Принципиальная схема генератора – Принцип работы генератора автомобиля для «чайников» + Видео » АвтоНоватор

  • 26.03.2020

Основное электрооборудование и принципиальные схемы ДЭС



Синхронные генераторы

Генераторы с машинной системой возбуждения в качестве возбудителя имеют генератор постоянного тока, связанный с валом генератора текстропной (ременной) передачей или фланцем. Обычно возбудитель имеет мощность, равную 1,5-2,5% номинальной мощности генератора ДЭС.

Рис.1. Принципиальная схема генератора с машинной системой возбуждения.

На рис.1 изображена принципиальная электрическая схема генератора с машинной системой возбуждения. Схема состоит из генератора 1, возбудителя 2 и реостатов регулирования напряжения 3.

В станине статора в специальных пазах уложена обмотка статора 4, концы которой 20 выведены в коробку выводов генератора. Ротор генератора состоит из железного сердечника с намотанной на нем обмоткой возбуждения 5. Концы обмотки 5 выведены на контактные кольца 7 и через щеточную систему и провода 6 — в коробку выводов возбудителя 8.

Полюсы возбудителя представляют собой сердечники с намотанной на них обмоткой возбуждения 11 и имеют слабое остаточное намагничивание. Поэтому в межполюсном пространстве всегда имеется магнитное поле. Концы 10 и 12 обмотки 11 заведены в коробку выводов 8. При помощи токосъемных щеток с коллектора 21 снимается постоянное напряжение (выводы 9 и 13 возбудителя). При пуске двигатель (дизель) вращает вал генератора 1 с ротором и соединенный с ними якорь возбудителя. При этом обмотки якоря возбудителя пересекают магнитное поле, создаваемое полюсами возбудителя в межполюсном пространстве, и в них индуктируется переменная электродвижущая сила (ЭДС).

С помощью коллектора ЭДС преобразуется в напряжение постоянного тока, и по обмотке возбуждения возбудителя 11 пройдет ток, что вызовет в свою очередь усиление магнитного поля в межполюсном пространстве, и, следовательно, в обмотке якоря возбудителя начнет индуктироваться большая ЭДС. Этот процесс будет продолжаться до получения на зажимах возбудителя напряжения, обусловленного сопротивлением 14 в цепи обмотки возбуждения возбудителя. Обмотка возбуждения генератора 5, соединенная с обмоткой якоря возбудителя, является ее нагрузкой. При протекании тока по обмотке возбуждения генератора 5 создается магнитное поле, которое замыкается через сердечник (станину) статора. Ротор генератора вращается, магнитное поле пересекает неподвижную статорную обмотку 4 и индуктирует в ней переменную ЭДС, которая снимается с концов 20 в коробке выводов генератора.

С помощью реостатов 14, 15, 17 (в неавтоматическом режиме, контакт 18 замкнут) или, изменяя сопротивление угольного столба 19 (в автоматическом режиме, контакт 16 замкнут), можно регулировать напряжение на якоре возбудителя и тем самым изменять напряжение на выводах статорной обмотки генератора.

Генераторы имеют встроенные (ДГС) или выносные возбудители (ПС-93-4 и СГД). Машинный возбудитель усложняет конструкцию генератора, увеличивает его размеры и массу, кроме того, коллектор и щетки имеют повышенную повреждаемость, поэтому генераторы с машинным возбуждением заменяют генераторами со статической системой возбуждения.

Техническая характеристика генераторов с машинной системой возбуждения приведена в табл.1.

Таблица 1

Технические характеристики генераторов ДЭС с машинной системой возбуждения

Серия ДГС состоит из четырех типоразмеров: 81-4; 82-4; 91-4, 92-4. Первая цифра обозначает габарит (ВОСЬмой или девятый), вторая — длину (первая или вторая), третья — количество полюсов (четыре). Генераторы имеют две формы исполнения: М101 — на лапах с двумя одинаковыми подшипниковыми щитами, соединение с двигателем при помощи эластичной муфты или ременной передачи и М202 — на лапах с двумя подшипниковыми щитами, один из которых имеет фланец, соединение с двигателем только эластичной муфтой.

Все типоразмеры ДГС имеют одинаковое устройство, но отличаются размерами статора, ротора, диаметром корпуса, сечением и количеством витков провода, размерами пазов. Возбудители применяются типов ВС-13/7 и ВС-13/11, они отличаются длиной активных частей.

Статор 2 генератора ДГС-82-4/М201 (рис.2) состоит из чугунной литой станины, сердечника, набранного из листов электротехнической стали, и обмотки. В полузакрытые овальной формы пазы статора уложена катушечная двухслойная обмотка из круглого обмоточного провода. Обмотка удерживается в пазах клиньями.

Ротор генератора 3 состоит из цельнокованого вала, к средней часта которого привернуты полюсы, набранные из листовой стали. На изолированные полюсы намотаны катушки медного изолированного провода прямоугольного сечения. Концы обмотки ротора присоединены к двум контактным кольцам 10, расположенным внутри подшипникового щита. Контактные кольца изготовлены из меди и надеты на изолированную миканитом чугунную втулку. Узел контактных колец посажен на вал ротора.

Рис.2. Синхронный генератор ДГС-82-4/М201.

Подшипниковые щиты 1 и 4 чугунные. Для прохождения охлаждающего воздуха в щитах имеются окна, защищенные с боков и снизу предохранительными решетками Подшипники генератора закрыты крышками. Наружные крышки чугунные, внутренние стальные. Наружное кольцо роликоподшипника заключено в ступицу щита.

Для добавления смазки роликоподшипника у генератора исполнения М201 имеется маслоход, ввинченный в ступицу щита, у генератора исполнения М101 — два болта, ввинченных в наружную крышку щита. Смазку добавляют в подшипники через маслоход, ввинченный в капсулу подшипника, или отодвинув наружную крышку при снятом возбудителе.

