Катализатор подробно — Энциклопедия журнала «За рулем»
КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР ВЫХЛОПНЫХ ГАЗОВ
Общие сведения
Требования по ограничению токсичности отработавших газов двигателей внутреннего сгорания появились в 70-х годах прошлого столетия в США и Японии, а затем и в других странах. В связи с увеличением количества автомобилей и их отрицательным воздействием на окружающую среду эти требования постоянно ужесточаются. На протяжении трех десятилетий ведется работа, направленная на решение этой проблемы. Все известные способы снизить количество вредных выбросов за счет регулировок или изменения конструкции двигателя не дали ожидаемого эффекта. Кроме того, их использование приводит к увеличению расхода топлива и существенному снижению мощности. Неполнота сгорания в поршневых бензиновых двигателях не позволяет уменьшить количество оксида углерода, углеводородов и окислов азота в отработавших газах до требуемого уровня
1. Нейтрализация токсичных компонентов отработавших газов с использованием химических реакций окисления и (или) восстановления является наиболее эффективным способом снижения токсичности выхлопа при современном уровне развития техники. С этой целью в выпускную систему двигателя устанавливают специальный термический реактор (нейтрализатор). В отсутствие катализаторов полное преобразование оксида углерода и несгоревших углеводородов происходит в диапазоне температур от 700 до 850°С при условии избытка кислорода. Нейтрализовать окислы азота при этом невозможно, так как обязательным условием их восстановления является недостаток свободного кислорода.
В присутствии катализаторов — веществ, активизирующих химические реакции, температура нейтрализации снижается и обеспечивается возможность преобразования всех токсичных компонентов. Каталитические нейтрализаторы основаны на использовании “благородных” металлов, что связано с высокой химической агрессивностью отработавших газов. Применение соответствующих катализаторов обеспечивает возможность одновременно окислять оксид углерода и углеводороды, а также восстанавливать окислы азота. Такие нейтрализаторы достаточно долговечны, их применение не приводит к существенному увеличению расхода топлива и снижению мощности двигателя. При оптимальном управлении процессом сгорания и рециркуляцией отработавших газов могут быть выполнены самые жесткие экологические требования, предъявляемые к автомобилям.
Устройство нейтрализатора
В штампованном корпусе, изготовленном из нержавеющей стали, расположен каталитический носитель и эластичная термоизоляционная прокладка (рис.1). Устройство автомобильного нейтрализатора выхлопных газов:
1 — штампованный корпус из нержавеющей стали; 2 — каталитический носитель; 3 — эластичная термоизоляционная прокладка. а — керамический носитель; б — металлический носитель из гофрированной фольги.
Керамический носитель (рис. “а”) пронизан продольными порами-сотами, на поверхность которых нанесен активный каталитический слой. Поры образуют множество тонких каналов для пропуска отработавших газов. Благодаря специальной подложке толщиной 20—60 микрон с развитым микрорельефом общая площадь поверхности этого слоя может доходить до 20000 м2. Масса катализаторов, нанесенных на эту огромную площадь, составляет всего 2—3 грамма.
Для уменьшения габаритов керамической детали и снижения термических напряжений в ней носитель из такого материала часто изготавливается составным. Металлический носитель (рис. “б”) представляет собой тончайшие соты, изготовленные из гофрированной фольги. Это позволяет увеличить площадь рабочей поверхности по сравнению с керамическим носителем, снизить сопротивление движению газов и ускорить разогрев блока до рабочей температуры.
Эластичная термоизоляционная прокладка служит для компенсации различия термического расширения корпуса и носителя. Она также предназначена для защиты от вибрации, ударов, других механических воздействий и может изготавливаться:
— в виде проволочной сетки из нержавеющей термостойкой стали; — как подушка из волокон силиката алюминия с добавкой слюды.
Нейтрализаторы для бензиновых двигателей
Окислительные каталитические нейтрализаторы дожигают в присутствии платины и избытке кислорода оксид углерода и углеводороды. Недостаток заключается в том, что в этих условиях невозможно нейтрализовать окислы азота.
Двухступенчатые нейтрализаторы применяют для преобразования всех трех токсичных компонентов. Они состоят из двух частей, установленных последовательно. Первая ступень восстанавливает окислы азота при дефиците кислорода, а вторая окисляет оксид углерода и углеводороды при принудительной подаче в нее воздуха.
Двухсекционные нейтрализаторы имеют относительно сложную конструкцию. Использование смесей с избытком топлива, что необходимо для восстановления окислов азота, приводит к повышенному расходу топлива.
Трехкомпонентные нейтрализаторы способны одновременно поддерживать реакции окисления и восстановления токсичных компонентов, содержащихся в выхлопных газах. В качестве катализаторов для преобразования окислов азота в азот применяют платину и родий. Для снижения температуры дожигания оксида углерода и углеводородов, кроме платины, иногда используют рутений. Реакции нейтрализации в присутствии катализаторов начинаются при температуре 250°С. Преобразование наиболее эффективно в диапазоне температур от 400 до 800°С.
Для обеспечения работы трехкомпонентного нейтрализатора необходим стехиометрический состав топливо-воздушной смеси. При этом на 1кг топлива должно подаваться 14,7—14,9кг воздуха, что обеспечивает наиболее полное сгорание.
Система подачи топлива с электронным блоком управления обеспечивает стехиометрический состав горючей смеси на всех режимах работы двигателя. Управление осуществляется с использованием сигнала, генерируемого специальным датчиком кислорода (рис.5), установленным в системе выпуска.
Лямбда-Зонд (Датчик кислорода) выдает электрический импульс в зависимости от наличия или отсутствия кислорода в отработавших газах. Если кислород появился, смесь содержит избыток воздуха (обеднена), если кислород исчез, смесь содержит избыток топлива (обогащена). По сигналу датчика электронная система управления двигателем постоянно поддерживает смесь стехиометрического состава.
Нейтрализаторы для дизелей
Сравнительно небольшое содержание вредных компонентов в отработавших газах дизелей не требовало в прошлом установки специальных устройств. Однако ужесточение норм токсичности коснулось и их. Появились системы снижения токсичности выхлопа, включающие рециркуляцию отработавших газов, каталитический нейтрализатор и специальный сажевый фильтр. Сажа, содержащаяся в выхлопе, нетоксична, но она адсорбирует на поверхности своих частиц канцерогенные полициклические углеводороды, в том числе бенз-а-пирен.
Каталитические нейтрализаторы в этом случае не требуют подачи дополнительного воздуха, поскольку дизели работают на очень бедных смесях и в выхлопных газах всегда присутствует свободный кислород. Концентрация продуктов неполного сгорания в отработавших газах значительно ниже, чем в бензиновом двигателе. Сажевые фильтры изготавливают в виде пористого фильтрующего материала из карбида кремния. Периодически фильтры очищают отработавшими газами, температуру которых для этого повышают путем впрыска топлива в цилиндры с запозданием. Для снижения температуры регенерации применяется специальная присадка к топливу. Очистка фильтра происходит по команде блока управления после каждых 400—500 км пробега автомобиля.
Рекомендации
Для обеспечения эффективной работы нейтрализатора необходимо использовать только качественное неэтилированное топливо, так как содержащийся в бензине тетраэтилсвинец (ТЭС) необратимо “отравляет” каталитическую поверхность. Во время и после работы двигателя корпус нейтрализатора имеет достаточно высокую температуру. В связи с этим, во избежание пожара, не следует парковать автомобиль над легко воспламеняющимися предметами, например сухими листьями, травой, бумагой и т.д.
