магнит.

Чтобы разобраться, как работает генератор, обратите внимание на рисунок ниже. Это простейшая схема его работы.

Принцип действия генератора тока

Здесь хорошо видны магниты с разными полюсами, рамка, вал и токосъемные кольца, с помощью которых производится отвод тока.

Конечно, это просто схема, хотя лабораторные генераторы так и создавались. На практике же обычные магниты заменяют электромагнитами. Последние – это медная обмотка или катушки индуктивности. Когда по ним проходит электрический ток, образуется необходимое магнитное поле. Такие генераторы установлены во всех автомобилях (это для примера), чтобы их запустить, под капотом устанавливается аккумулятор, то есть, источник постоянного тока. Некоторые модели генераторов запускаются по принципу самовозбуждения или при помощи маломощных генераторов.


Схемa генерaторa переменного токaСхемa генерaторa переменного токa

Разновидности

В основе классификации заложен принцип действия, поэтому эти агрегаты переменного тока делятся на два класса:

  • Асинхронные. Это самые надежные в работе, небольших размеров и веса, простых по конструкции генераторы. Они прекрасно справляются с перегрузками и коротким замыканием. Правда, необходимо учитывать, что данный вид сразу же выходит из строя, если на него будет действовать большая перегрузка. К примеру, пусковой ток электрооборудования. Поэтому стоит учитывать этот факт, для чего придется приобретать генератор мощностью большей раза в три или четыре, чем потребляемая мощность оборудования при запуске.
  • Синхронные. А вот этот вид легко справляется с краткосрочными нагрузками. Такой генератор может выдержать перегруз раз в пять или шесть. Правда, высокой надежностью он не отличается по сравнению с асинхронным вариантов, к тому же он является обладателем больших размеров и массы.

Конечно, в данном разделении лежит принцип работы агрегата. Но есть и другие критерии.

Отличие генераторов тока

  • Однофазный.
  • Двухфазный.
  • Трехфазный.
  • Многофазный (обычно шесть фаз).
  • Сварочный.
  • Линейный.
  • Индукционный.
  • Стационарный.
  • Переносной.

Устройство трехфазного генератора

В принципе, устройство трехфазного генератора переменного тока достаточно простое. Это корпус с двумя крышками с противоположных сторон. В каждой из них проделаны отверстия для вентиляции. В крышках устроены ниши под подшипники, в которых вращается вал. На передний конец вала устанавливается передаточный элемент. К примеру, на автомобильном генераторе установлен шкив, с помощью которого вращение передается от двигателя внутреннего сгорания на генератор. На противоположном конце вала производится передача электрического тока, ведь вал в этом случае выступает как электромагнит с одной обмоткой.

Передача производится через графитовые щетки и токосъемные кольца (они из меди). Щетки соединены с электрорегулятором (по сути, это обычное реле), который регулирует подачу напряжение 12 вольт с требуемыми отклонениями. Самое важное, что реле не повышает и не понижает напряжение в зависимости от скорости вращения самого вала.

Устройство генератора

Так вот если говорить о трехфазных генераторах переменного тока, то это три вот таких однофазных. Только трехфазный агрегат имеет обмотку не на роторе (валу), а в статоре. И таких обмоток три, которые сдвинуты относительно друг друга по фазе. Вал, как и в первой конструкции, выполняет функции электромагнита, который питается через контакты скользящего типа постоянным током.

Вращение вала создает в обмотках магнитное поле. Электродвижущая сила начинает индуцироваться, когда происходит пересечение магнитного поля обмоток с ротором. А так как обмотки располагаются на статоре симметрично, то есть, через каждые 120º, то соответственно и электродвижущая сила будет иметь одинаковое амплитудное значение.

Генератор переменного тока. Устройство и принцип действия

Генератор переменного тока — это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока путем вращения проволочной катушки в магнитном поле. Большинство генераторов переменного тока используют вращающееся магнитное поле.

