При каком зажигании происходит детонация – Почему возникает детонация двигателя после выключения зажигания: причины и устранение

  • 13.06.2020

Содержание

Почему происходит детонация после включения зажигания?

Одной из крайне неприятных проблем, которая могут возникнуть при включении зажигания, считается самопроизвольная  детонация.  Причиной такому явлению может послужить самовозгорание топлива после завершения работы мотора. Как правило, последствий у подобного нарушения может быть множество. Иногда это даже может привести к повреждению ключевых элементов силового агрегата и необходимости проведения его капитального ремонта. В этом полезном материале подробнее будет рассказано о проблеме и о том, что можно сделать, если подобное произошло с автомобилем.

Почему происходит детонация после включения зажигания?

Чем опасна самопроизвольная детонация?

По понятным причинам, прежде чем, подробно останавливаться на путях решения проблемы, важно понять, а почему же она происходит и чем грозит? Для любого двигателя самопроизвольная детонация очень неприятная проблема.  При возгорании и взрыве топлива, если не работает мотор происходит мощное физическое воздействие на цилиндро-поршневую группу. Вполне естественно, что такое действие сильно задевает и наносит непоправимый вред цилиндрам, поршням, коленвалу и шатунам. Кроме того, от воздействия нередко страдают и другие не менее важные для нормальной работы мотора детали. Здесь также важно понимать, что нагрузки в момент самопроизвольной детонации после включения мотора действительно колоссальные, поэтому со временем они способны навредить мотору. Именно поэтому водителю очень важно своевременно обнаружить неисправность и как можно быстрее ее устранить.

Чем опасна самопроизвольная детонация?

Как распознать неполадку?

Многим может показаться, что определить самопроизвольную детонацию в двигателе очень сложно. Однако на деле эта процедура не несет в себе каких-либо сложностей.  Как и во многих других случаях, на это может указывать появление определенного постороннего звука.  Дело в том, что самопроизвольная детонация не происходит моментально. Такой процесс длится 20-30 секунд и сопровождается характерными хлопками со стороны двигателя. Для неопытных автомобилистов подобная ситуация может показаться нормальной, но на самом же деле при включении зажигания никаких посторонних звуков быть не должно. В любом случае, если удалось распознать неисправность, нужно быстро сделать ремонт.  Если ремонтные работы не будут выполнены своевременно, с большой вероятностью это приведет к куда более серьезным последствиям.

Причины возникновения самодетонации

Самодетонация может возникать по ряду причин. Среди которых можно выделить самые распространенные:

  • Использование топлива, негодного для данного автомобиля;
  • Неправильно выставленное зажигание.

Для своевременной детонации топлива зажигание должно быть ранним. Благодаря этому возгорание бензина происходит непосредственно в момент движения поршня на сжатие. при этом соответственно возникает перегрев рабочего пространства двигателя, а уже из-за высокой температуры  и происходит непроизвольная детонация. Что же касается неправильно выбранного топлива, то здесь ни в коем случае нельзя использовать бензин с октановым числом ниже указанного производителем. Топливо с низким показателем предназначено для моторов, в которых степень сжатия невысокая.

Подробнее о самодетонации топлива при включении зажигания будет рассказано в этом видеоролике:

Опубликовано: 01 августа 2018

Детонация двигателя – причины и способы борьбы

Водителям старой закалки, которые начинали свой автомобильный путь 15-20 лет назад и ранее, вряд ли нужно рассказывать, что такое детонация. Эту информацию они впитывали буквально с первых уроков автошколы, и она была одним из пунктов правильного вождения и обслуживания автомобиля. Характерный звук детонации, который в народе прозвали «стуком пальцев», каждый заучивал буквально с первых километров. Однако начинающие автомобилисты, которые лишь недавно вступили в ряды водителей, могут вообще не знать о таком явлении. Современные автомобили худо-бедно научились бороться с детонацией, и она перестала быть такой распространенной. Но в этом и опасность – сама детонация, как физическое явление, никуда не делась и в современных моторах, при возникновении она все равно наносит сильный вред двигателю, особенно, когда водитель не знает что это такое и как с ней бороться.

Воспламенение смеси в цилиндрахВоспламенение смеси в цилиндрах

Что такое детонация?

Говоря научным языков, детонация – это произвольное самовоспламенение смеси в цилиндрах двигателя, которое имеет характер взрывной волны. Именно последний параметр отличает детонацию от других случаев самовозгорания смеси в цилиндрах (например, калильного зажигания). Основная проблема детонации не в том, что топливо-воздушная смесь воспламенилась не в «свое» время, а в том, что скорость распространения этого огня в 500-1000 раз больше чем в случае обычного «поджига» от свечи. Именно ударная волна и приводит ко всем негативным последствиям детонации.

Чтобы было понятно, о какой напасти идет речь, перечислим негативные моменты, которые детонация оказывает на двигатель.

1. Все элементы мотора получают перегрузки, что заметно сокращает их ресурс. Особенно страдают поршни и коленвал.