Траверса контактных колец 10 укреплена на внутренней стороне капсулы и имеет на каждом пальце два латунных щеткодержателя с щетками ЭГ-4Э.

Для охлаждения отдельных узлов генератора предусмотрена аксиальная система вентиляции Центробежный вентилятор 11 укреплен на валу со стороны привода. Поток охлаждающего воздуха засасывается вентилятором по двум параллельным путям: окна переднего щита каналы между пакетом железа статора и станиной — пространство между лобовой частью обмотки статора и диском вентилятора, возбудитель — окна капсулы шарикоподшипника — междуполюсное пространство ротора.

Якорь 13 возбудителя ВС-13/7 5 посажен на выступающий конец вала генератора и закреплен болтом, коллектор 15 — на втулку якоря.

Волновая обмотка якоря 14 из круглого провода пропитывается изоляционным лаком лаком. Секции удерживаются в пазах при помощи бандажей из стальной проволоки или стеклобандажной ленты. Станина возбудителя 5 чугунная, а сердечники полюсов 12 собраны из листовой стали и изолированы.

Обмотки полюсов 17 из круглого провода намотаны на сердечник и пропитаны изоляционным лаком. Полюсы прикреплены к станине болтами.

Траверса коллектора 6 представляет собой металлическое кольцо, имеющее четыре пальца из пластмассы, на котором укреплено по два латунных щеткодержателя 16.

Генераторы имеют две коробки выводов: для выводов обмотки статора 8 и для выводов обмотки возбудителя и ротора 9. Клеммные коробки состоят из доски зажимов, чугунного корпуса и крышки.

В передвижных станциях применяется генератор ПС-93-4 мощностью 75 кВт (рис.3). Он имеет 9-й габарит, 3-ю габаритную длину и четыре полюса. Возбудитель размещается сверху, на корпусе генератора, что делает более удобной компоновку электростанции. Генератор соединяется с возбудителем типа ВС-13/9 с помощи клиновидных ремней.

Рис.3. Генератор ПС-93-4 с возбудителем ВС-13/9.
1 — задний подшипниковый щит; 2 — коробка выводов генератора;
3 — коробка выводов возбудителя; 4 — корпус возбудителя; 5 — корпус генератора;
6 — боковые плоскости с отверстиями для крепления генератора.

Стальная станина статора имеет боковые плоскости 6 с отверстиями для крепления генератора. Сердечник набран из листов электротехнической стали и покрыт специальным лаком. Крепление сердечника к ребрам станины аналогично креплению ДГС, а пазы имеют прямоугольную открытую форму. В пазах укладывается обмотка статора из неизолированного провода прямоугольного сечения, изолированная слоями миканита и пропитанная компаундом. Пазы закрываются специальными гетинаксовыми клиньями. Выводы обмотки статора заведены в коробку выводов генератора.

Ротор генератора выполнен из стального вала, на котором укреплены полюсы, набранные из листовой стали. На изолированные полюсы намотаны катушки из медного провода, выводы которых присоединены к контактным кольцам.

Генератор охлаждается с помощью воздуха, который аксиальным вентилятором прогоняется между полюсам ротора и лобовыми частями статорной обмотки и выбрасывается наружу через окна в заднем подшипниковом щите.

Серия СГД имеет три типоразмера: 11, 12, 13 и обозначается СГД-13-42-12. Первые две цифры обозначают габарит генератора (11, 12, 13) , вторая группа цифр — длину активной части статора в сантиметрах (24, 36, 46 и т. д.), третья группа — число полюсов генератора (4, 10, 12). Генераторы большой мощности имеют обозначение, например, СГД-625-1500, где первая группа цифр обозначает мощность генератора в киловольт-амперах, а вторая — число оборотов генератора минуту.

Генераторы имеют одинаковое устройство и различаются только размерами, сечением проводов и количеством витков. С генераторами этой серии применяют возбудители серий ВС, П-70 (71, 72) и ВСМ-21/12. Возбудитель, установленный на корпусе генератора, соединяется с генератором текстропной передачей.

Рис.4. Синхронный генератор СГД-400-1000.

Статор генератора СГД-400-1000 (рис.4) имеет сварную стальную станину 8 с окнами для входа и выхода воздуха, рамы для подъема машины и два бруска для установки возбудителя. Сердечник статора 9 набран в пакеты из лакированных с обеих сторон колец, штампованных из листовой электротехнической стали толщиной 0,5 мм и имеющих прямоугольные пазы.

В пазы заложены двухслойная обмотка 6 из прямоугольной обмоточной меди. Витковая и корпусная изоляции выполнены из стекломикаленты. Закрывают пазы стеклотекстолитовые клинья.

Ротор генератора выполнен с явно выраженными полюсами, остов ротора 3 набран из штампованных листов стали и насажен на вал генератора 2. Обмотки полюсов 4, расположенные на изолированных сердечниках 5, изготовлены из неизолированной шинной меди и имеют изоляцию из асбестовой бумаги, покрываемой сверху лаком. Успокоительная обмотка состоит из медных стержней и расположена в башмаках полюсов. Выводы обмотки ротора с помощью кабеля присоединены к контактным кольцам 28.

Постоянный ток подается в обмотку ротора с помощью контактной траверсы с щетками 27.

Шкив генератора 29 с помощью клиноременной передачи 23 и шкива возбудителя 24 вращает вал возбудителя 13.

Центробежный вентилятор 7, закрепленный на втулке вала ротора, обеспечивает аксиально-радиальную вентиляцию генератора. Подшипниковые щиты 1 и кожух 25 закрывают корпус генератора.

Станина возбудителя типа П-70 15 выполнена сварной из листовой стали, на ней болтами укреплена магнитная система, состоящая из четырех главных и четырех добавочных полюсов. Сердечники главных полюсов 17 собраны из штампованных листов электротехнической стали и стянуты стальными заклепками в пакеты, сердечники добавочных полюсов 16 стальные, массивные. На сердечнике главных полюсов установлены катушки последовательной обмотки 19 и катушки шунтовой обмотки 18.

