Принцип работы турбокомпрессора: Принцип работы турбокомпрессора (турбины) его конструкция и типы

  • 30.01.2020

Содержание

Устройство турбокомпрессора (турбины) двигателя. Принцип работы — ЭнергоТехСтрой, Челябинск

Современная сельскохозяйственная техника оснащается турбокомпрессором. Он направляет воздух в цилиндры посредством газов, которые выходят из двигателя. Вследствие такого наддува воздух попадает в цилиндры под высоким давлением в больших объемах. Устройство турбокомпрессора позволяет повысить мощность техники, а расход топлива наоборот снизить.

Устройство турбокомпрессора

Турбина двигателя (турбокомпрессор двигателя) состоят из нескольких элементов:

  • Газовая турбина;
  • Компрессор;
  • Крыльчатка и улитка;
  • Подшипники, клапаны, гайки и другие крепежные элементы;
  • Насос;
  • Связующая ось.

Колеса турбокомпрессора двигателя крепко фиксируются на одном валу и помещаются в корпуса. У компрессора корпус изготовлен из алюминия, а у турбины – из сплава чугуна.

Принцип работы турбины двигателя

Устройство турбокомпрессора позволяет газам стремительно направляться через трубопровод в газовую турбину. Оттуда при помощи высокого давления по сопловому аппарату газы переходят на лопатки колеса, благодаря чему газовая турбина вращается с огромной скоростью. И только после всех этих действий газы выводятся в атмосферу сквозь глушитель.

Когда колесо турбокомпрессора двигателя (турбины двигателя) крутится, оно захватывает воздух, который поступает из атмосферы при помощи воздухоочистителя. Вследствие чего воздух направляется на лопасти компрессора, стремительно раскручивается и сжимается. После этого он под сильным давлением попадает в цилиндры. Из-за постоянного избыточного давления в трубопроводе важно смазывать его дизельным топливом.

Чем больше будет плотность воздуха, подаваемого в цилиндры, тем выше мощность турбины двигателя (турбокомпрессора двигателя), а удельный расход топлива намного меньше. Повысить плотность воздуха можно охлаждая воздух, который выходит из компрессора в цилиндры.

Получить более подробную информацию об устройстве турбокомпрессора вы можете у наших специалистов.

Принцип работы турбины. Принцип работы турбокомпрессора.

Турбокомпрессоры состоят из турбины и колеса центробежного нагнетателя (компрессора), установленных на общем валу. Для вращения турбины используется энергия отработавших газов, воздействующих на ее лопатки. Вращение турбины приводит в действие компрессор, который, в свою очередь, засасывает окружающий воздух, сжимает его и подает в цилиндры двигателя. Частота вращения ротора турбокомпрессора не зависит от частоты вращения коленчатого вала двигателя, но она в значительной степени определяется балансом энергии, получаемой турбиной и отдаваемой компрессору.

Различные области применения турбокомпрессоров требуют применения различных вариантов их конструкций. Однако практически все турбокомпрессоры имеют одни и те же элементы: ротор в сборе, который в сочетании с корпусом подшипника образует так называемый сердечник (картридж), а также кожух компрессора.

Турбокомпрессор, приводимый в действие отработавшими газами:
1 — кожух компрессора;
2 — колесо компрессора;
3 — кожух турбины;
4 — ротор;
5 — корпус подшипника;
6 — поступление отработавших газов;
7 — выход отработавших газов;
8 — вход атмосферного воздуха;
9 — выход сжатого воздуха;
10 — подача масла;
11 — выход масла

Уплотнительные кольца, устанавливаемые со стороны входа и выхода, служат для герметизации масляной камеры, расположенной вне корпуса подшипника. В особых случаях качество уплотнения может быть улучшено установкой воздухоуловителя или торцевого уплотнения с графитовыми прижимными элементами (со стороны компрессора). В основном применяются подшипники скольжения, которые установлены радиально и имеют двойные гладкие вкладыши плавающего типа или неподвижные гладкие вкладыши, в то время как для обеспечения осевой опоры используются вкладыши с клинообразной поверхностью.

Подшипники турбокомпрессора смазываются моторным маслом системы смазки двигателя. Корпус подшипника не имеет дополнительных охлаждающих устройств. Поддержание температур ниже критических значений осуществляется применением теплового экрана и теплоизоляцией корпуса подшипника.

Жидкостное охлаждение корпусов подшипников применяется в том случае, если температура отработавших газов превышает 850°С.

Кожух компрессора обычно изготавливается методом литья из алюминия. В кожух может быть вмонтирован перепускной воздушный клапан. Такие клапаны используются исключительно в наддувных двигателях с искровым зажиганием для предотвращения повышения давления компрессором, когда происходит быстрый сброс нагрузки двигателя.