Поврежденный поршень из-за детонацииПоврежденный поршень из-за детонации

2. Из-за повышения температуры увеличивается риск прогара клапанов и прокладки головки блока.

Прогоревший клапан
Прогоревший клапан

3. Детонационная волна смывает масляную пленку со стенок цилиндров, что может привести к задирам.

Задир в цилиндреЗадир в цилиндре

Кстати, характерный звук при возникновении детонации это вовсе не стук пальцев, как принято считать, а удары взрывной волны от детонации по стенкам цилиндров. Если бы пальцы двигателя были настолько изношены, что издавали бы такие звуки, то владельцу этого мотора надо было бы думать не о детонации, а о капремонте.

Причины возникновения детонации

Понятно, что детонация это прежде всего самовоспламенение. Но почему смесь вообще самопроизвольно загорается? В идеальных условиях этого не происходит, однако стоит появиться нескольким дополнительным факторам и тепловая работа двигателя нарушается. И тут сразу жди детонацию.

1. Неправильное октановое число бензина. Двигатель проектируется инженерами под использование топлива определенного типа. Степень сжатия, форма камеры сгорания, сечение клапанов все это выбирается с учетом характеристик топлива. Если использовать бензин, у которого октановое число ниже, то все расчеты нарушаются, а топливо-воздушная смесь начинает детонировать. Это справедливо и для топлива с различными присадками, которое формально по ОЧ подходит. Кстати, у газа октановое число очень высокое, больше 100, поэтому при работе на газу детонация встречается очень редко.

2. Слишком раннее зажигание. Неправильный угол установки зажигания также один из факторов, которые приводят к детонации. Противоречие в том, что двигатель любит раннее зажигание, но его же любит и детонация, так что при настройке нужно найти компромисс, чтобы двигатель работал хорошо, но без детонации.

Угол опережения зажиганияУгол опережения зажигания

В карбюраторную эпоху этот навык оттачивали годами, ведь выставлять зажигание приходилось ориентируясь только на слух и ощущения. Инжекторная эпоха эти навыки нивелировала. Теперь зажиганием заведует электронный блок управления, а в самом двигателе встроен специальный датчик. При малейших намеках на детонацию, ЭБУ начинает регулировать угол зажигания. При этом нужно понимать, что его возможности небезграничны – и полностью компенсировать другие факторы ЭБУ не может. Вот почему даже в инжекторную эпоху детонация не является пережитком прошлого.

3. Обедненная топливно-воздушная смесь. Ситуация аналогичная зажиганию, раньше все регулировки были механические и неправильно настроенный карбюратор мог приводить к серьезной детонации, но теперь все в руках электроники, которая очевидных «косяков» не совершает. Не стоит забывать про случаи перепрошивки, когда мотор специально переводят на бедную смесь или проблемы с инжектором, из-за которых смесь в цилиндрах получается неправильной.

4. Неподходящие свечи. Использование свечей с характеристиками, которые отличаются от рекомендованных производителем, тоже может привести к детонации. Смесь сгорает не полностью и ее остатки начинают детонировать.

5. Нагар на стенках камеры сгорания. Закоксованность двигателя тоже один из факторов появления детонации. Слой отложений ухудшает теплоотвод, элементы двигателя сильно нагреваются и от них поджигаются остатки смеси.

Нагар на стенках
Нагар на стенках

6. Манера вождения. Детонация не любит высокие обороты, когда цилиндры быстро «проветриваются», а у несгоревшей смеси мало шансов где-то дополнительно воспламениться. Но детонация любит высокую нагрузку, топлива в цилиндры поступает много и сгорает оно не полностью. Из этого нетрудно сделать вывод – езда на низких оборотах со значительным нажатием педали газа это просто рай для детонации. Водители часто про это забывают – поднимаются в горку на высоких передачах, пытаются резко ускориться чуть ли не с холостых оборотов, не меняют момент переключения передач при увеличении загрузки. Все это способствует детонации. Правда, речь идет только о машинах с механическими коробками передач, «автоматы», вариаторы и «роботы» обычно настраивают, чтобы исключить такие режимы работы.

Борьба с детонацией

Водитель, который не обращает внимание на детонацию, серьезно сокращает ресурс двигателя и приближает его ремонт. Закрывать глаза на регулярное появление детонации нельзя, стоит задуматься над причиной.

1. Владельцу карбюраторного авто нужно проверить зажигание и карбюратор. Зажигание можно диагностировать самому, для этого есть выработанная годами рекомендация. Разогнаться до 40 км/ч, включить 4 передачу (речь, конечно, только о механике) и нажать педаль газа в пол. В идеальной ситуации двигатель должен детонировать буквально пару секунд (если детонации совсем не будет значит зажигание слишком позднее), а потом перейти на нормальный режим работы. Карбюратор в домашних условиях настроить труднее, тут и опыт нужен, и газоанализатор, так что с этим вопросом лучше в сервис.

2. У инжекторных автомобилей появление детонации чаще всего связано с некачественным топливом. Попробуйте поменять заправку или использовать бензин с более высоким октановым числом.