Катушка последовательной обмотки состоит из одного витка неизолированной ленточной меди, а катушка шунтовой обмотки изготовлена из прямоугольной меди. Обе катушки обмотаны снаружи стекломикалентой и пропитаны лаком. Катушки добавочных полюсов 14 также изготовлены из неизолированной ленточной меди, изолированы стекломиканитом и пропитаны лаком. На вал якоря возбудителя 13 насажен пакет якоря 26, состоящий из штампованных листов электротехнической стали и имеющий открытые пазы прямоугольной формы для укладки обмотки якоря. Обмотка якоря состоит из катушек, выполненных из прямоугольной меди, изолированных стекломикалентой, уложенных в открытые пазы железа якоря и закрепленных бандажами из стальной луженой проволоки.

Коллектор 12 собран из отдельных медных пластин, изолированных друг от друга прокладками из миканита, а выводные концы обмоток секции якоря впаяны в шлицы коллекторных пластин. Коллектор в собранном виде посажен на вал возбудителя. Над коллектором укреплены щетки, установленные в обоймы траверсы возбудителя 11. Подшипниковые щиты 10, 20 и крышка 22 крепятся к станине и закрывают возбудитель.

Вентиляция возбудителя аксиальная. Напор воздуха для вентиляции создается центробежным вентилятором возбудителя 21.

Генераторы со статической системой возбуждения.

В этих генераторах статическая система, состоящая из неподвижных элементов (силового трансформатора, выпрямителей и т.д.), преобразует переменный ток на выводах генератора в постоянный для питания обмотки возбуждения и регулирования напряжения генератора.

Рис.5. Принципиальная схема генератора со статической системой возбуждения.

Схема генератора со статической системой возбуждения (рис.5) состоит из обмоток статора 1, обмоток ротора 2 и статической системы возбуждения (блока возбуждения и блока управления). Блок возбуждения состоит из силового трансформатора 3, селеновых выпрямителей 4, блока конденсаторов 5 и силовых выпрямителей питания 6. Элементы блока возбуждения смонтированы на литом основании, которое крепится к станине генератора и закрывается сверху колпаком.

Блок управления 7 состоит из переключателей работы П5, резистора уставки напряжения РУ и отдельно стоящих резисторов для регулирования статизма 8. С помощью блоков 7 и 8, установленных на отдельном щите, управляют выходными параметрами генератора. Принцип работы генератора аналогичен работе генератора с машинной системой возбуждения, за исключением работы статической системы.

Для поддержания напряжения на выводах генератора неизменным при любой нагрузке необходимо, чтобы ток возбуждения генератора изменялся в соответствии со значением и характером его нагрузки. В статической системе возбуждения (рис.5) использован принцип фазового компаундирования. В обмотке W2 компаундирующего трансформатора 3 и селеновых выпрямителях происходит сложение и выпрямление двух составляющих тока возбуждения: от обмотки W1 пропорциональной напряжению генератора, и от обмотки Wc, пропорциональной току генератора, сдвинутых относительно друг друга под углом, зависящим от характера нагрузки (cosφ).

Система статического возбуждения автоматически обеспечивает изменение тока возбуждения при изменении значения и характера нагрузки генератора. Так как выпрямители 4 имеют нелинейное сопротивление, что не обеспечивает начального самовозбуждения, в системе предусмотрен резонансный контур, образованный емкостью Хс конденсаторов С4-С6, подключенных к обмотке Wд, и индуктивностью рассеяния XL первичной обмотки Wi. Специальным подбором параметров при частоте 50 Гц обеспечивают XL=Xc тогда ток возбуждения уже не будет зависеть от сопротивления выпрямителей 4 и обмотки возбуждения в процессе начального самовозбуждения.

Параметры трансформатора 3 обеспечивают стабильность напряжения генератора при cosφ от 0,4 до 1,0 с точностью ±5%.

Для более точной стабилизации напряжения (±3%) служит специальная обмотка управления Wy, в которую подается постоянный ток. При протекании постоянного тока по обмотке Wy образуется магнитный поток, который замыкается по сердечнику трансформатора 3. С изменением протекающего по обмотке Wy постоянного тока изменяется постоянный магнитный поток сердечника 3 и, следовательно, ток возбуждения генератора в обмотке W2. Так как обмотка Wy питается постоянным током от двух последовательно встречных источников: выпрямителя 4 (ток Iв пропорционален напряжению возбуждения генератора) и выпрямителя питания 6 через резистор РУ и сопротивление статизма СС1 (ток Iвп не зависит от нагрузки и неизменен для любого режима), то Iу=Iвп-(-Iв) и, следовательно, напряжение возбуждения генератора будет увеличиваться с ростом нагрузки.

При нагрузке с меньшим cosφ напряжение возбуждения возрастает больше, чем при нагрузках с большим cosφ, и, следовательно, ток подмагничивания трансформатора 3 (Iвп>Iв) при реактивных нагрузках генератора будет уменьшаться больше, чем при активных. Благодаря этому осуществляется коррекция параметров системы фазового компаундирования и достигается большая точность регулирования напряжения генератора по нагрузке, чем при неуправляемом варианте фазового компаундирования.

Уставку напряжения генератора регулируют резистором РУ, включенным последовательно в цепь обмотки Wy, а составляющую тока управления Iв можно корректировать резистором СС1.

Статическая система возбуждения обладает следующими достоинствами: отсутствием движущихся частей, высокой механической прочностью конструкций, надежностью и высокой точностью регулирования напряжения, небольшими эксплуатационными затратами.