Следует соблюдать основные правила, приведенные в инструкции по эксплуатации автомобилей. Они направлены на предупреждение ситуации, когда в нейтрализатор может попасть значительное количество несгоревшего топлива. В этом случае возможная вспышка может привести к его разрушению. Наиболее общие рекомендации можно изложить следующим образом: · не следует бесполезно крутить двигатель стартером длительное время; · в холодное время года, если двигатель не запустился с первой попытки, необходимо избегать повторных включений стартера через короткие промежутки времени; · нельзя пускать двигатель путем буксировки; · запрещается проверять работу цилиндров, отключая свечи зажигания.
1Основным источником образования несгоревших остатков является гашение пламени в пристеночных зонах, в зазоре между поршнем и цилиндром, между поршневыми кольцами и канавками в поршне и т.д. Другая причина — неравномерность состава смеси по объему цилиндра, особенно у непрогретого двигателя и на переходных режимах.
Каталитические нейтрализаторы — Техническая библиотека Neftegaz.RU
Нейтрализатор — устройство в выхлопной системе, предназначенное для снижения токсичности отработавших газов посредством восстановления оксидов азота и использования полученного кислорода для дожига угарного газа и недогоревших углеводородов. Основным требованием к успешной работе катализатора является стехиометрическое соотношение топлива и кислорода.
Задачей автомобильного каталитического нейтрализатора является снижение количества вредных веществ в выхлопных газах.
Среди них
окись углерода (СО) — ядовитый газ без цвета и запаха;
углеводороды (CH), также известные как летучие органические соединения — один из главных компонентов смога, образуется за счет неполного сгорания топлива;
оксиды азота (NO и NO2, которые часто объединяют под обозначением NOx) - также являются компонентом смога, а также кислотных дождей, оказывают влияние на слизистую человека.
Принцип работы
Каталитический нейтрализатор расположен либо на приемной трубе, либо сразу после нее.
Внутри корпуса каталитического нейтрализатора находится керамическая сотовая конструкция.
Соты нужны для того, чтобы увеличить площадь контакта выхлопных газов с поверхностью, на которую нанесен тонкий слой платиноиридиевого сплава.
Недогоревшие остатки (CO, CH, NO) касаясь поверхности каталитического слоя, окисляются до конца кислородом, присутствующим также в выхлопных газах.
В результате реакции выделяется тепло, разогревающее катализатор и, тем самым, активизируется реакция окисления.
В конечном итоге на выходе из катализатора (исправного) выхлопные газы содержат в основном N2 и СО2.
Катализаторы в дизельных двигателях
Каталитические преобразователи дизельных двигателей плохо справляются с сокращением выбросов NOx.
Одна из причин в том, что дизельные двигатели сами по себе функционируют в более низком температурном режиме, чем бензиновые, а преобразователи работают лучше при нагреве.
Некоторые ведущие эксперты в области «зеленого» автомобилестроения придумали новую выхлопную систему, которая помогает исправить этот недостаток.
Они впрыскивают водный раствор мочевины в выхлопную трубу до того, как газы достигнут преобразователя.
При этом возникает химическая реакция, которая уменьшает количество NOx.
Карбамид, также известный как мочевина — органическое соединение углерода, азота, кислорода и водорода.
Его можно обнаружить в моче млекопитающих и земноводных, что и объясняет такое название.
Мочевина реагирует с NOx с получением азота и водяного пара, снижая количество оксидов азота в выхлопных газах более чем на 90%.
Ни для кого не секрет, что транспортные средства оснащенные двигателями внутреннего сгорания является одним из основных источников загрязнения окружающей среды — воздуха. С момента изобретения автомобиля до 80-х годов 20 века на проблему токсичного выхлопа не обращали особого внимания. На первом этапе количество транспортных средств было незначительным, соответственно и выбросы не представляли большой угрозы — концентрация в воздухе незначительная. Но постепенно, автомобиль перестал быть средством роскоши и стал средством передвижения, количество автомобилей росло с геометрической прогрессией, как и количество выбросов. Человеку пришлось задуматься над решением этой проблемы. И выход был найден. Но… состав и качество бензинов не позволяло применить изобретенное устройство, в последствии названное каталитическим нейтрализатором, для бензиновых двигателей, большое содержание свинца «убивало» устройство наповал. В 1992 году страны Евросоюза ввели на своей территории норму Евро-1, которая устанавливала предельно допустимое содержание токсичных веществ в выхлопных газах автомобилей, фактический с этого момента не один автомобиль без каталитического нейтрализатора — не автомобиль.В течение каждых последующих 4-5 лет Евросоюз ужесточал эти нормы.
Еще на этапе разработки современного двигателя внутреннего сгорания главная задача — задача достижения оптимальных параметров работы, настройки, выполнения условий при которых будет достигнуты минимальные выбросы — достижения такого соотношения топливо-воздух (топливо-воздушная смесь), при котором все топливо будет сожжено. Для оптимального сгорания бензина, необходимо выполнение условия — соотношение воздух/бензин должно быть около 14.7/1, это означает, что на каждый литр бензина, необходимо 14,7 литров воздуха, это в теории. На практике, топливо-воздушная смесь далека от оптимального значения. Смесь бедная — воздух/бензин выше, чем 14,7, богатая — воздух/топливо ниже, чем 14.7. Причины — разные режимы работы двигателя, режимы движения.
Азот (N2) — Air составляет 78 процентов азота, и большая часть этого проходит сквозь двигатель автомобиля.
Углекислый газ (CO2) — это один из продуктов сгорания. Углерода в топливе связей с кислородом в воздухе.
Водяной пар (h3O) — это еще один продукт сгорания. Водорода в топливных связей с кислородом в воздухе.
Углекислый газ, способствуют глобальному потеплению. Потому что процесс сгорания никогда не совершенна, некоторые небольшие количества вредных выбросов в атмосферу более производятся также в автомобильных двигателях.
Каталитические преобразователи предназначены для снижения:
Окиси углерода (СО) — ядовитый газй, который не имеет цвета и запаха.
Углеводорода или летучих органических соединений (ЛОС) являются одним из основных компонентов смога производится в основном из испарилась, несгоревших. Топлива.
Оксида азота (NO и NO2, вместе именуемые NOx) являются фактором смога и кислотных дождей, что также вызывает раздражение слизистых оболочек человека.
Так что такое катализатор?
Вспомним химию. Катализатор — вещество, которое вызывает или ускоряет химическую реакцию. Катализаторы участвуют в реакциях, но ни реагенты, ни продукты реакции, они катализируют. В человеческом организме, ферменты естественных катализаторов ответственность за многие важные биохимические реакции.
При каталитической очистке газов протекают одновременно две химические реакции:
1. Реакция восстановления, в результате которой у некоторых компонентов газов отбирается кислород:
2. Реакция окисления, в результате которой другие компоненты газов окисляются -дожигаются.
На сегодняшний день существует два различных типа работы катализатора: катализатором восстановления и окисления. Оба типа состоят из керамической структуры покрыта металлическим катализатором, обычно платина, родий и(или) палладий. Идея состоит в том, чтобы создать структуру, которая предоставляет максимальную площадь поверхности катализатора в поток выхлопных газов, а также сведение к минимуму количество катализатора требуется, так как материалы стоят очень дорого. Некоторые новейшие преобразователи даже начали использовать золото смешивается с более традиционными катализаторами. Золото стоит дешевле, чем другие материалы и может привести к увеличению окисления, химические реакции, что снижает загрязняющих веществ, до 40 %.