3. Всем водителям, вне зависимости от типа двигателя, стоит оценить манеру вождения. Общая рекомендация – не «насиловать» двигатель на низких оборотах, а выбирать режим работы двигателя в зависимости от степени открытия дросселя. При постоянных стояниях в пробках есть рекомендация периодически раскручивать двигатель до отчески, чтобы сжигать образовавшийся нагар.

Как видите, бороться с детонацией не трудно, но эти простые меры помогут продлить жить двигателя и избавят водителя от многих проблем.

С уважением, Александр Нечаев.

Детонация — Википедия

Детона́ция (от фр. détoner — «взрываться» и лат. detonare — «греметь»[1]) — режим горения, при котором по веществу распространяется ударная волна, инициирующая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла. Комплекс, состоящий из ударной волны и зоны экзотермических химических реакций за ней, распространяется по веществу со сверхзвуковой скоростью и называется детонационной волной[1]. Фронт детонационной волны — это поверхность гидродинамического нормального разрыва.

Скорость распространения фронта детонационной волны относительно исходного неподвижного вещества называется скоростью детонации. Скорость детонации зависит только от состава и состояния детонирующего вещества и может достигать нескольких километров в секунду как в газах, так и в конденсированных системах (жидких или твёрдых взрывчатых веществах). Скорость детонации значительно превышает скорость медленного горения, которая всегда существенно меньше скорости звука в веществе и не превышает нескольких метров в секунду.

Многие вещества способны как к медленному (дефлаграционноному) горению, так и к детонации. В таких веществах для распространения детонации её необходимо инициировать внешним воздействием (механическим или тепловым). В определённых условиях медленное горение может самопроизвольно переходить в детонацию.

Детонацию, как физико-химическое явление, не следует отождествлять со взрывом. Взрыв — это процесс, в котором за короткое время в ограниченном объёме выделяется большое количество энергии и образуются газообразные продукты взрыва, способные совершить значительную механическую работу или вызвать разрушения в месте взрыва. Взрыв может иметь место и при воспламенении и быстром сгорании газовых смесей или взрывчатых веществ в ограниченном пространстве, хотя при этом детонационная волна не образуется. Так, быстрое (взрывное) сгорание пороха в стволе артиллерийского орудия в процессе выстрела не является детонацией.

Стук, возникающий в двигателях внутреннего сгорания, также называют детонацией (англ. knock), однако это не детонация в строгом смысле этого слова. Стук вызывается преждевременным самовоспламенением топливовоздушной смеси с последующим быстрым её сгоранием в режиме взрывного горения, но без образования ударных волн. Детонационные волны в работающем двигателе (англ. superknock)[2] возникают крайне редко и только при нарушении условий эксплуатации, например из-за нештатного низкооктанового топлива. При этом двигатель очень быстро выходит из строя из-за разрушения конструкционных элементов ударными волнами.

Вероятно, впервые термин «детонация» был введён в научный обиход Лавуазье в «Трактате по элементарной химии» (фр. Traité élémentaire de chimie), опубликованном в Париже в 1789 году[3]. Во второй половине XIX века были синтезированы вторичные взрывчатые вещества, в основе действия которых лежит явление детонации. Однако из-за большой скорости детонационной волны и разрушительного действия взрыва научное изучение детонации оказалось чрезвычайно затруднено и началось с публикаций исследований явления детонации газовых смесей в трубах в 1881 году французскими химиками Малляром и Ле Шателье и независимо от них Бертло и Вьелем[4]. В 1890 году русский учёный В. А. Михельсон, опираясь на работы Гюгонио по ударным волнам, вывел уравнения для распространения детонационной волны и получил выражение для скорости детонации[5]. Дальнейшее развитие теории было выполнено Чепменом в 1899 году[6] и Жуге в 1905 году[7]. В теории Чепмена—Жуге, названной гидродинамической теорией детонации, детонационная волна рассматривалась как поверхность разрыва, а условие для определения скорости детонации, названное их именами (условие Чепмена—Жуге[en]), было введено как постулат.

В 1940-е годы Я. Б. Зельдович разработал теорию детонации, в которой учитывается конечное время протекания химической реакции вслед за нагревом вещества ударной волной. В этой модели условие Чепмена—Жуге получило ясный физический смысл как правило отбора скорости детонации[8], а сама модель была названа моделью ZND[en] — по именам Зельдовича, Неймана и Дёринга, так как независимо от него к схожим результатам пришли фон Нейман[9] в США и Дёринг[10] в Германии.

Модели Чепмена—Жуге и ZND позволили существенно продвинуться в понимании явления детонации, однако они по необходимости были одномерными и упрощёнными. С ростом возможностей экспериментального исследования детонации в 1926 году английскими исследователями Кэмпбеллом и Вудхедом был открыт эффект спирального продвижения фронта детонации по газовой смеси[11]. Это явление получило название «спиновой детонации» и впоследствии было обнаружено и в конденсированных системах[12].

В 1959 году сотрудники ИХФ АН СССР Ю. Н. Денисов и Я. К. Трошин открыли явление ячеистой структуры и пульсирующих режимов распространения детонационной волны[13][14].