Для начального возбуждения генераторы могут иметь резонансную систему с конденсаторами (генераторы типов ДГФ, ЕСС, ГСФ-100-БК, ОС, ГСС-104-4Б), или аккумуляторную батарею (ЕСС-5, ГСФ-100М, ГСФ-200), или генератор начального возбуждения (СГДС-11-46-4), или трансформатор напряжения (ЕСС-5). Принцип работы статической системы возбуждения одинаков для всех типов генераторов, за исключением схем начального возбуждения.

Техническая характеристика генераторов со статической системой возбуждения приведена в табл.2.

Таблица 2

Технические характеристики генератора ДЭС
со статической системой возбуждения

Серия ДГФ состоит из двух типоразмеров 82-4Б и 83-4Б (8-й габарит, 2-я или 3-я условная длина, четырехполюсный). Исполнение генераторов фланцевое, защищенное, с самовентиляцией, на двух щитовых подшипниках.

Рис.6. Синхронный генератор ДГФ-82-4Б.

Генератор ДГФ-82-4Б (рис.6) состоит из статора, ротора, системы возбуждения и двух подшипниковых щитов.

Статор состоит из чугунной станины на двух лапах, сердечника 5 и обмотки 2, ротор генератора — из вала 1, сердечника 9 с обмоткой возбуждения 8, контактных колец 7. Сердечник ротора собирается из листов электротехнической стали, а обмотка ротора намотана прямоугольными проводами. Катушки полюсов соединяются между собой последовательно. Ротор уравновешивается креплением балансировочных грузов к балансировочному кольцу с одной стороны и к воронке вентилятора — с другой.

Задний щит фланцевый, литой, чугунный, имеет два окна, закрытых съемными заглушками (через них открывается доступ к крышке роликоподшипника для его осмотра и пополнения смазки). Система статического возбуждения (3, 4, 6) установлена в верхней части генератора отдельным блоком и закрыта крышкой.

Серия ЕСС состоит из двух модификаций. У генераторов модификации ЕСС точность регулирования напряжения ±2%, что обеспечивает надежную параллельную работу. Генераторы модификации ЕСС-5 имеют упрощенную схему автоматического регулирования и точность регулирования напряжения ±5%, недостаточную для надежной параллельной работы.

У генераторов ЕСС в исполнении MI01 оба подшипниковых щита одинаковы, а в исполнении М201 один из подшипниковых щитов имеет фланец и допускает соединение с двигателем только эластичной муфтой. Генераторы серии ЕСС-5 выпускают только исполнения М101. Серии ЕСС и ЕСС-5 имеют несколько типоразмеров. Например, обозначение ЕСС-82-4/М101 расшифровывается: генератор серии ЕСС, 8-го габарита, 2-й длины, четырехполюсный, на лапах с двумя подшипниковыми щитами.

Генератор ЕСС устроен аналогично генератору ДГФ, а генераторы серии ЕСС-5 имеют кроме основной обмотки статора еще и дополнительную трехфазную обмотку, которая вкладывается в полузакрытые пазы статора и служит для питания схемы возбуждения.

Рис.7. Принципиальная схема генератора ЕСС-5 с начальным возбуждением.

При пуске генератора ЕСС-5 (рис.7) за счет остаточного магнетизма в полюсах ротора 2 в основной 1 и дополнительной 4 обмотках, выведенных на доску зажимов 5, индуктируется ЭДС. Значение ЭДС дополнительной обмотки оказывается недостаточным для открытия выпрямителей 3 и самовозбуждения генератора. Поэтому для обеспечения начального возбуждения применяют два способа.

От аккумуляторной батареи 6-24 В (рис.7,б) подается кратковременный импульс постоянного тока на обмотку ротора. Импульс подается кнопкой 12 через токоограничивающий резистор 11 от источника постоянного тока 13.

От трансформатора начального возбуждения 7 (рис.7,а) через выключатель 8 подается остаточная ЭДС основной обмотки, которая, складываясь с ЭДС дополнительной обмотки, открывает выпрямители 3 и возбуждает генератор. Регулирование напряжения осуществляется с помощью стабилизирующего устройства, состоящего из компаундирующих трансформаторов 10, резисторов 6 и реостатов уставки 9.

Когда ток нагрузки генератора проходит по первичным обмоткам трансформатора 10, то в его вторичной обмотке индуктируется ЭДС, которая вызывает протекание тока по вторичным обмоткам трансформатора 10 и резисторам 6. Резистор 6 включен последовательно в цепь дополнительной обмотки возбуждения 4. Электродвижущая сила, создаваемая на резисторе 6 током нагрузки, и ЭДС дополнительной обмотки геометрически суммируются и вызывают в обмотке возбуждения увеличение тока.

Следовательно, этот ток будет пропорционален току нагрузки генератора и позволит поддерживать напряжение на выводах генератора постоянным. Реостат уставки 9 позволяет изменять напряжение генератора в пределах ±5% номинального значения.

Генераторы серии ГСФ имеют мощность 100 и 200 кВт, исполнение фланцевое, защищенное, на двух щитовых подшипниках, соединение с двигателем с помощью муфты и фланцевого подшипникового щита.

Устройство и принцип работы генератора ГСФ и генератора ДГФ аналогичны. Начальное возбуждение у генераторов ГСФ-200 и ГСФ-100М осуществляется подачей импульса постоянного тока от аккумуляторной батареи; начальное возбуждение генератора ГСФ-100 БК осуществляется с помощью резонансной системы с конденсаторами.

Генераторы серии ОС имеют мощность 8, 16, 30 и 60 кВт и две модификации, которые обеспечивают точность регулирования напряжения ±2 или ±5%.

Генераторы серии ОС выпускаются в исполнении M201 имеют несколько типоразмеров. Условное обозначение этих генераторов аналогично обозначению генератора ЕСС. Конструкция генератора бесстанинная. Пазы статора открытые, обмотка выполнена из готовых секций с изоляцией класса В из кремнийорганической резины. Ротор гребенчатый с демпферами, катушки ротора съемные. Статическая система возбуждения на полупроводниках для автоматического регулирования напряжения размещена непосредственно на генераторе.