Для изготовления кожухов турбин используются сплавы сортов от GGG 40 до NiResist Д5 (в зависимости от температуры отработавших газов). Турбокомпрессоры, используемые на двигателях грузовых автомобилей, содержат кожух турбины, в котором два газовых потока объединяются непосредственно перед попаданием на лопатки турбины.

Эта конструкция кожуха применяется при организации получения импульсного наддува, когда давление отработавших газов дополняется их кинетической энергией.

При работе турбокомпрессора с постоянным давлением на турбину поступает только энергия отработавших газов и поэтому может быть применена турбина, кожух которой имеет окно для впуска отработавших газов. Такая конструкция особенно распространена на судовых двигателях при использовании турбин с жидкостным охлаждением. Турбокомпрессоры мощных двигателей часто имеют перед турбиной кольцевое сопло. Такое сопло обеспечивает получение равномерного и неразрывного потока газа, поступающего на лопатки турбины с одновременной возможностью проведения тонкой регулировки расхода газа.

Турбокомпрессоры этого типа, устанавливаемые на легковых автомобилях, обычно имеют однопоточные кожухи турбин. Если двигатель такого автомобиля работает в широком диапазоне частот вращения, то необходимы механизмы управления турбокомпрессором, поддерживающие давление наддува на относительно постоянном уровне во всем рабочем диапазоне.

Обычно направляют часть отработавших газов от двигателя в обход турбины компрессора посредством управляющего механизма, выполненного в виде перепускного клапана или заслонки.

Такой механизм имеет пневматический привод. При использовании средств микроэлектроники управление давлением наддува может выполняться в функции программируемых режимов работы двигателя. Перспективные управляющие механизмы будут электро-или электронноприводными.

Энергия отработавших газов может быть использована более эффективно при применении управляющих систем, например, турбины с изменяемой геометрией лопаток.

Такие конструкции получили наибольшее признание, т. к. они сочетают в себе широкий диапазон управляющих функций и высокий к.п.д.

Установку угла расположения лопаток осуществляет поворотное регулировочное кольцо. Лопатки могут поворачиваться на требуемый угол специальными кулачками или рычагами. Пневматические исполнительные устройства могут работать как от источника отрицательного (вакуум), так и положительного давления. Микроэлектронная система управления обеспечивает оптимальное давление наддува на всем рабочем диапазоне ДВС.

В двигателях легковых автомобилей небольшой мощности нашли применение турбины с золотниковым регулированием (VST). Турбина VST работает аналогично турбине с неизменной геометрией, с той разницей что первоначально открывается один из двух каналов золотника. При достижении максимально допустимого давления наддува золотник, непрерывно перемещаясь в осевом направлении, открывает второй канал. Каналы выполнены так, чтобы наибольшая часть потока отработавших газов направлялась к турбине. Оставшаяся часть отработавших газов, за счет дальнейшего перемещения регулирующего золотника, направляется в обход крыльчатки компрессора внутри турбонагнетателя.

О новейших технологиях турбонаддува, последовательном и параллельном наддуве и турбинах с изменяемой геометрией читайте в нашей статье «системы турбонаддува Ауди и Фольксваген» в разделе «технологии».

Принцип работы турбокомпрессора | robals.

ru

Для получения более четкого представления о принципе работы турбокомпрессора, необходимо ознакомиться с системой функционирования двигателя внутреннего сгорания. На сегодняшний день, большинство дизельных легковых и грузовых автомобилей оснащаются 4-х тактными поршневыми двигателями, работа контролируется при помощи впускных и выпускных клапанов. Каждый рабочий цикл состоит из 4 тактов при 2 полных оборотах коленвала. 

  • Впуск – при движении поршня вниз, воздух (в дизельном двигателе) или смесь топлива и воздуха (в бензиновом двигателе) проходит через открытый впускной клапан.
  • Компрессия – происходит сжатие горючей массы.
  • Расширение – смесь воздуха и топлива воспламеняется при помощи свечей (бензиновый двигатель), дизельное топливо впрыскивается под давлением и воспламенение происходит произвольно.
  • Выпуск – при движении поршня вверх, выпускаются выхлопные газы.

Данные принципы работы предоставляют следующие пути увеличения эффективности работы двигателя:

  1. Увеличение объема
  2. Увеличение скорости работы двигателя
  3. Турбокомпрессия

Увеличение объема

Увеличение объема обеспечивает увеличение мощности двигателя, так как увеличение камеры сгорания позволяет нагнетание большего объема воздуха и большее колличество сжигаемого топлива. Увеличение объема может быть достигнуто путем увеличения колличества цилиндров или увеличения объема каждого цилиндра. В целом, увеличения объема приводит к увеличению массы двигателя. Этот способ не обеспечивает значительных преимушеств по уровню выбросов и потреблению топлива.