Детонация может возникать в газах, жидкостях, конденсированных веществах и гетерогенных средах. При прохождении фронта ударной волны вещество нагревается. Если ударная волна достаточно сильная, то температура за фронтом ударной волны может превысить температуру самовоспламенения вещества, и в веществе начинаются химические реакции горения. В ходе химических реакций выделяется энергия, подпитывающая ударную волну. Такое взаимодействие газодинамических и физико-химических факторов приводит к образованию комплекса из ударной волны и следующей за ней зоны химических реакций, называемого детонационной волной. Механизм превращения энергии в детонационной волне отличается от механизма в волне медленного горения (дефлаграции), движущейся с дозвуковой скоростью, в которой передача энергии в исходную смесь осуществляется в основном теплопроводностью[15].

Гидродинамическая теория детонации[править | править код]

Структура одномерной детонационной волны в газе (B) и конденсированных средах (C).

Если характерные размеры системы заметно превышают толщину детонационной волны, то её можно считать поверхностью нормального разрыва между исходными компонентами и продуктами детонации. В этом случае законы сохранения массы, импульса и энергии по обеим сторонам разрыва в системе координат, где фронт волны неподвижен, выражаются следующими соотношениями:

  • ρ0D=ρ(D−u){\displaystyle \rho _{0}D=\rho (D-u)} — сохранение массы,
  • P0+ρ0D2=P+ρ(D−u)2{\displaystyle P_{0}+\rho _{0}D^{2}=P+\rho (D-u)^{2}} — сохранение импульса,
  • P0D+ρ0D(e0+D2/2)=P(D−u)+ρ(D−u)(e+(D−u)2/2){\displaystyle P_{0}D+\rho _{0}D(e_{0}+D^{2}/2)=P(D-u)+\rho (D-u)(e+(D-u)^{2}/2)} — сохранение энергии.

Здесь D — скорость детонационной волны, (D — u) — скорость продуктов относительно детонационной волны, P — давление, ρ — плотность, e — удельная внутренняя энергия. Индексом 0 обозначены величины, относящиеся к исходному веществу. Исключая из этих уравнений u, имеем:

  • P−P0=(ρ0D)2(V0−V){\displaystyle P-P_{0}=(\rho _{0}D)^{2}(V_{0}-V)},
  • e−e0=12(P+P0)(V0−V){\displaystyle e-e_{0}={\frac {1}{2}}(P+P_{0})(V_{0}-V)}[16].

Первое соотношение выражает линейную зависимость между давлением P и удельным объёмом V=1/ρ и называется прямой Михельсона (в зарубежной литературе — прямой Рэлея). Второе соотношение называется детонационной адиабатой или кривой Гюгонио (в зарубежной литературе также — Рэнкина—Гюгонио). Если известно уравнение состояния вещества, то внутренняя энергия может быть выражена через давление и объём, и кривая Гюгонио может быть также представлена как линия в координатах P и V[17].

Модель Чепмена—Жуге[править | править код]

Система двух уравнений (для прямой Михельсона и кривой Гюгонио) содержит три неизвестных (D, P и V), поэтому для определения скорости детонации D требуется дополнительное уравнение, которое невозможно получить только из термодинамических соображений. Поскольку детонационная волна устойчива, звуковые возмущения в продуктах не могут догонять фронт детонационной волны, иначе он будет разрушаться. Таким образом, скорость звука в продуктах детонации не может превышать скорость течения за фронтом детонационной волны.

На плоскости P, V прямая Михельсона и кривая Гюгонио могут пересекаться не более чем в двух точках. Чепмен и Жуге предположили, что скорость детонации определяется по условию касания прямой Михельсона и кривой Гюгонио для полностью прореагировавших продуктов (детонационной адиабаты). В этом случае прямая Михельсона является касательной к детонационной адиабате, и эти линии пересекаются ровно в одной точке, названной точкой Чепмена-Жуге (CJ). Это условие соответствует минимальному наклону прямой Михельсона и физически означает, что детонационная волна распространяется с минимально возможной скоростью, и скорость течения за фронтом детонационной волны в точности равна скорости звука в продуктах детонации[18].

Модель Зельдовича, Неймана и Дёринга (ZND)[править | править код]

Модель Чепмена-Жуге позволяет описать распространение детонационной волны как гидродинамического разрыва, но не даёт ответов на вопросы, связанные со структурой зоны химических реакций. Эти вопросы стали особенно актуальными в конце 1930-х годов в связи с быстрым развитием военной техники, боеприпасов и взрывчатых веществ. Независимо друг от друга Я. Б. Зельдович в СССР, Джон фон Нейман в США и Вернер Дёринг в Германии создали модель, названную впоследствии по их именам моделью ZND. Аналогичные результаты были получены и в кандидатской диссертации А. А. Гриба, выполненной в 1940 году в Томске[19].