В ДЭС используется только четырехполюсный генератор ГСС-104-4Б 10-го габарита и 4-й габаритной длины.

Исполнение генератора брызгозащищенное, с самовентиляцией, на двух щитовых подшипниках. Генератор сопрягается с приводным двигателем эластичной муфтой. Устройство и принцип действия этого генератора аналогичны устройству и принципу действия генератора.

Серия СГДС имеет устройство, аналогичное устройству генератора СГД, но обмотка возбуждения питается от статической системы самовозбуждения, состоящей из трансформаторов фазового компаундирование блока силовых выпрямителей, отдельного выпрямителя и генератора начального возбуждения Работа системы возбуждения этого генератора аналогична работе статической системы возбуждения других генераторов.



Принципиальная схема генератора

Несмотря на различные типы индукционных генераторных устройств, общая принципиальная схема генератора является неизменной. То есть, в состав любого генератора входят одни и те же основные части и детали. Для того, чтобы создать магнитное поле, необходимо применение постоянных магнитов или электромагнитов, а для индуцирования переменной электродвижущей силы применяется обмотка. На демонстрационной модели она представляет собой вращающуюся рамку.

Классическая конструкция генератора

Все витки в катушке имеют последовательное соединение, благодаря чему происходит сложение между собой всех электродвижущих сил.

Наиболее распространенным является генератор переменного тока, принцип действия которого заключается во взаимном влиянии статора и ротора. Статором называется неподвижный сердечник с обмоткой, внутри которой, вокруг оси происходит вращение подвижной обмотки, называемой ротором. Зазор между ними должен иметь минимальное значение, за счет чего поток магнитной индукции значительно увеличивается.

В классической схеме происходит вращение рамки внутри неподвижного постоянного магнита. Однако, в больших генераторных установках промышленного назначения происходит вращение электромагнита, в то время, как обмотки, наводящие электродвижущие силы, исполняют роль статора и остаются неподвижными. Для отведения тока во внешнюю цепь, применяются контактные кольца, присоединенные к концам обмотки.

Принцип работы генератора

Обмотка ротора связывается с внешней цепью с помощью неподвижных пластин, называемых щетками, которые прижимаются к кольцам. Электромагнит, создающий магнитное поле, имеет в своих обмотках силу тока, значительно меньшую, чем та, которая отдается во внешнюю цепь. В связи с этим, принципиальная схема генератора предполагает более удобным снятие генерируемого тока с неподвижных обмоток, а слабый ток через скользящие контакты подводится к электромагниту. Слабый ток вырабатывается отдельным генератором постоянного тока или подводится через выпрямитель.

В генераторах малой мощности создание магнитного поля происходит с помощью вращающегося постоянного магнита. При такой конструкции, необходимость в щетках и кольцах отпадает. Электродвижущие силы появляются в обмотках статора, являющихся неподвижными, за счет образования вихревых электрических полей, получаемых вследствие изменения магнитного потока во время вращения ротора.

Таким образом, современные генераторы представляют собой достаточно сложные электротехнические конструкции, включающие в свое устройство самые различные материалы. Их производство требует высокой точности и передовых технологий.

Схема подключения генератора для дома

Генераторы, схемы

Генератор — это усилитель с такой положительной обратной связью, ко­торая обеспечивает поддержание сигнала на выходе усилителя без пода­чи внешнего входного сигнала. Генератор преобразует постоянный ток (получаемый от источника питания) в переменный сигнал. Для возник­новения устойчивых колебаний должны выполняться два основных тре­бования:

а) обратная связь должна быть положительной;

б) полный петлевой коэффициент усиления должен быть больше 1.

Существует два типа генераторов: генераторы синусоидальных сиг­налов, вырабатывающие гармонические сигналы, и генераторы несинусо­идальных сигналов, называемые также релаксационными генераторами или мультивибраторами, обычно вырабатывающие прямоугольные сиг­налы.

 

Генераторы с резонансным контуром в цепи коллектора

В схеме генератора на рис. 33.1 элементы L2 и C2 образуют резонансный контур, с которого снимается выходной сигнал.

Генератор с резонансным контуром

Рис. 33.1. Генератор с резонансным            Рис. 33.2. Генератор с резонансным контуром в       

           контуром в цепи базы.                                                    цепи  коллектора.           

 

Часть этого выходного сигнала подается обратно на вход через трансформаторную связь       L1L2 таким образом, чтобы сигнал обратной связи совпадал по фазе с сигналом на входе. Транзистор включен по схеме с ОЭ и работает в режиме класса А, который задается цепью смещения R1R2. Конденсатор C1 обеспе­чивает развязку для резистора R2 цепи смещения, а конденсатор C3развязку для обычного стабилизирующего резистора R3 в цепи эмиттера.

 

Генераторы с резонансным контуром в цепи базы

В схеме генератора на рис. 33.2 разделительный конденсатор C2 обеспечи­вает работу транзистораT1 в режиме класса С. Элементы L2 и C1 образу­ют резонансный контур. Положительная обратная связь осуществляется через конденсатор C3 и трансформатор Тр1.

Трехточечная схема генератора с индуктивной обратной связью (схема Хартли)

В этом генераторе (рис. 33.3) катушка индуктивности с отводом L1 обеспе­чивает необходимую обратную связь на эмиттер транзистора. Элементы C2 и L1 образуют резонансный контур.

Трехточечная схема генератора с емкостной обратной связью (схема Колпитца)

В этом случае используется расщепленный конденсатор C1C2 (рис. 33.4). Элементы         C1C2 и L1 образуют резонансный контур, кон­денсатор C3 обеспечивает работу транзистора в режиме класса С.