Снижение катализатора первой стадии каталитического нейтрализатора. Он использует платину и родий для снижения выбросов NOx. Когда NO или NO2 молекула связывается с катализатором, катализатор срывает азота атом из молекулы и имеет на нее, освобождая кислород в форме O2.Связи атомов азота с другими атомами азота, которые также застряли в катализаторе, образуя N2.
Пример:
2NO => N2 + O2 2NO2 или => N2 + 2O2
2NO => N2 + O2 2NO2 => N2 + 2O2
Катализатора окисления является вторым этапом каталитического нейтрализатора. Это снижает не сгоревших углеводородов и окиси углерода при сжигании (окислительный) их в присутствии катализатора платины и палладия. Этот катализатор помогает реакция СО и углеводородов, а остальные кислорода в выхлопных газах. Например:
2CO + O 2 => 2CO 2
Есть два основных типа конструкций, используемых в каталитических нейтрализаторов — сотовая и керамические бусы. Большинство автомобилей сегодня используют сотовую структуру.
Третий этап преобразования системы управления, которая контролирует поток выхлопных газов, и использует эту информацию для управления системой впрыска топлива. Там на датчик кислорода установлен на входе в каталитический нейтрализатор, то есть это ближе к двигателю, чем преобразователь. Этот датчик сообщает движка, сколько кислорода в выхлопных газах. Двигатель компьютера можно увеличить или уменьшить количество кислорода в выхлопе, регулируя воздух-топливо. Эта схема управления позволяет двигателю компьютер, чтобы убедиться, что двигатель работает на близком к стехиометрической точке, а также чтобы убедиться, что есть достаточное количество кислорода в выхлопе, чтобы окисление катализатора для сжигания не сгоревших углеводородов и СО
Каталитический нейтрализатор делает большую работу по снижению загрязнения, но он все еще может быть существенно улучшилась. Одной из самых больших недостатков является то, что он работает только при достаточно высокой температуре. При запуске холодного автомобиля, каталитический нейтрализатор практически ничего не делает, чтобы уменьшить загрязнение в выхлопных газах.
Одним из простых решений этой проблемы состоит в перемещении каталитический нейтрализатор ближе к двигателю. Это означает, что горячие выхлопные газы достигают конвертер и он нагревается быстрее, но это может также сократить срок службы преобразователя, выставляя его на очень высоких температурах. Большинство автопроизводителей положение преобразователя под передним пассажирским сиденьем, достаточно далеко от двигателя для поддержания температуры до уровня, который не повредит ее.
Подогрев каталитического нейтрализатора является хорошим способом для сокращения выбросов. Самый простой способ для подогрева преобразователя является использование электрических нагревателей сопротивления. К сожалению, 12-вольтовых электрических систем на большинстве автомобилей не обеспечивают достаточной энергии или мощности для нагрева каталитического конвертера достаточно быстро. Большинство людей не будет ждать несколько минут, каталитический нейтрализатор, чтобы нагреться, прежде чем начать свою машину. Гибридные автомобили, которые имеют большой, высокого напряжения батареи может обеспечить достаточно энергии, чтобы разогреть каталитический конвертер очень быстро.
Катализаторы в дизельных двигателях не работают, а также в сокращении выбросов NOx. Одной из причин является то, что дизельные двигатели запустить прохладнее, чем стандартные двигатели и преобразователи работают лучше, так как они нагреваются. Некоторые из ведущих экспертов-экологов автоматического придумали новую систему, которая помогает бороться с этим. Они вводят раствор мочевины в выхлопную трубу, прежде чем он попадает на преобразователь, испаряться и смешиваться с выхлопными и создают химическую реакцию, которая приведет к снижению выбросов NOx. Мочевина, также известная как карбамид, является органическое соединение углерода, азота, кислорода и водорода. Это обнаруживается в моче млекопитающих и земноводных. Мочевина реагирует с NOx, чтобы производить азот и водяной пар, располагая более чем на 90 процентов окислов азота в выхлопных газах.
Каталитический нейтрализатор(катализатор) — предназначен для понижения токсичности отработанных газов (выхлопных газов). В нейтрализаторе выхлопные газы при контакте с катализатором (веществом) значительно ускоряющим окислительные процессы преобразуется в СО2 и Н2О.
Если разрезать катализатор, то можно увидеть что он разделен на две камеры: камера окисления, камера восстановления. С камерой окисления вроде все понятно, смотри выше, а про камеру восстановления поговорим поподробнее. Камера восстановления — восстановительная среда для NO, позволяет химическим путем связать кислород содержащейся в выхлопных газах. При попадании выхлопных газов в камеру восстановления оксид азота превращается в аммиак, который разлагается в камере окисления.
Каталитические нейтрализаторы по типу носителя делят на керамические и металлические. Носителем выступает керамика в виде сот или метал. На сегодня более распространены керамические катализаторы. Основной недостаток керамического катализатора — хрупкость. Каталитический нейтрализатор находится за приёмной трубой глушителя (встречается объединенный) или непосредственно в выпускном коллекторе, очень редко за ним. При втором варианте ремонт очень трудоемкий и затратный. Катализатор в выпускном коллекторе установлен в большинстве новых автомобилях. Позволяет добиться экологических норм ЕВРО-4.
Катализатор — устройство предназначенное для снижения выброса вредных веществ в атмосферу с отработавшими газами образовавшимися в двигателе внутреннего сгорания автомобиля.
Система нейтрализации отработавших газов — совокупность компонентов, обеспечивающих снижение выбросов загрязняющих веществ с отработавшими газами при работе двигателя.
Какой срок службы катализатора? Срок службы автомобильного катализатора главным образом зависит от качества автомобильного бензина. При определенных условиях катализатор можно убить выездив полный бак некачественного топлива. Средний срок службы катализатора от 180 до 200 тысяч километров.
Каталитический нейтрализатор — устройство и проблемы
В последнее время одна из самых обсуждаемых проблем — охрана окружающей среды. Страх глобального потепления усиливает законодательные инициативы по сокращению выбросов в атмосферу токсичных веществ, таких как окись азота (NO), которая имеют чрезвычайно вредное воздействие на озоновый слой. Одним из основных загрязнителей атмосферы, в глобальном масштабе, является автомобильный транспорт. Именно по этой причине, ежегодно применяется более строгий надзор и вводятся ограничения на автопроизводителей.
Сегодня их продукция должна соответствовать ряду экологических требований, которые становятся более жёсткими из года в год. Конструкторские отделы автомобильных компаний находятся в непрерывной гонке, создавая новые системы для уменьшения вредных выбросов. Это привело к появлению одного из ключевых компонентов расположенного во всех современных автомобилях — «Автомобильного каталитического нейтрализатора», более известного в качестве катализатора. Катализатор является составной частью выхлопной системы автомобиля и имеет важное значение для сокращения выбросов отработанных газов в атмосферу.
Устройство и принцип действия катализатора
Катализатор состоит из одного или нескольких керамическими или металлическими элементов сделанных в виде множества трубок с толщиной стенки 0,2 мм. Они заключены в корпус из нержавеющей стали и термостойкой ваты. Современные катализаторы изготавливаются из керамических компонентов на основе кордиерита и покрыты очень тонким слоем (20–60 микрон) драгоценных металлов, которые имеют важное значение для протекания химического процесса окисления. Это металлы, относящиеся к группе платины — Pt, Pd, Rh. Платина предпочтительна, поскольку обеспечивает лучшее окисление монооксида углерода и углеводородов. Кроме того, она устойчива к воздействию соединений серы, которые присутствуют в выхлопных газах. Использование палладия или родия (особенно родия) полезно для растворения оксидов азота. Действие катализатора основано на химической реакции окисления, вызванной высокой температурой. При достижении температуры катализатора в 250-300 °C, начинаются реакции окисления вредных газов: СО — угарный газ, HC — углеводород и NO — оксид азота. Они нейтрализуют путём добавления молекулы кислорода. Таким образом вредные элементы становятся соответственно: СО2 — углекислый газ, N2 — азот и h3O — вода.