В этой модели считается, что при распространении детонации вещество сначала нагревается при прохождении фронта ударной волны, а химические реакции начинаются в веществе спустя некоторое время, равное задержке самовоспламенения. В ходе химических реакций выделяется тепло, которое приводит к дополнительному расширению продуктов и увеличению скорости их движения. Таким образом, зона химических реакций выступает в роли своего рода поршня, толкающего ведущую ударную волну и обеспечивающего её устойчивость[20].

На диаграмме P, V эта модель условно отображается в виде процесса, первой стадией которого будет скачок по адиабате Гюгонио для исходного вещества в точку с максимальным давлением, с последующим постепенным спуском по прямой Михельсона до её касания с адиабатой Гюгонио для прореагировавшего вещества, то есть до точки Чепмена-Жуге[21]. В этой теории правило отбора скорости детонации и гипотеза Чепмена-Жуге получают своё физическое обоснование. Все состояния выше точки Чепмена-Жуге оказываются неустойчивыми, так как в них скорость звука в продуктах превышает скорость течения за фронтом детонационной волны. В состояния ниже точки Чепмена-Жуге попасть невозможно, так как скачок давления на фронте ударной волны всегда больше конечной разности давлений между продуктами детонации и исходным веществом[22].

Однако такие режимы могут наблюдаться в эксперименте при искусственном ускорении детонационной волны, и они называются соответственно пересжатой или недосжатой детонацией[23].

В двигателях внутреннего сгорания детонацией часто называют взрывное горение в цилиндре (см. Стук в двигателе). Двигатели внутреннего сгорания, реализующие цикл Отто, рассчитаны на медленное горение горючей смеси без резких скачков давления. Быстрое сгорание смеси резко повышает давление в камере сгорания, что приводит к ударным нагрузкам на детали конструкции двигателя и быстрому выходу двигателя из строя. Топливо с более высоким октановым числом допускает большую степень сжатия и лучше противостоит детонации[24].

Детонационное горение является наиболее термодинамически выгодным способом сжигания топлива и преобразования химической энергии топлива в полезную работу[25]. Поэтому детонация может применяться в рабочем процессе в камерах сгорания перспективных энергетических установок, таких как импульсный детонационный двигатель[26][27].

Явление детонации лежит в основе действия взрывчатых веществ, широко применяемых как в военном деле, так и в гражданской хозяйственной деятельности при производстве взрывных работ[28].

  1. 1 2 БЭС, Детонация..
  2. Wang Z., Liu H., Song T., Qi Y., He X., Shuai S., Wang J. Relationship between super-knock and pre-ignition // International Journal of Engine Research. — 2014. — Vol. 16. — P. 166-180. — ISSN 1468-0874. — DOI:10.1177/1468087414530388.
  3. Долгобородов А. Ю. К истории «открытия» явления детонации // Горение и взрыв № 6. — 2013. — С. 329—332.
  4. ↑ Щёлкин, Трошин, Газодинамика горения, 1963, с. 13.
  5. ↑ Хитрин, Физика горения и взрыва, 1957, с. 262.
  6. Chapman D. L. On the rate of explosion in gases // Philosophical Magazine. — 1899. — Vol. 47. — 189. — P. 90—104.
  7. Jouguet Е. Sur la propagation des réactions chimiques dans les gaz // Journal des Mathématiques Pures et Appliquées. — 1905. — Vol. 1. — P. 347—425.
  8. Зельдович Я. Б. К теории распространения детонации в газообразных системах // Журнал экспериментальной и теоретической физики. — 1940. — Т. 10, вып. 5. — С. 542—568.
  9. von Neumann, J. (англ.)русск.. John von Neumann: Collected Works, 1903-1957 (англ.) / Taub, A. H.. — New York: Pergamon Press (англ.)русск., 1963. — Vol. 6. — ISBN 978-0-08-009566-0.
  10. Döring, W. Über Detonationsvorgang in Gasen (нем.) // Annalen der Physik. — 1943. — Т. 43, № 6—7. — С. 421—436. — ISSN 0003-4916. — DOI:10.1002/andp.19434350605.
  11. ↑ Щёлкин, Трошин, Газодинамика горения, 1963, с. 44.
  12. ↑ Дрёмин и др., Детонационные волны в конденсированных средах, 1970, с. 69.
  13. Денисов Ю. Н., Трошин Я. К. Пульсирующая и спиновая детонация газовых смесей в трубах // Доклады АН СССР. — 1959. — Т. 125, № 1. — С. 110—113.
  14. Денисов Ю. Н., Трошин Я. К. Механизм детонационного сгорания // Прикладная механика и техническая физика. — 1960. — Т. 1, № 1. — С. 21—35.
  15. ↑ Ландау, Лифшиц. Т. 6. Гидродинамика, 2001, § 129. Детонация, с. 668.
  16. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 10.
  17. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 11.
  18. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 71.
  19. Baudun G. La détonation: chronologie des travaux de modélisation dans les explosifs condensés (неопр.) (недоступная ссылка). Sixièmes journées scientifiques Paul Vieille, ENSTA, Paris 7-8 octobre 2009 27 (2009). Дата обращения 22 апреля 2015. Архивировано 6 марта 2016 года.
  20. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 64.
  21. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 69.
  22. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 75.
  23. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 74.
  24. Октановое число — статья из энциклопедии «Кругосвет»
  25. Фролов С. М. Наука о горении и проблемы современной энергетики // Российский химический журнал (Журнал Российского химического общества им. Д. И. Менделеева). — 2008. — Т. LII, № 6. — С. 129—134.
  26. Kailasanath, K. Review of Propulsion Applications of Detonation Waves (англ.) // AIAA Journal (англ.)русск. : journal. — 2000. — Vol. 39, no. 9. — P. 1698—1708. — DOI:10.2514/2.1156. — Bibcode: 2000AIAAJ..38.1698K.
  27. Norris, G. Pulse Power: Pulse Detonation Engine-powered Flight Demonstration Marks Milestone in Mojave (англ.) // Aviation Week & Space Technology (англ.)русск. : magazine. — 2008. — Vol. 168, no. 7. — P. 60.
  28. Взрывчатые вещества — статья из энциклопедии «Кругосвет»
  • Детонация // Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — 1-е изд. — М. : Большая российская энциклопедия, 1991. — ISBN 5-85270-160-2.
  • Зельдович Я. Б., Компанеец А. С. Теория детонации. — М.: Государственное издательство технико-теоретической литературы, 1955. — 268 с.
  • Хитрин Л. Н. Глава IV. Процесс распространения пламени. Детонация // Физика горения и взрыва. — М.: Издательство Московского университета, 1957. — С. 255—314. — 452 с. — 20 000 экз.
  • Щёлкин К. И., Трошин Я. К. Газодинамика горения. — М.: Издательство Академии наук СССР, 1963. — 254 с.
  • Дрёмин А. Н., Савров С. Д., Трофимов В. С., Шведов К. К. Детонационные волны в конденсированных средах. — М.: Наука, 1970. — 164 с.
  • Ландау, Л. Д., Лифшиц, Е. М. § 129. Детонация // Гидродинамика. — Издание 5-е, стереотипное. — М.: Физматлит, 2001. — С. 668. — 736 с. — («Теоретическая физика», том VI). — ISBN 5-9221-0121-8.
  • Dremin A. N. Toward Detonation Theory. — New York: Springer, 1999. — 156 p. — ISBN 978-1-4612-0563-0. — DOI:10.1007/978-1-4612-0563-0.