Генераторы с фазосдвигающей цепью обратной связи, или RC-генераторы

Синусоидальные колебания можно также получить с помощью специаль­но подобранных  RC-цепочек обратной связи, как показано на рис. 33.5. RC-секции R1C1, R2C2,                  R3C3 образуют фазосдвигающую цепь, которая на заданной частоте обеспечивает сдвиг фазы сигнала на 180°. Поскольку транзистор сдвигает фазу сигнала на 180°, то в петле обратной связи получается полный фазовый сдвиг 360°. Таким образом, обратная связь оказывается положительной. Обычно номиналы всех резисторов и всех конденсаторов в фазосдвигающей цепи выбираются одинаковыми, и каждая RC-секция вносит фазовый сдвиг 60°.

Схема Хартли и Колпитца

Рис. 33.3. Схема Хартли.                         Рис. 33.4. Схема Колпитца.

RC-генератор с фазосдвигающей цепью обратной связи

Рис. 33.5.RC-генератор с фазосдвигающей цепью обратной связи на элементах R1C1,

 R2C2, R3C3, обеспечивающей сдвиг фазы сигнала на 180°. 

Еще раз отметим, что вся фазосдвигающая цепь обеспечивает фазовый сдвиг 180° только на одной частоте, определяемой номиналами используемых компонентов.

Кварцевые генераторы

Одним из самых важных требований, предъявляемых к генератору, явля­ется стабильность частоты генерируемых им колебаний. Изменения частоты могут быть вызваны, например, изменением емкости или индук­тивности элементов резонансного контура или изменением параметров транзистора при колебаниях температуры. Стабильность частоты можно улучшить путем точного подбора элементов схемы, в том числе транзистора. Для обеспечения очень высокой стабильности частоты приме­няется кристалл кварца, точно задающий и стабилизирующий частоту колебаний. В небольших пределах частоту генератора с кварцевой стаби­лизацией можно изменять с помощью конденсатора переменной емкости, подключаемого параллельно кристаллу кварца. Кварцевые генераторы используются в цветных телевизорах для генерации поднесущей частоты 4,43 МГц с точностью до нескольких герц.

УВЧ-генераторы

Генераторы очень высоких и ультравысоких частот (УВЧ) по принципу работы аналогичны другим генераторам. Однако из-за очень высокой частоты емкости и индуктивности элементов настройки С и L очень ма­лы. Катушку индуктивности может заменить одна полоска проводника или простая петля из меди. В качестве конденсатора может служить варактор. Для построения резонансной схемы иногда используются от­резки длинных линий, имеющих распределенную емкость и индуктив­ность.

Генераторы несинусоидальных сигналов

Эти генераторы, называемые еще релаксационными генераторами, выра­батывают прямоугольные импульсные сигналы путем переключения од­ного или двух транзисторов из открытого состояния в закрытое и обратно. Несинхронизированный мультивибратор, описанный в предыдущей главе, является примером такого генератора. Другой разновидностью генерато­ра несинусоидальных сигналов является блокинг-генератор.

Блокинг-генератор

В генераторе этого типа применяется трансформаторная обратная связь с коллектора на базу транзистора (рис. 33.6). Работа этой схемы осно­вана на том, что в силу трансформаторной связи напряжение на базе будет наводиться только при изменении тока коллектора, то есть при его увеличении или уменьшении. В первом случае действует положитель­ная обратная связь, во втором — отрицательная. При первом включении схемы транзистор открывается, его коллекторный ток увеличивается, со­здавая напряжение обратной связи на базе, в результате чего транзистор открывается еще больше. Когда достигается насыщение, увеличение кол­лекторного тока прекращается, что вызывает появление на базе напря­жения противоположной полярности. Это напряжение закрывает тран­зистор. Транзистор удерживается в закрытом состоянии отрицательным зарядом на конденсаторе С до тех пор, пока этот конденсатор в доста­точной степени не разрядится через резистор R. После этого транзистор снова отпирается и описанный процесс повторяется.

Выходное напряжение блокинг-генератора представляет собой после­довательность узких импульсов (рис. 33.7). Ширина (длительность) импульса определяется параметрами трансформатора, а временной интер­вал между импульсами — постоянной времени RC. Поэтому частоту ко­лебаний блокинг-генератора можно изменять путем изменения номинала резистора R.

Блокинг-генератор

Рис. 33.6. Блокинг-генератор.

   Выходной сигнал блокинг-генератора

Рис. 33.7. Выходной сигнал бло­кинг-генератора.

 

Генератор на однопереходном транзисторе

Рис. 33.8. Генератор на однопереходном транзисторе.

Вторичная обмотка трансформатора является коллекторной нагруз­кой транзистора. Быстрое изменение тока через эту обмотку при закры­вании транзистора приводит к появлению большой противоЭДС и большо­го выброса коллекторного напряжения. Этот выброс напряжения может превысить максимально допустимое коллекторное напряжение и вызвать разрушение транзистора. Для защиты транзистора параллельно первич­ной обмотке трансформатора включается диод D1. В нормальном режиме этот диод смещен в обратном направлении и закрыт. Открывается он только в том случае, когда напряжение на коллекторе транзистора превышает напряжение источника питания VCC.

 

Генераторы на однопереходных транзисторах

Полупроводниковые приборы, имеющие на характеристике участок с от­рицательным сопротивлением, например одиопереходные транзисторы, могут быть использованы в генераторах. На рис. 33.8 приведена схе­ма генератора на однопереходном транзисторе. Транзистор смещен в ту область своей выходной характеристики, где выходной ток увеличивается при уменьшении входного напряжения, то есть в область отрицательного сопротивления. Он попеременно открывается и закрывается без какой-либо обратной связи. Выходное напряжение на базе 2 (b2) представля­ет собой последовательность импульсов. Еще один выходной сигнал — последовательность импульсов противоположной полярности — можно снять с базы 1 (b1). С эмиттера транзистора можно снять пилообраз­ный сигнал. Частота генерируемых импульсов определяется постоянной времени R1C1.