Каталитический нейтрализатор в разрезе
В бензиновом автомобиле вместо керамической вставки, близко к двигателю находится «сетка» из металлической фольги. Она изготовлена из нержавеющей стали и также покрыта тонким слоем драгоценных металлов. Катализаторы отличаются разнообразием и сложностью, но в целом можно разделить на два основных типа — «окислительные» и «тройные катализаторы».
Окислительные катализаторы использовались в США с 70-х годов. Они убирают больше углеводородов и угарный газ, но не справляются с оксидом азота.
В современных бензиновых автомобилях чаще всего используются «тройные катализаторы». В них протекают три типа реакций окисления СО, НС и NO до получения CO2, h3O и N2.
В дизельных двигателях используют «NO абсорбирующие катализаторы» и «сажевые фильтры» (DPF). В последние годы все большее число дизельных двигателей, используют «селективное каталитическое восстановление» как метод снижения выбросов оксидов азота. Это делается с помощью аммиака или прекурсоров аммиака в среде, богатой кислородом. Благодаря этому выхлопные газы очищаются от сажи и т. п.
Проблемы и засорение катализатора
Перегрев внутреннего пирога катализатора является одной из наиболее распространённых причин блокирования и повреждения. Это обычно связано с обогащением топливной смеси и следовательно, попаданию не сгоревшего топлива в выхлопную систему. Там оно воспламеняется, что приводит к резкому повышению температуры и каталитическому горению. Очень часто это происходит из-за неверно выставленного зажигания или избыточного давления топлива, которое догорает в катализаторе глушителя, разрушая его структуру.
Проблема с катализатором может возникнуть при использовании топлива богатого свинцом. Свинец наслаивается на каталитический слой, отверстия сот становятся меньше и уменьшает проницаемость системы в целом. По этой причине не стоит злоупотреблять всевозможными присадками к бензину. Элементы, входящие в состав присадок, также оседают на катализаторе.
Если двигатель автомобиля дымит — горит масло, оно также может привести к закупорке решётки катализатора.
Часто встречаются и механические повреждения катализатора из-за сильных ударов, продолжительного и сильного резонанса и прочих причин, которые вредят хрупкой сетке.
Удаление катализатора
Широко распространено мнение, что после пробега в 150 — 180 тыс.км., катализатор перестаёт функционировать и становится неработоспособным. Часто, основываясь только на пробеге, гаражные «мастера» решают, что каталитический нейтрализатор не годен и должны быть удалён. Истина в том, что есть много факторов, которые влияют на производительность катализатора и, если автомобиль эксплуатируется правильно, с хорошим топливом и исправной топливной системой, ресурс у него гораздо больше. Стоит иметь в виду, что в Западной Европе, где покупается большинство подержанных автомобилей, соблюдают очень строгие экологические стандарты при прохождении техосмотра. Кроме того, топливо значительно лучше, чем в России. Так что если вы недавно купили свежий автомобиль, а на сервисе настаивают на удалении катализатора, усомнитесь в их мотивах. У охотников за драгоценными металлами, содержащимися в катализаторе, этот приём является обычной практикой для его удаления у наивных клиентов без уважительных причин. Затем, они продаются за довольно хорошие деньги в точках сбора цветных металлов. Это явление превратилось в целую индустрию, такие случаи не редкость, а ваш катализатор просто украден!
Прежде чем приступить к удалению катализатора рекомендуется проверить газоанализатором выхлопные газы. Такие приборы имеются в большинстве пунктов техобслуживания и мастерских. Если уровень угарного газа повышен, то это почти верный признак неисправности катализатора.
Другие признаки — необычных запах тухлых яиц и аммиака из выхлопной трубы, нестабильный холостой ход, низкое давление выхлопных газов на выходе.
Совет. Если Вы водите автомобиль, особенно в городе, преодолевая короткие участки с резким набором скорости, двигатель работает с не постоянными оборотами, то теоретически можно «разблокировать» катализатор изменив стиль вождения, старайтесь двигаться плавно с постоянной скоростью.
Если катализатор забит, можно почувствовать значительно возросший расход топлива и отсутствие предполагаемой тяги. В этом случае необходимо его удаление. Имейте в виду, что цена на новый катализатор очень высокая, поэтому если вы удалили его и не можете позволить себе новый, на его место целесообразно поставить резонатор.
На самом деле, отсутствие катализатора не повлияет негативно на автомобиль. Напротив — вы можете почувствовать большую мощность и низкий расход топлива. Правда в том, что большинство производителей автомобилей ставят катализаторы, потому что их обязали по строгим законам экологии, введённых по всему миру.
Несмотря на преимущества в движении без катализатора рекомендуем сохранять его как можно дольше. Вскоре в России обратят внимание на экологические требования и ужесточат либеральный режим экологических стандартов и проверок. Тогда владельцы автомобилей, с удалённым катализатором, будет вынуждены платить обременительный налог или восстанавливать его, чтобы пройти технический осмотр.
Виды проблем, возникающих при использовании каталитического нейтрализатора
Библиографическое описание:
Петров Н. В., Федоров Д. В., Данилов А. М., Игнатьев А. А. Виды проблем, возникающих при использовании каталитического нейтрализатора // Молодой ученый. 2017. №23. С. 152-154. URL https://moluch.ru/archive/157/44410/ (дата обращения: 20.01.2020).
Каталити́ческий нейтрализа́тор (англ. catalytic converter) — устройство в выхлопной системе, предназначенное для снижения токсичности отработавших газов посредством восстановления оксидов азота и использования полученного кислорода для дожига угарного газа и недогоревших углеводородов. Основным требованием к успешной работе катализатора является стехиометрическое соотношение топлива и кислорода. В химии катализатор — это вещество, ускоряющее или вызывающее химическую реакцию, но само не входящее в эту реакцию. Такими веществами являются медь, никель, золото, платина, палладий, родий, хром. Принцип работы автомобильного катализатора как раз и основан на способности веществ-катализаторов к ускорению реакции.
Функции каталитического нейтрализатора:
‒ снижение количества окиси углерода в выхлопных газах;
‒ уменьшение уровня углеводородов в отработавших газах;
‒ уменьшение или полное удаление оксидов азота из состава выхлопных газов. [1]
Основное строение идизайн каталитического нейтрализатора
Обычный каталитический нейтрализатор состоит из внешней стальной облицовки, заполненной субстратом химических материалов. Существует два типа химического материала: керамические гранулы и монолитные сотовые плиты. Покрытие на шариках или дисках представляет собой ценные металлы, такие как палладиум, платина или родий. Передняя часть или основной боковой отсек содержат редукционный катализатор, пока задний отсек содержит кислородный катализатор. Нейтрализатор находится прямо за главной трубой, которая проводит выхлопы наружу. Он обычно припаян или прикреплён клапаном к основной трубе.