Увеличение скорости работы двигателя

Другим способом увеличения мощности двигателя является увеличение скорости работы двигателя. Увеличение скорости проводится путем увеличения колличества ходов поршня на единицу времени. Однако, по техническим причинам этот способ имеет жесткие ограничения. Увеличение скорости работы двигателя приводит к увеличению потерь при накачивании и других операциях, что вызывает падение эффективности работы.

Турбокомпрессия

При применении двух первых способов, двигатель обеспечивается только собственным нагнетанием. Воздух для сгорания проходит прямо в цилиндр во время впускного такта. При использовании турбокомпрессора, воздух, поступающий в камеру сгорания предварительно сжимается. В двигатель поступает тот же объем воздуха, однако, более высокое давление обеспечивает прохождение большего колличества воздушной массы, что позволяет увеличить объем сжигаемого топлива. Таким образом, при использовании турбокомпрессора, мощность двигателя увеличивается по отношению к его объему и колличеству потребляемого топлива.

Охлаждение нагнетаемого воздуха

В ходе компрессии, нагнетаемый воздух нагревается до 180 С. При охлаждении, плотность воздуха увеличивается,что позволяет увеличить объем нагнетаемого воздуха.
Охлаждение нагнетаемого воздуха является одной из немногих мер по увеличению мощности двигателей внутреннего сгорания, которые положительно влияют на уровень потребления топлива и уровень выброса вредных веществ. Снижение температуры входящего воздуха обеспечивает снижение температуры сгорания и, таким образом, снижение колличества вырабатываемого NO (x). Увеличение плотности воздуха снижает расход топлива и уровень загрязнения окружающей среды.

Существуют два типа турбокомпрессии – механическая турбокомпрессия и компрессия выхлопных газов.

Механическая турбокомпрессия

При механической турбокомпрессии, воздух сжимается при помощи компрессора, приводимого от двигателя. Однако, часть получаемого увеличения мощности уходит на привод компрессора. В зависимости от размера двигателя, мощность, необходимая для привода компрессора составляет от 10 до 15% от общей выработки двигателя. Таким образом, при сравнении с обычным двигателем такой же мощности, двигатель с механической турбокомпрессией имеет повышенный расход топлива.

Турбокомпрессия выхлопных газов

При использовании компрессии выхлопных газов, энергия газа, которая не используется в обычных условиях, направлена на привод турбины. Компрессор находится на одном валу с турбиной и обеспечивает забор, сжатие и подачу воздуха в камеру сгорания. В этом случае механичекие соединения с двигателем отсутствуют.

Преимущества турбокомпрессии выхлопных газов

  • По сравнению с обычным двигателем такой же мощности, турбодвигатель имеет меньший расход топлива, так как часть энергии выхлопных газов способствует увеличению мощности двигателя. Меньший объем двигателя сокращает термические и др. потери.
  • Турбодвигатель имеет значительно лучшее соотношение веса к мощности, т.е. Kw / кг.
  • Необходимая площадь двигательного отсека турбодвигателя меньше, чем у обычного двигателя.
  • При использовании турбодвигателя, возможно дальнейшее улучшение характеристик крутящего момента для поддержания мощности, близкой к максимальной при очень низкой скорости двигателя, что позволяет избежать частого переключения скоростей при езде в гористой местности.
  • Турбодвигатели имеют значительно лучшие характеристики работы в условиях высокогорья. В условиях пониженного давления обычный двигатель теряет значительную часть мощности. В противоположность, рабочие характеристики турбодвигателя улучшаются вследствие увеличения разницы между постоянным давлением вверх по соединениям турбины и пониженным внешним давлением у входа турбины. Низкая плотность воздуха у входа компенсируется, обеспечивая почти нулевую потерю мощности.
  • Так как турбодвигатель имеет меньшие размеры, а соответственно и площадь шумовыделяющей поверхности, его шумовые характеристики лучше, чем у обычных двигателей.
  • В данном случае, турбокомпрессор действует как добавочный глушитель.