Детонация двигателя: причины появления и способы устранения

Что такое детонация двигателя внутреннего сгорания

Детонация двигателя явление не из приятных. Причины детонации мы разберем в конце статьи, а сначала давайте разберемся в том, что такое детонация, и что при ней происходит с двигателем.

Нормальное сгорание топлива в цилиндре, это химическое взаимодействие, протекающее в смеси паров бензина с воздухом. Для того чтобы процесс начался, мало просто перемешать горючее с воздухом в нужной пропорции, этому веществу необходимо еще дать необходимую энергию.

В дизельных двигателях для этого создается очень высокое давление на горючую смесь и температура в конце такта сжатия способствует воспламенению топлива. В бензиновых моторах смесь необходимо поджечь искрой, которая создается при помощи автомобильной свечи. Сформировавшееся пламя распространяется от электродов автомобильной свечи к стенкам всей камеры сгорания.

Пока фронт пламени идет от свечи зажигания к дальним зонам камеры сгорания, может произойти ее самовоспламенение до прихода огня. Несомненно, из-за этого возникает слабая ударная волна, которая встречает на своем пути подготовленное к воспламенению топливо.

От сжатия горючая смесь тут же воспламеняется. Проще говоря, эта волна и есть детонация, скорость ее распространения в цилиндре двигателя достигает порядка 1000 м/с. Это в несколько раз быстрее обыкновенного фронта огня. При этом вы можете слышать металлический звук.

Это явление проявляется, как правило, при средних и больших оборотах мотора. Слабая и кратковременная нагрузка не оказывает серьезного вредного воздействия. Кроме того, чем ближе обстоятельства сгорания в моторе к детонации, тем выше его КПД.

В дизельных двигателях уровень сжатия намного выше, от чего топливо нагревается до пятисот градусов, и самовоспламеняется без помощи искры. В бензиновых моторах уровень сжатия намного меньше, соответственно, и температура в цилиндрах ниже. Кроме того, способность самовозгораться у бензина ниже, чем у дизельного горючего.

Последствия детонации двигателя

Сильная детонация губительно действует на детали камеры сгорания. По сути, детонация — это взрыв, и несложно догадаться, что вследствие этого происходит механическое разрушение деталей двигателя.

При длительной и сильной детонации может быть испорчен и поршень, и шатун, другие элементы КШМ. Так же негативному воздействию подвергаются клапаны и другие элементы ГРМ. И конечно же цилиндры подвергаются сильнейшему негативному воздействию.