 

Генераторы пилообразного напряжения

На рис. 33.9 показана схема генератора, вырабатывающего пилообразный сигнал при подаче на его вход прямоугольных импульсов. На участке периода входной последовательности импульсов между точками А и В (рис. 33.10) на базе транзистора действует нулевое напряжение, и тран­зистор находится в состоянии отсечки, т. е. закрыт. Конденсатор C1 постепенно заряжается через резистор R1. Прежде чем конденсатор пол­ностью зарядится, на вход поступает положительный фронт ВС импуль­са, переключающий транзистор в проводящее состояние. В результате конденсатор C1 очень быстро разряжается через открытый транзистор. Конденсатор находится в разряженном состоянии во время действия им­пульса (вершина CD). Отрицательный фронт DE импульса переключает транзистор в состояние отсечки, конденсатор C1 снова начинает заря­жаться и т. д.

Генератор пилообразного напряжения

Рис. 33.9. Генератор пилообразно­го напряжения,

управляемый последовательностью

прямоугольных им­пульсов.

Рис. 33.10. Форма сигналов на вхо­де и

выходе генератора пилообразно­го напряжения.

Тот же принцип заряда и разряда конденсатора используется и в дру­гих генераторах пилообразного напряжения. На рис. 33.11 приведены схемы двух таких генераторов на основе несинхронизированного мульти­вибратора и блокинг-генератора соответственно, применяемых в блоках: развертки телевизоров. Потенциометр R1 управляет частотой развертки (кадровой синхронизацией), а потенциометр R2 — амплитудой сигнала развертки (размером изображения по вертикали).

Генераторы пилообразного напряжения на основе

Рис. 33.11. Генераторы пилообразного напряжения на основе (а) несинхронизированного мультивибратора и (б) блокинг-генератора, применяемые в блоках кадровой развертки телевизоров.

В этом видео рассказывается о генераторах для исследования, настройки и испытаний систем и приборов:

Добавить комментарий

Ремонт бензогенераторов схемы

В данном разделе вы можете найти необходимую Вам схему для бензинового генератора.

1. Типовая схема электропроводки для двигателей GX610 GX620 GX670

Типовая схема электропроводки для двигателей GX610 GX620 GX670

2. Схема электрическая для двигателей типа HONDA GX630 GX660 GX690

Схема электрическая для двигателей типа HONDA GX630 GX660 GX690

3.Схема электрическая генератора GESAN G10000V, G10TFV

Схема электрическая генератора GESAN G10000V, G10TFV

4.Схема электрическая генератора HITACHI E100

Схема электрическая генератора HITACHI E100

5. Схема электрическая генератора Hyndai HY7000LE-3

hyundai_hy7000le_3

6. Схема электрическая генератора Hyndai HY7000LE

Схема электрическая генератора Hyndai HY7000LE

7. Схема электрическая генератора SKAT УГБ-6000Е

Схема электрическая генератора SKAT УГБ-6000Е

8. Типовая схема 1 фазного бензинового генератора

Типовая схема 1 фазного бензинового генератора

9.Типовая схема бензинового генератора

Типовая схема бензинового генератора

10.Схема подключения (Схема цепи Champion GG2500)

Схема подключения (Схема цепи Champion GG2500)

11.Схема подключения (Схема цепи Champion GG3800, GG8000)

Схема подк лючени я (Схема цепи GG3800, GG8000)

12.Схема подключения (Схема цепи Champion GG8000-E)

Схема подк лючения (Схема цепи GG8000-E)

13.Ручной стартер 1 кВт

Ручной стартер 1 кВт

14.Схема электрических соединений в генераторе (модели WPG 1500, 2500, 3000)

Схема электрических соединений в генераторе (модели WPG 1500, 2500, 3000)

15.Схема электрических соединений в генераторе (модели WPG 3800, 5000)

Схема электрических соединений в генераторе (модели WPG 3800, 5000)

16.Схема электрических соединений в генераторе (модели WPG 3800E2, 5000E2)

Схема электрических соединений в генераторе (модели WPG 3800E2, 5000E2)
17.Схема электрических соединений в генераторе (модели WPG 6500) Схема электрических соединений в генераторе (модели WPG 6500)

18.Схема электрических соединений в генераторе (модели WPG 6500E2)

Схема электрических соединений в генераторе (модели WPG 6500E2)

19.Трехфазный генератор G12TFH (MECC ALTE T20F-200/2, 400/230 В ±4%)

Трехфазный генератор G12TFH (MECC ALTE T20F-200/2, 400/230 В ±4%)

20. Однофазный генератор G12000H (SINCRO FK2MBS, 230 В ±10%)

Однофазный генератор G12000H (SINCRO FK2MBS, 230 В ±10%)