Рис. 1. Каталитический нейтрализатор в разрезе
Двухступенчатые нейтрализаторы проще в химическом отношении, чем трёхступенчатые нейтрализаторы. Они сводят к минимуму гидрокарбоновые и карбоновые загрязнители. Кислород, карбоновый монооксид и гидрокарбонаты попадают в нейтрализатор, взаимодействуя с субстратами материалов, что вызывает ускоренную оксидацию и сгорание. Ускоренная оксидация умерщвляет или делает химически нейтральными вредные выделения, и они выходят как безвредный диоксид карбоната и водяной пар.
Трёхступенчатый каталитический нейтрализатор работает похожим образом, но в дополнение он сокращает количество нитрогенных оксидов. Для этой цели эти нейтрализаторы часто имеют вводные трубы, ведущиеся воздушными насосами, что ускоряет химическое изменение.
В свою очередь трехкомпонентные каталитические нейтрализаторы делятся на два вида в зависимости от материала блок-носителя (матрицы):
Керамика — блок-носитель изготовлен из огнеупорной керамики, выполнен в виде блока, пронизанного ячейками-сотами, через которые проходят выхлопные газы. Керамика дешевая, поэтому находит самое широкое применение, однако она хрупкая, что нередко становится причиной выхода нейтрализатора из строя;
Металл — блок-носитель изготовлен из огнеупорного сплава. Металл более надежен, чем керамика, однако это более сложное и дорогое решение, поэтому встречается реже. [2]
Виды ипричины возникновение неисправностей каталитического нейтрализатора
В системе выпуска всех современных автомобилей есть устройство для снижения токсичности отработавших газов — каталитический нейтрализатор. Рассмотрим его конструкцию и возможные неисправности. [3]
Химический субстрат внутри каталитического нейтрализатора может расплавиться, перегреваясь под воздействием условий газового топлива, потери свечи зажигания или других поломок зажигания. Обычно нейтрализаторы имеют разницу в 93 градуса между внешней и внутренней стороной при нормальной скорости движения, так что при перегреве внешняя сторона становится чёрного цвета с радужным оттенком. Инфракрасный пирометр, или регулятор контактной температуры, определяет, работает ли нейтрализатор слишком активно, чтобы избавиться от избыточного тепла.
Когда субстрат в нейтрализаторе плавит либо платино-палладиевое покрытие, либо ячеистый материал оксида алюминия, он образует непроницаемый шлак, который блокирует поток выхлопных газов, закупоривая проходы. Это создает серьезное обратное давление, которое влияет на производительность двигателя. Засорение нейтрализатора может привести к колебаниям двигателя при ускорении, слабой мощности, сложности при зажигании и в некоторых случаях невозможности запуска двигателя.
Дефектные компоненты (такие как поломка распределительных колпачков, неисправность клапанов EGR или грязные инжектора топлива), которые вызывают чрезмерно плотную топливно-воздушную смесь, могут привести к плавлению. Эта проблема может быть диагностирована с помощью вакуумметрического прибора на впускном коллекторе или датчика обратного давления впереди или сзади нейтрализатора.
Рис. 2. Отработавшие газы практически не имеют выхода.
Засорение внутри нейтрализатора происходит при избытке несожжённого топлива. Температура внутри нейтрализатора не должна достигать предельной температуры, однако чрезмерная температура приведет к увеличенному давлению сзади. Когда субстраты химикатов растворяются, выхлопы выходят из трубы большим чёрным облаком. Также субстрат может намокнуть или засориться топливом. Пробег газа пострадает точно так же, как общая мощность и ускоритель.
Пропаленные каталитические нейтрализаторы издают запах плавленого металла, сопровождаемый запахом сожжённых гнилых яиц. Это происходит из-за перегретого металла и горения субстрата. Некоторые резиновые линии для проводки воздуха могут сгорать так же, как и пластиковые компоненты и любая волокнистая прокладка. Индикатор кислорода может издавать кислотный запах из-за сожжённого изоляционного материала.
Решения проблем неисправностей каталитического нейтрализатора
Чтобы каталитический нейтрализатор хорошо исполнял свои функции, системы зажигания и топливные системы, установленные производителем, должны быть исправны. В неё входит правильное включение мотора без ошибок в части зажигания и неправильных соединений в первой и второй системе. Этот контрольный список включает в себя точки, пробки, конденсатор, или распределитель зажигания, катушки, свечи зажигания, шнуры и все относительные датчики ECM. Топливная система должна иметь надлежащее давление и регулировку карбюратора или топлива, систему впрыскивания топлива, где воздушно-топливная смесь не должна быть слишком плотной или разреженной. Правильно настроенный и приуроченный двигатель не нарушит работу каталитического нейтрализатора.
Литература:
https://ru.wikipedia.org/wiki/Каталитический_конвертер — Свободная энциклопедия Википедия.
Основные термины(генерируются автоматически): каталитический нейтрализатор, нейтрализатор, газ, ECM, EGR, снижение токсичности, ускоренная оксидация.
Катализаторы для бензиновых двигателей
Окислительный катализатор
Рис. Окислительный катализатор
Окислительные катализаторы используются с двухтактными бензиновыми двигателями, дизельными двигателями и в качестве пусковых катализаторов. В них нейтрализуются только СО и углеводороды. Оксиды азота не нейтрализуются. В сочетании с сажевым фильтром они служат для окисления NO до NOx реагирующим в фильтре с сажей.
Будучи металлическими катализаторами, они устанавливаются в качестве предварительных или пусковых катализаторов в сочетании с катализатором тройного действия. В этом случае они находятся прямо на выпускном коллекторе или внутри него, при необходимости обогреваются и в фазе пуска и прогрева могут значительно снизить долю несгоревших углеводородов и оксида углерода. Возможно сочетание с системой впуска добавочного воздуха. Оксиды азота почти не образуются в фазе холодного пуска и поэтому их нейтрализация не требуется. Из-за монтажа рядом с двигателем предпочтительным является металлический катализатор.
Трехкомпонентный катализатор (тройного действия)
Рис. Катализатор тройного действия
Регулируемый катализатор тройного действия соответствует современному состоянию техники и постоянно совершенствуется. Высочайшей степени нейтрализации катализатор достигает для всех вредных компонентов в пределах лямбда-диапазона при коэффициенте избытка воздуха Л = 1 ± 0,005. У V-образных двигателей, как правило, работает по одному основному катализатору на каждом ряду цилиндров. Раньше использовались также системы без лямбда-регулирования в качестве нерегулируемого катализатора. При этом степень нейтрализации составляла лишь 50-60%.
При определенных условиях испытаний европейского цикла (NEDC) двигатель объемом 2 литра, с расходом топлива около 9 л на 100 км и соотношением «топливо-воздух» X = 1 выбрасывает на один километр следующие объемы вредных веществ:
СН — около 1,20 г
СО — около 6,70 г
NOx — около 3,01 г
СO2 — около 202 г
Это количество вредных веществ катализатор должен превратить в неядовитые компоненты. Чтобы соблюсти требования нормы Евро-3 (СО = 1,5 г/км, СН = 0,2 г/км и NOx = 0,15 г/км), нужно было достичь степени нейтрализации не менее 85% по СО и более 90% по СН и NOx. С появлением норм Евро-4 и Евро-5 требуется еще более высокая степень нейтрализации.
Пределы использования катализаторов тройного действия возникают при отклонении от стехиометрического состава смеси во время работы двигателя (двигатели, работающие на бедной смеси). В этом случае восстановление оксида азота стремится к нулю.