В последнее время широкое распространение получили генераторы переменного тока, выгодно отличающиеся от генераторов постоянного тока своими габаритными размерами и способностью вырабатывать ток заряда при меньшей частоте вращения коленчатого вала двигателя. Они имеют повышенную надежность.ustrojstvo-generatora-toka

Генераторы переменного тока используют на гусеничных и колесных машинах (например, на КамАЗ-4310 и КЗКТ-7428). По своей конструкции генераторы переменного тока отличаются от коллекторных генераторов постоянного тока. У них почти вдвое меньше масса и втрое — расход меди. Благодаря более раннему началу отдачи зарядного тока (с момента приведения во вращение вала двигателя на режиме холостого хода) такие генераторы имеют существенно лучшие зарядные свойства по сравнению с генераторами постоянного тока.

Генератор переменного тока представляет собой трехфазную синхронную электромашину с электромагнитным возбуждением и выпрямителем. Генератор работает совместно с регулятором напряжения, обеспечивающим поддержание в электросети машины (с определенным допуском) требуемого постоянного напряжения.

Генератор переменного тока

Рис. Схема генератора переменного тока:
1 — ротор; 2 — статор; 3, 9 — шарикоподшипники; 4 — шкив привода; 5 — вентилятор; 6, 10 — крышки; 7 — выпрямитель; 8 — контактные кольца; 11 — щеткодержатель; 12 — обмотка возбуждения; 13 — винты крепления фазовых обмоток статора к выпрямителю; 14 — винт «массы»

Принцип действия генератора переменного тока

Конструкции электрических генераторов переменного тока различны, но принцип их действия одинаков. Рассмотрим один из таких генераторов.

Статор 2 генератора с трехфазной обмоткой выполнен в виде отдельных катушек, в витках которых при вращении ротора 1 индуцируется переменное напряжение. В каждой фазе имеется по шесть катушек, соединенных последовательно. Обмотка возбуждения 12 выполнена в виде катушки и помещена на стальной втулке клювообразных полюсов ротора, обмотки которого питаются постоянным током от аккумуляторной батареи или выпрямителя 7, устанавливаемого на выходе генератора. В крышке 10 имеются вентиляционные окна, через которые циркулирует охлаждающий поток воздуха. Моноблок-радиатор способствует охлаждению выпрямителя, собранного из кремниевых вентилей (диодов) с допустимой температурой нагрева 150 °С.

Интересным компоновочным решением конструкции генератора переменного тока является генераторная установка магистральных автопоездов МАЗ. Она состоит из генератора и интегрального регулятора напряжения (ИРН). Номинальное вырабатываемое напряжение установки 28 В, номинальная мощность 800 Вт. Регулятор вмонтирован в основание щеткодержателя генератора. В крышку генератора также вмонтирован выпрямительный блок БПВ 4-45. Регулятор состоит из резисторов, конденсаторов, стабилитронов, транзисторов и других элементов. Он снабжен переключателем сезонной регулировки («летняя» и «зимняя»). Элементы ИРН смонтированы на малогабаритной керамической плате, закрытой специальной крышкой и залитой герметиком, что делает конструкцию неразборной и неремонтируемой.

Генератор переменного тока: устройство, виды, выбор

Один из вариантов обеспечения электропитания — генератор переменного тока. Эта установка может быть как основным вариантом, так и только на время пропадания основного источника питания. 

Содержание статьи

Что такое генератор тока

Устройство, преобразующее механическую энергию в электрическую, называют генератором тока. Они бывают переменного и постоянного тока. Устройства, вырабатывающие постоянный ток, более сложны в исполнении и менее надёжны.

Тоже как вариант))

Тоже как вариант))

С появлением полупроводниковых приборов, которые позволяют выпрямить переменный ток, по большей части всё равно использовался генератор переменного тока. Если необходим постоянный ток, на выходе источника переменного тока ставят выпрямитель, который формирует электропитание требуемого типа и уровня.