Вас может заинтересовать наша продукция

Балансировочные станки серии БС-44H (в дорезонансном исполнении)

Горизонтальные балансировочные станки серии БС-44H в дорезонансном исполнении для динамической балансировки роторов массой от 3 кг до 10000 кг

Балансировочные станки серии БС-44S (в зарезонансном исполнении)

Горизонтальные балансировочные станки серии БС-44S в зарезонансном исполнении для динамической балансировки роторов массой от 3 кг до 10000 кг

Балансировочные станки серии БС-34

Балансировочные станки для роторов. Серия 34. Точность — до 0,1 гхмм/кг, универсальность. Балансировка роторов от 3 кг до 150 кг.

Балансировочные станки серии БС-24

Балансировочные станки для роторов. Серия 24. Точность — до 0,05 гхмм/кг, универсальность. Балансировка роторов массой от 50 грамм до 10 килограмм.

Станок балансировочный БС-24-5T для роторов турбокомпрессоров

Балансировочный станок для двухплоскостной балансировки роторов турбокомпрессоров массой от 50 г до 5 кг

Балансировочные станки для карданных валов серии БСК-44-100

Станок предназначен для динамической балансировки карданных валов различных типов массой от от 5 кг до 150 кг

Вертикальные балансировочные станки серии БС-В

Высокоточные вертикальные балансировочные станки серии БС-В дорезонансного типа для балансировки рабочих колес насосов, вентиляторов и других похожих тел вращения.

Стойка измерения управления «DAS — 382» и «DAS — 383»

Балансировочные станки для балансировки роторов средней и большой массы оснащаются напольными стойками измерения и управления серии «DAS-38x». Серия включает в себя модели «DAS — 382» и «DAS — 383».

Блок измерения управления «Грас 3.2» и «Грас 3.3»

Балансировочные станки производства компании «Робалс» оснащаются новейшей измерительной системой на базе блоков измерения и управления «Грас 3. 2» и «Грас 3.3».

Контрольные роторы

Специальные контрольные роторы, спроектированные по требованиям ГОСТ, для проверки точностных параметров балансировочных станков.

Принцип работы турбокомпрессора

Турбина – это понятие, которое знакомо каждому автомобилисту. Это устройство позволяет существенно повысить мощностные характеристики двигателя путем использования энергии выхлопных газов. В этой статье мы рассмотрим основные функции и принцип работы турбокомпрессора.

Функции турбокомпрессора

Чтобы оценить важность турбокомпрессора, для начала нужно рассмотреть принцип работы автомобильного двигателя. На этот агрегат подается топливо, воспламеняющееся и сгорающее при контакте с воздухом. Излишки, которые остаются после этого, выходят через выхлопную трубу в виде газов. Этот цикл происходит в течение 4-х тактов работы поршней в цилиндрах.

Функция турбины заключается в том, что она дополнительно нагнетает воздух в цилиндры, увеличивая количество сгораемого топлива. Большой объем воздуха, подаваемого в топливную систему, достигается благодаря компрессии. В результате при движении поршня во время воспламенения увеличивается мощность двигателя.

Принцип работы турбокомпрессора

Таким образом, турбокомпрессор работает по принципу воздушного насоса. При сгорании топлива горячие газы поступают на лопатки первого колеса турбокомпрессора, приводя его в движение. После этого начинает вращаться второе колесо. За счет этого происходит всасывание воздуха снаружи, его сжатие и подача на цилиндры двигателя.

Воздух при попадании в турбину подвергается интенсивному нагреву. Чтобы добиться необходимой компрессии и остудить его перед подачей в камеру сгорания, используется промежуточный охладитель, также известный как интеркулер. Это устройство выполняет такие важные функции:

  • Остужает воздух.
  • Уменьшает его объем.
  • Снижает температуру внутри камеры сгорания.

Порою интеркулера оказывается недостаточно для достижения требующейся компрессии. В таких случаях дополнительно используется вентилятор, обеспечивающий снижение температуры до необходимого уровня.

Несмотря на кажущуюся простоту принципа работы турбокомпрессора, с точки зрения конструкции это устройство является очень сложным. Чтобы добиться необходимого уровня сгорания топлива, все составные части турбин должны работать слаженно. При возникновении малейших сбоев эффективность работы двигателя существенно снизится. А в крайних случаях он и вовсе может выйти из строя.

Турбокомпрессор автомобильный

Описание принципа работы турбокомпрессора на автомобиле: схемы, фото и видео материалы. Основы автомеханики.Описание принципа работы турбокомпрессора на автомобиле: схемы, фото и видео материалы. Основы автомеханики.

Содержание статьи:


Турбина в двигателе или как бывает называют турбокомпрессов дает больше мощности агрегату. Чтоб понять как устроен и принцип работы системы, рассмотрим это все в деталях.