Детонация двигателя при выключении

После того как выключили зажигание, мотор автомобиля может временами продолжать работать, то есть «дергается». Частота вращательных движений коленчатого вала то увеличивается, то уменьшается. И происходящее в камере сгорания напоминает процесс самовозгорания топлива в дизельном двигателе. Это явление называется «дизелинг». Не нужно его путать с детонацией, это другое явление и ничего общего с детонацией не имеет.

Дизелинг появляется при некорректной регулировке холостого хода. В случае если система загрязнена и смесь обогащают принудительным способом, путем закручивания винта количества. Свыше меры приоткрывают заслонку первой камеры, при этом получается, что всегда работает главная дозирующая система. Это так же может служить причиной детонации на холостых оборотах.

Причины возникновения детонации в двигателе

Причиной детонации в современных двигателях, включая ВАЗ, чаще всего является низкое качество топлива и количество примесей в нем. Прежде чем ехать в сервис попробуйте сменить заправку. Если детонация не исчезнет, то необходимо проверить работу топливной системы с помощью компьютерной диагностики. Так же необходимо обратиться в сервис в том случае, если детонация сильная.

Помимо низкого качества топлива причиной детонации может стать:

  • низкое октановое число используемого топлива
  • грязный топливный фильтр
  • плохо работающие форсунки
  • неполадки в работе топливного насоса
  • неисправный кислородный датчик
  • использование неподходящих свечей зажигания
  • неисправность системы охлаждения двигателя
  • неисправность блока управления работой двигателя

То есть причин много, но большинство из них можно определить только лишь с помощью специального диагностического оборудования.

Что делать, если двигатель детонирует?

Детонация, как правило, возникает при определенных режимах работы двигателя, характеризующихся высокими оборотами двигателя и повышенной нагрузкой.

Это может быть резкий старт с места, движение в гору, движение с полной загрузкой и т.д.

Для борьбы с детонацией в современных двигателях используется специальный датчик, который так и называется датчик детонации. Он отслеживает параметры работы двигателя, и в случае появления детонации изменяет режим работы двигателя за счет изменения состава топливной смеси и параметров угла опережения зажигания.

Однако, если во время движения вы заметили, что двигатель детонирует, то первым делом необходимо изменить стиль вождения. Как можно плавнее нажимая на педаль газа старайтесь так же плавно трогаться, снизьте скорость движения, преодолевайте подъемы на пониженной (по сравнению с обычным режимом) передаче.

При первой же возможности залейте в бак гарантировано хороший бензин, купленный на официальной заправке того же Лукойла или BP. Если детонация не прекратится, то езжайте в сервис на диагностику.

Что такое детонация двигателя, датчик детонации ДВС, принцип

Процесс беспорядочного воспламенения горюче-воздушной смеси в рабочей камере цилиндра двигателя внутреннего сгорания называется детонацией.

Содержание статьи:

  1. Что такое детонация двигателя.
  2. Датчик детонации ДВС.
  3. Причины возникновения детонации.
  4. Как защитить ДВС от детонации.
  5. Как устранить детонацию.
  6. Последствия детонации.

 

Что такое детонация двигателя

Такое явления, как детонация ДВС появилась после создания таких двигателей, принцип работы которых основан на создании воспламенении топливно-воздушной смеси в цилиндрах, за счет чего ударной волной происходит толчок поршней и шатунов, которые вращают коленчатый вал мотора.

Хорошая качественная работа двигателя сопровождается воспламенением перемешанного подаваемого топлива с необходимым количеством воздуха. А при детонации двигателя топливная смесь взрывается и работает вне заданного цикла.

А автомобилях старых образцов проверку работоспособности мотора определяли, по большей части, на слух.

 

Датчик детонации ДВС

детонация двигателяВ современных машинах установлены датчики детонации ДВС, которые имеют возможность контролировать и управлять уровнем опасности, возникающим вследствие беспорядочного самовоспламенения топливно-воздушной смеси.

Принцип работы датчика детонации основан на том, что он фиксирует колебания цилиндров и передает электрический импульс электронному блоку управления (ЭБУ). Дальнейший контроль по предотвращению детонации двигателя берет на себя ЭБУ. Исходя из полученных электрических импульсов, он знает, надо объединить смесь или обогатить, и, следит за углом опережения зажигания. Благодаря датчику детонации ДВС работает экономично при максимальной мощности.

 

Причины возникновения детонации

Ресурс двигателей зависит от правильной эксплуатации. А правильность эксплуатации — это, значит, что при малейших появлениях неполадок, шумов, расхода, ненормальной вибрации сразу принимать меры по их устранению.

Причин детонации ДВС много:
  1. Плохой бензин или дизтопливо (для дизелей).
  2. Октановой число топлива ниже нормы по ГОСТу.
  3. Закупоренные топливный и масляный фильтры.
  4. Не рабочие форсунки.
  5. Неправильная работа топливных инжекторов.
  6. Разрегулирован топливный насос.
  7. Неисправный датчик кислорода — лямбда зонд.
  8. Свечи зажигания не подходят для этой ДВС конкретной марки и модели авто.
  9. Нарушение циркуляции в системе охлаждения.
  10. Наличие проблем с управлением двигателем.