Устройство и принцип работы

Понять, как происходит такое преобразование, можно глядя на простейшую модель генератора. Его работа основана на принципе возникновения ЭДС — электродвижущей силы. Коротко сформулировать суть этого явления можно так, если замкнутая рамка пересекает магнитное поле, в ней возникает (наводится) электрический ток. Чтобы «снять» ток с рамки, используют специальное устройство ‒ щеточный узел. На концах рамки сделаны кольца, которые соприкасаются с токосъёмными контактами (щетками). Щетки, за счет силы упругости пружин, плотно прилегают к кольцам, обеспечивая контакт. К щеткам припаяны провода, по которым далее в устройство и передаётся ток.

Генератор переменного тока: устройство и принцип действия

Генератор переменного тока: устройство и принцип действия

Как получается переменное напряжение? Представьте себе, рамка вращается, то одной, то другой стороной приближаясь к полюсам (положительному S и отрицательному N). Чем ближе к полюсу, тем сильнее наводимое поле (больше сила тока), чем дальше ‒ тем меньше. Соответственно, на контактных кольцах имеем плавно изменяющуюся силу тока. Она то близка к нулю (когда рамка находится дальше всего), то подходит к максимуму. Таким образом, получаем на выходе ток синусоидальной формы.

Таким образом получаем на выходе генератора ток синусоидальной формы

Таким образом получаем на выходе генератора ток синусоидальной формы

Те же самые процессы происходят, если прямоугольную рамку закрепить неподвижно, а внутри нее вращать магнитное поле. Ток также имеет синусоидальную форму, просто имеем два типа установок ‒ с неподвижным статором и с неподвижным ротором.

Генератор постоянного тока устроен точно также и отличается только устройство снятия тока. К рамке прикреплены два полукольца, так что щетки снимают ток попеременно, то с одного конца рамки, то с другого. В результате на выходе имеем положительные полуволны, которые близки к постоянному току.

Виды бытовых генераторов

Это была теория, а теперь переходим к практике. Генераторы электрического тока нужны обычно для обеспечения питанием электрооборудования. Существуют две ситуации:

  • Электрогенератор нужен на случай пропадания сети.
  • Как основной источник питания.
Простейшие генераторы постоянного и переменного тока: устройство и принцип работы

Простейшие генераторы постоянного и переменного тока: устройство и принцип работы

Для обоих случаев логика выбора похожа, но имеет свои особенности. Если генератор нужен для постоянной работы, на первое место выходит расход топлива и надёжность. Также стоит обратить внимание на «громкость» работы, ёмкость бака для топлива.

Для кратковременного включения на случай пропадания питания, чаще всего стараются приобрести не слишком дорогую модель. Но в погоне за экономией, не стоит забывать о качественных характеристиках.

Синхронные и асинхронные

Сейчас не станем разбираться к конструктивных особенностях, а остановимся на достоинствах и недостатках. Синхронные генераторы отличаются тем, что на якоре имеют обмотки. Они выдают более стабильное напряжение и имеют меньшие отклонения по частоте. Это хорошо для требовательных к качеству питания. К плюсам синхронных генераторов тока относят также нормальную реакцию на пусковые токи, так что нормально работают они с индуктивной нагрузкой (с электродвигателями). Минусы ‒ более сложная конструкция и высокая цена. Ещё один момент, наличие щеток, которые, как известно снашиваются и искрят. Так что при более высокой цене синхронные генераторы имеют меньший рабочий ресурс.

Устройство асинхронных моделей проще

Устройство асинхронных моделей проще

Асинхронные генераторы имеют более простую конструкцию и более низкие цены. При относительно невысокой цене отличаются значительно большим эксплуатационным сроком. Но стабильность тока желает быть лучше: погрешность до 10% по напряжению и 4% по частоте. Ещё один недостаток: плохо переносят пусковые токи. Потому, для обеспечения нормальной работы сложной техники желательно иметь стабилизатор, а для плавного пуска электромоторы подключать через преобразователь частоты.