Требования к новым концепциям катализаторов
Для соблюдения новых норм токсичности ОГ были разработаны новые концепции с особенно эффективной нейтрализацией СО и СН при холодном пуске и прогреве. Как показали испытания, в течение первых трех минут после холодного пуска выбрасывается наибольшее количество СО и СН. Катализатор не успевает прогреться до температуры Light-off, и нейтрализация СО и СН почти не происходит. Новые концепции предлагают, к примеру, расположение катализатора ближе к двигателю или комбинации из предварительного и основного катализаторов. Все больше применяется подача добавочного воздуха. Впуск добавочного воздуха перед катализатором приводит к дожигу (дополнительному окислению СО и СН в СO2 и Н2О в катализаторе). Кроме того, катализатор нагревается в результате химических реакций, что становится особенно заметно в фазе прогрева двигателя с быстрым достижением рабочей температуры.
Самый большой потенциал улучшения катализаторов кроется в значительном сокращении времени на достижение точки начала температурного скачка. Не позднее, чем через 15 секунд после холодного пуска катализатор должен быть готов к работе. При этом важную роль играют также пассивные (например, изоляция выпускного коллектора) и активные системы (например, электрообогрев или система впуска вторичного воздуха). На рисунке изображена сложная система очистки ОГ с различными активными и пассивными компонентами. Несколько специальных катализаторов в одном выпускном тракте — это уже реальность.
Рис. Комплексная система очистки ОГ [источник: Bosch]
На пороге запуска в серийное производства находятся катализаторы, способные восстанавливать оксиды азота при избытке воздуха. Их также называют DeNOx — катализаторами и работают они с покрытиями из оксида ванадия, оксида вольфрама и оксида титана или с иридием. В настоящее время автопроизводители и изготовители систем занимаются апробированием различных систем для минимизации вредных веществ — как для соблюдения перспективных норм токсичности ОГ, так и для решения проблем при внедрении новых концепций двигателей (например, непосредственного впрыска бензина). С появлением бензиновых двигателей с непосредственным впрыском и двигателей, работающих на бедных смесях, стали необходимыми системы для снижения выбросов оксида азота при сгорании бедных смесей. Перспективные нормы токсичности ОГ не учитывают технических проблем технологий впрыска и сжигания. В таблице приведен обзор используемых на сегодня вариантов. Необходимо обратить внимание, что эти системы могут использоваться и для бензиновых двигателей, работающих на бедных смесях, и для дизельных двигателей.
Таблица. Сравнение применяющихся технологий DeNOx для дизельных двигателей и бензиновых двигателей с непосредственным впрыском
Катализаторы, расположенные рядом с двигателем
Системы, где катализатор, расположен рядом с двигателем, называют также Close Coupled Catalyst (ССС). Преимущество этих систем состоит в предотвращении потерь тепла за счет размещения непосредственно на выпускном коллекторе. Время до достижения точки Light-off составляет всего несколько секунд. Проблемой при таком расположении являются высокая температура ОГ — до 1050°С при полной нагрузке и отрицательное влияние на мощность и крутящий момент двигателя. Требуется очень точная аэродинамическая оптимизация и адаптация системы «коллектор — катализатор». Снижение выбросов СО и СН составляет около 70%. Схема расположения рядом с двигателем пускового и основного катализаторов показана на рисунке.
Рис. Сочетание пускового и основного катализаторов
В качестве пускового катализатора используется окислительный катализатор с металлическим носителем, устанавливаемый очень близко к двигателю в выпускном тракте. При таком расположении пусковой катализатор очень быстро нагревается и сразу после пуска обеспечивает очень высокую степень нейтрализации СО и СН. В результате экзотермических химических реакций выделяется дополнительное тепло, забираемое отработавшими газами и обеспечивающее более быстрый нагрев основного катализатора. Система дополняется выпускным коллектором из листовой стали, изолированным воздушными зазорами.
Особым вариантом конструкции является расположенный рядом с двигателем основной катализатор без дополнительного пускового катализатора. Благодаря расположению рядом с двигателем основной катализатор очень быстро достигает точки начала температурного скачка. За счет более высокой температуры быстрее протекают химические реакции. Общий объем катализатора можно уменьшить. Проблемой при этом расположении является создание достаточно термостойкого слоя, предотвращающего раннее термическое старение и, следовательно, сокращение срока службы катализатора.
Байпасная система
Рис. Байпасная система
Байпасные системы бывают разных вариантов. Такие системы используются в основном для выравнивания в катализаторах слишком высоких или слишком низких температур ОГ при различных рабочих режимах двигателя. У этой системы в фазе пуска отработавшие газы по короткому и прямому трубопроводу направляются из выпускного коллектора в катализатор. В фазе прогрева с помощью заслонки обеспечивается прямое поступление ОГ в катализатор. Небольшое сечение труб и большая скорость потока газов предотвращают возникновение тепловых потерь в выпускном тракте. Задний катализатор NOx быстро нагревается до рабочей температуры. При высоких температурах ОГ заслонка открывается, и газы по обеим выпускным трубам устремляются в катализатор. Проходя более длинный путь, ОГ охлаждаются и не могут термически повредить катализатор. Эту систему, с вакуумным управлением, использует Mercedes в двигателях CGI. Датчик температуры определяет температуру ОГ и сообщает ее блоку управления, активирующему заслонку ОГ.
Катализатор с электрообогревом
Рис. Катализатор с электрообогревом
Используя металлический блок в качестве нагревательной спирали, можно быстро и непосредственно нагреть катализатор. Нагревом и регулированием температуры управляет электронный блок двигателя. Проблемой в этой системе является большая техническая сложность и вытекающая отсюда стоимость системы. Необходимо использовать аккумуляторные батареи большой емкости, что увеличивает массу автомобиля и занимаемое пространство. Для небольших автомобилей эта концепция не подходит. Мощность потребляемая нагревом составляет 1,2-1,5 кВт. Катализаторы с электрообогревом впервые были применены в BMW Alpina В12 и BMW 7-й серии. Катализатор с электрообогревом (E-Kat) комбинируется с улавливателем углеводородов (CH-Adsorber). Управление обогреваемым катализатором осуществляется по CAN-шине. Увеличение мощности нагрева и совершенствование бортовых сетей позволят добиться дополнительных возможностей.
Для обеспечения высокой потребляемой мощности катализаторов с электрообогревом без перегрузки бортовой сети требуется дополнительная аккумуляторная батарея. Мощный генератор с водяным охлаждением обеспечивает работу бортовой сети даже при неблагоприятных условиях. Здесь требуются также интеллектуальное управление бортовой сетью и электронная система управления АКБ.
Рис. Принципиальная схема катализатора с электрообогревом
На стадии апробирования находятся варианты обогреваемых пусковых катализаторов с горелками, сжигающими топливо из бака и обогревающими катализатор. Проблемой является регулирование температуры, так как с одной стороны для нагрева требуется высокая температура, а с другой — слишком высокие температуры и локальные температурные пики могут привести к быстрому старению или термическому разрушению катализатора.
Накопительный катализатор — SCR-катализатор
SCR расшифровывается как Selective Catalytic Reduction (селективное каталитическое восстановление). Эти системы особенно подходят для двигателей, работающих на бедных смесях. В диапазоне выше Л = 1 в качестве восстановителей для оксидов азота можно использовать только углеводороды или аммиак. В накопительном катализаторе, также называемом NOx-адсорбером, оксиды азота NOx удерживаются в режиме работы двигателя на бедных смесях до тех пор, пока двигателю не будет дана команда на образование богатой топливовоздушной смеси. В качестве накопительных компонентов для NOx используются щелочные и щелочноземельные соединения. Во время накопления оксид азота каталитически окисляется. Возникающий при этом диоксид азота NO2 вступает в реакцию с оксидом металла, образуя нитрат M-NO3. При кратковременном обогащении смеси содержащиеся в выхлопе восстановители СН и СО расщепляют нитраты. N0 отдается в богатую оксидом углерода среду, и под воздействием родия образуются СO2 и N2 При этом различают четыре этапа превращения.