21.СХЕМА АВТОМАТА ВВОДА РЕЗЕРВА (АВР) ДЛЯ БЕНЗИНОВЫХ ТРЕХФАЗНЫХ ЭЛЕКТРОГЕНЕРАТОРОВ GESAN

СХЕМА АВТОМАТА ВВОДА РЕЗЕРВА (АВР) ДЛЯ БЕНЗИНОВЫХ ТРЕХФАЗНЫХ ЭЛЕКТРОГЕНЕРАТОРОВ GESAN

22.СХЕМА АВТОМАТА ВВОДА РЕЗЕРВА (АВР) ДЛЯ БЕНЗИНОВЫХ

МОНОФАЗНЫХ ЭЛЕКТРОГЕНЕРАТОРОВ GESAN

СХЕМА АВТОМАТА ВВОДА РЕЗЕРВА (АВР) ДЛЯ БЕНЗИНОВЫХ МОНОФАЗНЫХ ЭЛЕКТРОГЕНЕРАТОРОВ GESAN

23.ЛОГИЧЕСКАЯ СХЕМА РАБОТЫ АВР

ЛОГИЧЕСКАЯ СХЕМА РАБОТЫ АВР

24.Схема электрическая генератора Fubagti 2000

fubagti 2000.gif
Обозначения элементов на принципиальной схеме бензинового генератора:
  • AVR — Автоматический регулятор напряжения ( Automatic Voltage Regulator )
  • BATTERY — Аккумулятор
  • CHARGE COIL — Катушка подзарядки аккумулятора
  • COMBINATION SWITCH — Замок зажигания
  • ENGINE STOP DIODE — Реле остановки двигателя
  • FUEL CUT SOLENOID — Клапан отсечки топлива ( стоит в карбюраторе )
  • FUSE — Предохранитель
  • OIL ALERT UNIT — Реле датчика уровня масла
  • OIL LEVEL SWITCH — Датчик уровня масла
  • OS — Датчик уровня масла
  • OSU — Система остановки двигателя при низком уровне масла
  • RECTIFIER — Выпрямитель, диодный мост
  • SOCKET — Розетка
  • SPARK PLUG — Свеча зажигания
  • STARTER MOTOR — Электростартер

Ниже показано как выглядят некоторые элементы схемы и их назначение

AVR - automatic voltage regulator

AVR или automatic voltage regulator — блок регулирующий напряжение 220 вольт на выходе генератора. При выходе из строя как правило пропадает напряжение на выходе генератора.

Аккумулятор 12в

Аккумулятор 12в служит для запуска генератора при помощи электростартера

205.jpg

Замок зажигания предназначен для запуска генератора с помощью ключа

Реле датчика масла бензинового генератора

Реле датчика масла бензинового генератора отвечает за экстренную остановку двигателя генератора при низком уровне масла в картере.

Электростартер бензинового генератора

Электростартер бензинового генератора предназначен для запуска генератора.

Выпрямительный диодный мост.

Выпрямительный диодный мост предназначен для преобразования переменного напряжения 12В в постоянное, для заряда аккумулятора.

схема генератора на транзисторе DIY

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Работа генератора на транзисторе

Работа генератора на транзисторе

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.
Деление частот

Деление частот

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Схемы генераторов на транзисторах

Схемы генераторов на транзисторах

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

Схема звукового генератора

Схема звукового генератора

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео

СХЕМА ГЕНЕРАТОРА СИГНАЛОВ

   Генератор различных стабильных частот является необходимым лабораторным оборудованием. В интернете есть немало аналогичных по функциям схем, но они либо морально устарели, либо не обеспечивают достаточно широкого перекрытия частот. Устройство, описываемое здесь, основано на высоком качестве работы специализированной микросхемы XR2206. Диапазон перекрываемых генератором частот впечатляет: 1 Гц — 1 МГц! XR2206 способна генерировать качественные синусоидальные, прямоугольные и треугольные формы сигналов высокой точности и стабильности. У выходных сигналов может быть как амплитудная и частотная модуляция.

Параметры генератора

   Синусоидальный сигнал:

— Амплитуда: 0 — 3В при питании 9В
— Искажения: менее 1% (1 кГц)
— Неравномерность: +0,05 дБ 1 Гц — 100 кГц

   Прямоугольный сигнал:

— Амплитуда: 8В при питании 9В
— Время нарастания: менее 50 нс (при 1 кГц)
— Время спада: менее 30 нс (на 1 кГц)
— Рассимметрия: менее 5% (1 кГц)

   Треугольный сигнал:

— Амплитуда: 0 — 3 В при питании 9 В
— Нелинейность: менее 1% (до 100 кГц)

Схемы и ПП

Схема принципиальная генератора сигналов 1 Гц - 1 МГц

 

Схема принципиальная генератора сигналов 1 Гц — 1 МГц

 

Второй вариант схемы функционального генератора на XR2206

Второй вариант схемы функционального генератора на XR2206

 

Рисунки печатных плат

   Грубая регулировка частоты осуществляется с помощью 4-х позиционного переключателя для частотных диапазонов; (1) 1 Гц-100 Гц, (2) 100 Гц-20 кГц, (3) 20 кГц-1 МГц (4) 150 кГц-1 МГц. Несмотря на то, что в схеме указан верхний предел 3 мегагерца, гарантированная предельная частота составляет именно 1 Мгц, далее генерируемый сигнал может быть менее стабильным.

плата ГЕНЕРАТОРА СИГНАЛОВ

   Частотный выход может быть точно настроены при помощи потенциометров P1 и P2. Из минусов можно отметить лишь некоторую труднодоступность данной микросхемы. Скачать файл платы генератора и описание микросхемы можно тут.

   Инструменты радиолюбителя

РадиоКот :: Генераторы ВЧ

РадиоКот >Обучалка >Аналоговая техника >Жучки, передатчики и приемники: что о них надо знать >

Генераторы ВЧ

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать.

В нашем ненаглядном Интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем эту уйму.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

«Классика жанра».

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Индуктивная трехточка.

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора,

R2 – задает смещение базы,

C1, L1 – колебательный контур,

C2 – кондер ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности.

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Этот диод ускоряет перезаряд C2, что приводит к увеличению мощности генерируемого сигнала. Однако, вместе с тем, это вносит в сигнал нелинейные искажения, так что на выходе придется ставить фильтры НЧ для подавления паразитных гармоник.

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовай ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Вот он

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков 🙂

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Смотрим:

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера ( DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.

Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.

Серии ТТЛШ: К555, К531, КР1533
Например, микросхема К1533ЛН1 – 6 инверторов.
Серии КМОП: КР1554, КР1564 (74 AC , 74 HC ), например – КР1554ЛН1
На крайний случай – старая добрая серия К155 (ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.

Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя 🙂

Дальше мы немного поговорим об усилителях и займемся модуляторами.

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*