Инверторный или нет

Есть ещё так называемые инверторные бытовые генераторы тока. Это те же генераторы, но на выходе которых стоит дополнительное устройство, стабилизирующее выходные показатели. С учётом того что техника у нас становится всё более дорогой и требовательной к качеству питания, использование инверторных генераторов почти необходимость.

Генератор переменного тока: основные узлы и блоки

Генератор переменного тока с инвертором: основные узлы и блоки

Единственное исключение, когда агрегат будет стоять на даче или в доме, а в период его работы, «капризная» техника работать не будет. К группе «капризных» однозначно относится вся компьютерная техника, а также та, которая управляется при помощи микропроцессоров. Также «капризными» являются автоматизированные котлы. Если котёл зависит от наличия напряжения и автоматика в нем не механическая, вам однозначно требуется инверторный генератор.

Инверторный генератор кроме двигателя и непосредственно генератора, имеет еще выпрямитель и инвертор

Инверторный генератор кроме двигателя и непосредственно генератора, имеет ещё выпрямитель и инвертор

Как работает инверторный генератор переменного тока? То напряжение, которое выработал генератор, попадает на блок инвертора. Он сначала выпрямляется, а потом из постоянного напряжения формируются полярные импульсы заданной частоты (50 Гц) и скважности. На выходе устройства импульсы превращаются в синусоиду. В результате на выходе имеем питание с идеальными (почти) характеристиками. Так что асинхронный инверторный генератор подходит для питания любой техники. Вот только пусковые нагрузки по-прежнему проблема.

Количество фаз и топливо для первичного двигателя

Чтобы выбрать генератор переменного тока, необходимо разобраться с классификацией, видами и типами, достоинствами и недостатками. В первую очередь стоит определиться с количеством фаз, которые должен выдавать агрегат, как понимаете, есть однофазные и трехфазные. Выбирать по этому признаку стоит учитывая имеющуюся проводку или нагрузку. Если генератор должен обеспечить работу трехфазного потребителя, на его выходе должно быть именно такое напряжение. Если подключаемые приборы только однофазные, покупать трехфазный генератор стоит только тогда, когда он будет работать на постоянной основе. В качестве резервного обычно ставят однофазные агрегаты, обеспечивая питанием наиболее важные устройства.

Для начала необходимо определится с количеством фаз вырабатываемого тока

Для начала необходимо определиться с количеством фаз вырабатываемого тока

Когда мы разбирались в принципе действия генераторов переменного тока, не рассматривался один момент: как и чем приводится в действие вращающаяся часть устройства. В бытовых моделях это двигатель внутреннего сгорания. Именно он приводит в движение ротор, а работать он может на следующих видах топлива:

  • бензин;
  • дизельное топливо;
  • газ.

Для бытового использования, чаще всего, используют дизельные и бензиновые генераторы. Так как оба вида топлива практически равнозначны по доступности, то выбор между ними основан на технических особенностях. О них подробнее немного ниже.

Генератор переменного тока: бензин или дизель?

Для бытовых целей обычно используют бензиновый или дизельный генератор тока. Сказать какой лучше однозначно невозможно, так как они отличаются по характеристикам. Потому для одних условий лучше бензиновый, для других ‒ оптимальный дизельный.

Выбор генератора тока зависит от многих моментов

Выбор генератора тока зависит от многих моментов

Когда лучше выбрать бензиновый

Перечень свойств и особенностей бензинового генератора переменного тока:

  • Имеет небольшую мощность, не более 10 кВт.
  • Не рассчитан на длительную беспрерывную работу.
  • Имеет небольшой вес и размеры.
  • Работает негромко.
  • Небольшая цена. Бензиновые генераторы тока оптимальны для работы на непродолжительны период времени

    Бензиновые генераторы тока оптимальны для работы на непродолжительны период времени

Основное, что стоит помнить, бензиновый электрогенератор не рассчитан на длительную работу (сутками). Рекомендованная нагрузка, особенно у двухтактных моделей 2–3 часа в день и до 500 часов в год. Зато отличаются такие установки невысокой ценой и компактностью. Это отличный выбор, если надо питать совсем небольшую нагрузку непродолжительное время. Чаще всего такие генераторы берут с собой на природу, охоту, рыбалку и т. д.