Недостатками этой технологии являются высокая чувствительность к сере и снижение степени нейтрализации в диапазоне высоких температур. В режиме бедной смеси SO2 в накопительном катализаторе окисляется до SO3. Оксид серы, как и NO, реагирует с аккумулирующим оксидом, образуя агрессивные сульфаты. Они остаются в накопителе и в фазе обогащения, тем самым уменьшая его емкость и производительность. Уже после небольшого пробега в катализаторе начинается отравление серой.
Снижается стойкость к старению, сокращается срок службы. Необходимое обогащение смеси в фазе восстановления приводит к увеличению расхода на 1,5-2%. Таким образом, срок службы накопительного катализатора в основном зависит от качества используемого топлива (в плане содержания серы). Вот причина, по которой выбросы NOK у японских двигателей GDI в Японии уже достаточно давно удалось снизить с помощью накопительного катализатора. В Европе это решение долгое время было невозможным из-за высокого содержания серы в топливе. Так содержание серы до 500 промилле (ррт) существенно снижало степень нейтрализации и срок службы катализаторов. Ситуация изменилась с выходом директивы 98/70/EG о качестве топлива, вступившей в силу 1 января 2000 г.
Используемые в грузовиках SCR-катализаторы с добавками на основе мочевины можно использовать и в легковых автомобилях. Не исключено, что с вводом Евро-5 эта технология будет использоваться и в более крупных бензиновых двигателях с непосредственным впрыском или в дизельных двигателях легковых автомобилей. Первые системы были представлены на автосалоне IAA 2005 концерном Mercedes-Benz в гибридных автомобилях для американского рынка.
Непрерывно работающие катализаторы восстановления
Рис. SCR-катализатор непрерывного действия
Концерн Mitsubishi в своих двигателях GDI использовала непрерывно работающий катализатор восстановления с иридиевым покрытием. Такой катализатор обеспечивает небольшую степень нейтрализации, но менее чувствителен к содержанию серы в топливе. Принцип действия селективного каталитического восстановления прост. NOx восстанавливается в катализаторе за счет избытка СН до N2, Н2O и СО2. Выбросы NOx можно уменьшить на 60%. Для этого катализатор должен работать в диапазоне температур 300-600°С. Проблема состоит в выбросах при холодном пуске.
Если перед обычным накопительным катализатором можно установить традиционный катализатор, то в случае с иридиевым катализатором это невозможно. Этому катализатору для восстановления оксидов азота необходимы содержащиеся в выхлопе углеводороды. По этой причине установка катализатора тройного действия перед иридиевым катализатором невозможна. Степень нейтрализации в иридиевом катализаторе заметно снизилась бы. Если поменять катализаторы местами, то температура ОГ на входе катализатора тройного действия окажется слишком мала для обеспечения удовлетворительной степени нейтрализации. Несмотря на это, концерн Mitsubishi применил эту концепцию катализатора тройного действия перед иридиевым катализатором в европейских двигателях GDI. Для соблюдения европейских предельных значений для ОГ необходимо было дополнительно изменить картину впрыска и сгорания и адаптировать к европейским условиям испытаний и эксплуатации.
Прерывисто работающие катализаторы восстановления
Концерн Volkswagen для двигателей FSI с концепцией бедной смеси использует прерывисто работающий катализатор восстановления с платиной и родием с примесью щелочного соединения, карбоната бария (BaCO3). Peugeot и Сitroen тоже используют эту технологию в двигателях HPI.
Рис. SCR-катализатор прерывистого действия
В этой системе NO окисляется кислородом до NO, на слое платины катализатора и аккумулируется в накопителе. Накопление оксидов азота происходит не постоянно. Через определенные интервалы требуется восстановление. Для этого смесь каждые 60 секунд обогащается в течение 2 секунд, и накопленный NOx восстанавливается под воздействием родия.
Датчик NOx на выходе катализатора служит для контроля за накапливанием оксидов азота. Катализатор оптимально работает в диапазоне от 250°С до 500°С. Чтобы выдержать этот температурный диапазон даже при высоких нагрузках, требуется охлаждение отработавших газов. Для обеспечения хорошего теплоотвода система выпуска ОГ между катализаторами делается трехпоточной. Кроме того, на пусковой катализатор ОГ подается встречный воздушный поток.
Проблемой в этой системе является также ухудшение способности накапливать NOx из-за сульфатизации накапливаемого материала. Сера выгоняется лишь при температурах выше 650°С.Для удаления серы используются различные стратегии: естественное удаление серы при высокой температуре ОГ, управляемое электроникой двигателя переключение с бедной смеси на богатую и, наоборот, в зависимости от сигналов датчика NCK Постоянное изменение насыщения смеси называют лямбда-скачками. При удалении серы особое значение придается предотвращению образования сероводорода (h3S). Содержащее мало серы или лучше вовсе не содержащее серы топливо совершенно необходимо для высокого КПД и длительного срока службы системы. В настоящее время повсеместное использование невозможно.
Рис. Принцип удаления серы в накопительном катализаторе
На рисунке показаны процессы в накопительном катализаторе при бедной смеси в фазе аккумулирования NOx (слева) и при богатой смеси в фазе восстановления (справа).
Трёхкомпонентный каталитический нейтрализатор устанавливается в системах регулирования эмиссии вредных веществ с отработавшими газами как двигателей с впрыском топлива во впускной коллектор, так и двигателей с непосредственным впрыском бензина.
Назначение
В процессе сгорания топливовоздушной смеси в бензиновых ДВС образуются три основных токсичных компонента — углеводороды СН, оксид углерода СО и оксиды азота NOx. Трёхкомпонентный каталитический нейтрализатор служит для преобразования этих вредных веществ в нетоксичные компоненты. Продуктами этого преобразования являются водяные пары (Н2О), диоксид углерода (СО2) и азот (N2).
Принцип действия
Преобразование токсичных компонентов осуществляется в две стадии. Сначала происходит окисление оксида углерода и углеводородов (таблица G, уравнения 1 и 2). Кислород, необходимый для процесса окисления, содержится в отработавших газах в виде остаточного кислорода по причине неполного сгорания или отбирается у оксидов азота, количество которых при этом уменьшается (G, уравнения 3 и 4). Концентрация вредных веществ в неочищенных отработавших газах есть функция коэффициента избытка воздуха А (рис. 2а). Для оксида углерода и углеводородов (СН) степень преобразования неуклонно повышается по мере увеличения коэффициента избытка воздуха (рис. 2Ь). При А = 1 концентрация этих вредных веществ в неочищенных отработавших газах очень мала, и при увеличении А (А > 1) остаётся на низком уровне. Преобразование оксидов азота (NOx) в области богатой смеси (А < 1) является вполне допустимым. Самый низкий уровень содержания NOx имеет место при стехиометрическом составе смеси (А. = 1), но даже небольшое увеличение содержания кислорода в отработавших газах, вызванное работой при А > 1, препятствует снижению оксидов азота и вызывает резкий рост их концентрации в отработавших газах. Для того чтобы поддерживать максимально возможный высокий уровень преобразования всех трёх токсичных компонентов в трёхкомпонентном каталитическом нейтрализаторе, они должны находиться в отработавших газах в химическом равновесии. Это означает, что состав топливовоздушной смеси должен быть стехиометрическим ), поэтому «окно» состава смеси, близкое к единице, является очень узким. Состав топливовоздушной смеси должен регулироваться замкнутым контуром управления с кислородным датчиком (обратной связью).