 

Октановое число топлива

К частой причине возникновения детонации в ДВС относится — эксплуатация мотора бензином с низким октановым числом.

Октановое число — это показатель степени сжатия. Чем выше октановое число, тем сильнее надо сжать топливо в цилиндре, чтобы оно воспламенилось. Чем ниже октановый показатель, тем меньше требуется компрессии для воспламенения топливно-воздушной смеси.

Современные автомобили с двигателями высокого давления должны эксплуатироваться топливом с высоким октановым числом.

Октановое число является, своего рода, антидетонацией, если компрессия двигателей соответствует заливаемому топливу.

Если залить топливо с малым октановым числом в авто с мощным мотором высокой компрессии, то оно будет сгорать в нем раньше положенного времени, что уже создаст антициклическую работу.

Оптимальная работа двигателя внутреннего сгорания осуществляется за счет нахождения «золотой» середины, то есть, чтобы топливно-воздушная смесь не самовоспламенялась от неправильной степени сжатия, а происходила за счет подачи свечами зажигания искр.

 

Нагар в цилиндрах

Если в цилиндре низкая компрессия, то горючая смесь будет сгорать не полностью, что также приводит к дальнейшим неисправностям — закоксовке. Потом придется делать раскоксовку двигателя своими руками или в сервисе. При образовании слоя нагара на стенках цилиндра, диаметр, соответственно, уменьшается, а компрессия повышается, что приводит к возникновению детонации ДВС.как очистить поршни от нагараЧем чище топливо, тем дольше межремонтный период ДВС и тем больше времени до капиталки ДВС. По частоте замены топливного фильтра можно определить, какого качества топливо, в основном, используется.

 

Не соответствуют свечи зажигания

Игнорируя рекомендации производителей двигателей и свечей зажигания можно установить не подходящие свечи. Часто, на производителей свечей не обращают внимания, при покупке только разделяют для инжекторных двигателей и для карбюраторных. Свечи, которые не подходят, будут воспламенять горючую смесь в неположенное время, что также приведет к детонации двигателя.

Рассмотренные выше 3 причины возникновения детонации — самые часто встречающиеся, но самые легко устраняемые.

 

Как защитить ДВС от детонации

Защитить двигатель внутреннего сгорания от детонации можно при недопущении вышеперечисленных причин. При обнаружении первых признаков детонации следует принять меры по их устранению.

  1. Устанавливать рекомендованные свечи зажигания для конкретного мотора.
  2. Заливать соответствующее для автомобиля топливо. Например, по рекомендации завода-изготовителя машины рекомендованным для заправки требуется только бензин с октановым числом 95, но, если заливать 92-й бензин, то может появиться детонация ДВС, потому что компрессии требуется поменьше и воспламеняется быстрее.
  3. Своевременно менять фильтры, по мере их загрязнения.
  4. Не перегревать мотор.
  5. Следить за исправностью датчиков и сигналами бортового компьютера.

 

Как устранить детонацию

Детонацию ДВС, то есть взрывное горение топливно-воздушной смеси в цилиндре можно устранить зная все причины возникновения такого явления.

Убрать детонацию двигателя во время движения можно изменяя скорость и давление. Увеличение скорости уменьшит детонацию, так как максимально создаваемое давление уменьшается и, следовательно, на нагрев смеси уходит меньше времени и уменьшается время сжигания смеси.детонация двсЕсли при нагрузке автомобиль начинает детонировать, например, при подъеме на гору начинает слышаться звуки детонации, тогда надо переключить коробку переключения переда на 1-2 ступени ниже, чтобы был запас мощности.

 

Последствия детонации

Как уже было описано выше, детонация — это разрушительная сила, приводящая к сильной вибрации деталей кривошипно-шатунного механизма, головки блока цилиндров и других деталей, непосредственно связанных в работой ДВС.детонация двс

Что конкретно происходит при детонировании ДВС

При детонации, то есть при взрыве топливно-воздушной смеси в цилиндре, появляется ударная волна, которая разрушает гладкие стенки цилиндра, уничтожает защитную пленку на поверхностях трущихся деталей.

К последствиям детонации относится и перегрев цилиндров мотора, из-за того, что высокой температуры газы нагревают соприкасаемые детали.детонация перегревА при перегреве цилиндров в результате взрыва подаваемого горючего начинают крошиться кромки поршней.

детонация двсПерегретый двигатель разрушает прокладку головки блока цилиндров, приводит к прогару клапанов газораспределительного механизма, свечи зажигания перегорают, возможно появление микротрещин на самом блоке или головке блока.

детонация двс

детонация двигателяОтсюда делаем вывод, что детонация ДВС с сопровождающимися высокими термическими и ударными нагрузками, приводит к разрушению как отдельных деталей, так и двигателя в целом. Эксплуатация автомобиля с детонацией двигателя уменьшает работоспособный ресурс и межремонтный период.

Приобретаем полезные знания по видео: Теория ДВС.

Как детонирует двигатель на видео (шум).

Автор публикации

15 Комментарии: 23Публикации: 322Регистрация: 04-03-2016

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*