Двухтактные бензиновые генераторы - лучший выбор для выезда на природу

Двухтактные бензиновые генераторы — лучший выбор для выезда на природу

Бензиновые генераторы тока с четырехтактными бензиновыми двигателями ресурс имеют существенно больше: до 3000–5000 тысяч часов. Но и его надолго не хватит при постоянной работе. Так что бензиновые генераторы имеет смысл ставить, если электричество отключается у вас редко и ненадолго.

Чем хороши дизельные

Дизельный генератор переменного тока ‒ установка гораздо боле мощная, но и настолько же более дорогостоящая. Бывают они двух типов: с воздушным и жидкостным охлаждением. Установки с воздушным охлаждением имеют средние габариты, среднюю мощность и вполне приемлемую цену. Вот они идеальны, если электричество отключается часто, но не постоянно. В то же время, маломощные дизельные генераторы (есть и такие) по характеристикам ненамного лучше бензиновых, а по цене раза в два выше. Так что если вам нужен генератор до 6 кВт мощности выбор, всё равно, имеет смысл остановить на бензиновой установке.

Дизельные - более габаритные и мощные

Дизельные ‒ более габаритные и мощные

Дизельный генератор с водяным (жидкостным) охлаждением ‒ это уже техника другого класса. Он может работать сутками и используются на предприятиях. На них применяются двигателя двух типов:

  • высокооборотистые – 3000 об/мин;
  • с низкими оборотами – 1500 об/мин.

Дизельный генератор с низкооборотистым двигателем отличается более низким уровнем шумов, более экономичны в плане расхода топлива на один киловатт. Но они же более дорогостоящие. имеют большие размеры и вес. Если дизельный генератор тока построен на основе высокооборотного движка, обойдётся один киловатт электроэнергии дешевле. Но шуметь дизель будет сильно.

Подобные модели могут обеспечивать предприятия

Подобные модели могут обеспечивать предприятия

Итак, если вам нужна установка для выработки постоянного тока на продолжительный период или станция, которая будет снабжать электроэнергией постоянно, вам нужен дизельный генератор жидкостного охлаждения.

Опции и дополнительные возможности

Значительное влияние на цену оказывают опции. Хоть генераторы «с наворотами» стоят дороже, некоторые из дополнительных возможностей могут быть очень полезны. Например:

  • Защита от утечки. Встроенное УЗО, которое отслеживает наличие пробоя изоляции и отключает установку при появлении тока утечки.
  • Защита от перегрузки. Функция не даёт работать деталям «на износ».
  • Автоматический запуск. При пропадании электроэнергии генератор запускается сам.
Использование может быть разным

Использование может быть разным

Есть ещё такие, без которых можно обойтись, но делающие эксплуатацию генератора тока более удобной. Например, контроль параметров с одновременным отображением на дисплее или передача данных о состоянии генератора на подключённый компьютер. Ещё, может быть, целый ряд конструктивных «добавок»: шумогасящий кожух, защитный кожух от низких температур, увеличенный топливный бак и т. д.

Особенности установки генератора

Речь пойдёт не о подключении, а об установке ‒ организации места, где генератор тока будет работать. Нужна просторная твёрдая и ровная площадка. При установке на неровной поверхности, повышается уровень вибрации, что угрожает целостности оборудования. Если говорить о мощных дизельных установках, то для них желательно бетонное или асфальтовое покрытие, в общем, плотное и надёжное основание.

Площадка должна быть ровной

Площадка должна быть ровной

Подключение генератора проводят кабелем, в соответствии с рекомендациями производителей. Само подключение производится в шкафу, куда заводится кабель от генераторной установки. Он подключается после вводного автомата и счетчика.

Если генератор будет уставлен в помещении, в нем должна быть хорошая вентиляция. Планируя на время работы двигателя оставлять двери открытыми, нужна будет решётка, чтобы никто не попал внутрь во время работы станции.

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*