Уравнения химических реакций в трёхкомпонентном каталитическом нейтрализаторе
(1) 2 СО + О2 _х 2 СО,
(2) 2С2Н +7О2 _> 4СОг + 6Н2О
(3) 2 NO + 2 СО _^ N2 + 2 СО2
(4) 2NO2 +2CO_^ N2 + 2СО2 + О2
Рис.2
а — Перед каталитической очисткой отработавших газов
b — После каталитической очистки
с — Характеристическая кривая напряжения на узкополосном кислородном датчике
Устройство и конструкция
Каталитический нейтрализатор (рис. 3) состоит из стального корпуса 6, носителя (подложки) 5 и активного каталитического покрытия из благородных металлов 4.
Носитель (подложка)
Применяются два типа носителей — керамические и металлические монолиты.
Керамические монолиты
Керамические монолиты представляют собой керамические тела, содержащие тысячи узких каналов, через которые проходит поток отработавших газов. Керамика состоит из термостойкого магниево-алюминиевого силиката. Монолит, который чрезвычайно чувствителен к механическим напряжениям, закрепляется внутри металлического корпуса посредством минерального объёмного материала (типа матов) 2, который при первом нагревании расширяется, надёжно фиксируя монолит в данном положении. В то же самое время этот материал обеспечивает стопроцентное уплотнение для газов. Керамические монолиты наиболее часто используются как основание для каталитических покрытий.
Металлические монолитыМеталлический монолит (металлический каталитический преобразователь) является альтернативой керамическому монолиту. Он изготовляется из гофрированной тонкой металлической фольги толщиной 0,05 мм, которая сворачивается и закрепляется в процессе высокотемпературной пайки. Благодаря тонким стенкам на одной и той же площади может размещаться значительно больше каналов, что означает меньшее сопротивление потоку отработавших газов. Это, в свою очередь, очень важно для мощных современных двигателей.
Покрытие
Керамические и металлические монолиты требуют подложки из оксида алюминия А12О3, абсорбционного слоя («Washcoat») 4. Это покрытие служит для увеличения эффективной каталитической поверхности практически в 7000 раз. В каталитическом нейтрализаторе окислительного типа каталитическое покрытие, наносимое на подложку, содержит благородные металлы платину и/или палладий. В трёхкомпонентных каталитических нейтрализаторах применяется также родий. Платина и палладий ускоряют окисление углеводородов СН и оксида углерода. Родий ускоряет снижение концентрации оксидов азота NOx. В зависимости от рабочего объёма двигателя содержание благородных металлов в каталитическом нейтрализаторе составляет 1…3 грамма.
Эксплуатационные условия
Рабочая температура
Температура в каталитическом катализаторе играет решающую роль в эффективности процесса снижения вредных выбросов. Реальное преобразование токсичных компонентов в трёхкомпонентном каталитическом нейтрализаторе начинается только после достижения температуры 300° С. Идеальной с точки зрения высокого уровня преобразования и длительного срока службы нейтрализатора является температура 400…80СГС. В диапазоне температур 8ОО…1ООО°С ускоряется термическое старение из-за спекания благородных металлов и слоя А12О3, что приводит к уменьшению эффективной поверхности нейтрализатора. Губительное влияние на нейтрализатор оказывает продолжительность работы в этом температурном диапазоне, поскольку при температуре свыше 1000° С термическое старение резко ускоряется и приводит к тому, что каталитический нейтрализатор становится практически полностью неэффективным.
Рис.3
1-Кислородный датчик 2-Объёмный слой минерального материала 3-Теплоизоляционный двойной слой 4-Подложка Al2O3 с покрытием из благородных металлов 5-Монолит 6-Корпус
Нарушения работы двигателя (пропуски зажигания) могут привести к повышению температуры в каталитическом нейтрализаторе больше 1400° С. Поскольку при этой температуре плавится материал подложки и полностью разрушается катализатор, необходимо обеспечить надёжную работу системы зажигания, которая не должна требовать технического обслуживания. Современные системы управления двигателей могут определять пропуски зажигания и нарушения процесса сгорания, и в таких случаях прекращать впрыск топлива в данный цилиндр, чтобы предотвратить поступление несгоревшей топливовоздуш-ной смеси в выпускную систему.
Неэтилированное топливо Другойпредпосылкой долговременной работы является использование неэтилированного топлива. В противном случае соединения свинца осаждаются в порах активной поверхности нейтрализатора и уменьшают их число. «Отравлять» катализатор и полностью повреждать его могут также отложения моторного масла.
Место установки
Строгие законодательные нормы по контролю эмиссии вредных веществ требуют применения специальной концепции нагрева каталитического нейтрализатора при пуске двигателя. Такие концепции (например, подача дополнительного воздуха, уменьшение угла опережения зажигания, то есть позднее зажигание) определяют место установки каталитического нейтрализатора. Место установки каталитического нейтрализатора диктуется также его чувствительностью к температурному пределу его нагрева. Температурные условия, необходимые для обеспечения высокого уровня преобразования токсичных компонентов, делают обязательной установку трёхкомпонентного каталитического нейтрализатора близко к двигателю. Возможна конфигурация с двумя каталитическими нейтрализаторами, в которой первый нейтрализатор («pre-cat») устанавливается рядом с двигателем, а после него под днищем автомобиля устанавливается второй (главный) каталитический нейтрализатор. Каталитические нейтрализаторы, располагаемые близко к двигателю, требуют специальной технологии покрытия, которая должна быть оптимизирована для обеспечения стабильности при высокой температуре. С другой стороны, нейтрализаторы, расположенные под днищем автомобиля, требуют оптимизации при низких пусковых температурах (так называемые «low light-off») и обеспечения высокого уровня очистки от NOx. Альтернативой здесь может быть только «общий» каталитический нейтрализатор, который устанавливается близко к двигателю.
Эффективность
Для бензиновых двигателей, работающих на гомогенной топливовоздушной смеси с Л = 1, в настоящее время наиболее эффективным способом очистки отработавших газов является использование трёхкомпонентного каталитического нейтрализатора. В такую систему включён кислородный датчик с замкнутым контуром управления (с обратной связью), отслеживающий состав топливовоздушной смеси. При использовании трёхкомпонентного каталитического нейтрализатора вредные выбросы оксида углерода, углеводородов и оксидов азота могут быть практически устранены при условии, что двигатель работает на распределённой гомогенной топливовоздушной смеси стехиометрического состава. Несмотря на то, что эти идеальные условия не всегда могут выполняться, можно исходить из того, что средний уровень снижения концентрации вредных веществ при указанных эксплуатационных условиях составляет больше 98%.
Каталитический нейтрализатор NOX аккумуляторного типа
Назначение
При работе двигателя на бедной смеси трёхкомпонентный каталитический нейтрализатор не может полностью преобразовать оксиды азота, которые образовались в процессе сгорания. Именно в таких случаях кислород, который требуется для окисления оксида углерода и углеводородов, не расщепляется из оксидов азота, а используется остаточный кислород, который в большом количестве содержится в отработавших газах. Каталитический нейтрализатор NOx аккумуляторного типа снижает содержание оксидов азота другим способом.