Немного о турбокомпрессоре

Турбокомпрессор или его ещё называют «газотурбинный нагнетатель» (Centrifugal compressors или очень популярно называть «Turbocharger») — это осевой или центробежный компрессор, что функционирует вместе с турбиной. Это конструктивный основной элемент в автомобилях с газотурбированными двигателями.

Давление во впускной системе можно повысить при помощи установки турбокомпрессора, использующего энергию отработавших газов. При его использовании масса воздуха, имеющегося в камерах сгорания, увеличивается. Механический нагнетатель не так эффективен, как турбированный компрессор газов, потому что мощность двигателя не используется для привода.

Тем не менее, после установки центробежной турбины некоторые потери мощности неизбежны. Отработавшие газы из цилиндров не находят выхода, так как турбина преграждает их путь наружу. На двигатель приходится большая нагрузка по очистке цилиндров, вследствие того, что в выпускном тракте создаётся огромное давление. На эту задачу тратится некоторая часть мощности двигателя авто. Конечно, эта потеря ничтожна в сравнении с приростом мощности двигателя объёмом в 30–40%.

После установки центробежной турбины, можно столкнуться с ещё одной проблемой, которая в обиходе называется турбояма. Выходная мощность двигателя изменяется с отставанием от смены давления отработавших газов. Главными факторами, из-за которых образуется турбояма, являются силы трения, инерционность и нагрузка турбины.

Работа турбокомпрессора автомобиля (турбонагнетателя двигателя)


Схема турбонагнетателя

Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора. Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.

Поступая в улитку, отработавшие газы перемещаются по каналу, а затем попадают на лопасти турбинного колеса. Затем оно набирает скорость в пределах 250 000 оборотов в минуту. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению. Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.

Составляющие турбины изготавливаются из жароустойчивых металлов, так как внутри турбокомпрессора достигается невероятная температура. В состав турбинного колеса входит железоникелевый сплав, а в состав центрального корпуса — жаропрочная сталь.

От формы и размера турбины напрямую зависит производительность турбокомпрессора. Больший размер турбины увеличивает производительность компрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы. Номинальная скорость достигается гораздо быстрее при использовании турбокомпрессора меньшего размера, но они показывают меньшую производительность.

Перепускной клапан устанавливается в корпус турбины для управления уровнем давления наддува. Регулировка клапана производится при помощи системы управления двигателем. Клапан оснащён пневматическим приводом.

Вал располагается в центральном корпусе. Это позволяет ему достигать максимальной скорости вращения при минимальном трении. Вращение происходит в одном или двух подшипниках. Для этой цели подойдут различные конструкции подшипников скольжения. Шарикоподшипники используются редко.Система смазки двигателя обеспечивает полную смазку подшипников и вала. Промеж корпусом и подшипником имеется много пропускных каналов, через которые протекает масло. Помимо функции смазки, масло оказывает охлаждающий эффект на нагретые детали. Лучше всего охлаждение происходит в двигателях с искровым зажиганием, в которых центральный корпус турбины входит в систему охлаждения двигателя.

Дополнительный объем давления во впускной системе создаётся при воздействии центробежного компрессора. Его конструкция похожа на аналогичные механические нагнетатели. Составляющими центробежного компрессора являются корпус и компрессорное колесо. В ЦК (центробежный компрессор) поток воздуха проходит путь от центра колеса до корпуса. Резкое понижение скорости потока воздуха позволяет преобразовать его кинетическую энергию в давление. Впускной коллектор пропускает сжатые потоки воздуха в двигатель. При изготовлении компрессорного колеса и корпуса используется алюминий.

Для снижения последствий турбоямы и повышения производительности, конструкция турбокомпрессора постоянно совершенствуется. Наиболее востребованными техническими решениями являются — постоянная модернизация конструкции турбокомпрессора позволяет уменьшить последствия турбоямы и повысить его производительность. Ниже можно посмотреть список самых эффективных способов модернизации:

  1. При использовании прочных и лёгких материалов достигается значительное снижение массы турбины. Например, керамики.
  2. Установка новых подшипников с пониженным уровнем трения.
  3. Раздельный турбокомпрессор
  4. Турбина с изменяемой геометрией


Поговорим подробнее о последних двух пунктах этого списка.

Конструкция раздельного турбокомпрессора

Для отработавших газов в раздельном турбокомпрессоре есть два входных отверстия. Также в нем имеются два сопла, предусмотренных для каждой пары цилиндров. Первое сопло обеспечивает быстрое реагирование, а второе — максимальную производительность. Конструкция раздельного турбокомпрессора разработана для предотвращения перекрытия выпускных каналов, при прохождении через них отработавших газов.

Схема турбины с изменяемой геометрией (VNT)

Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей.

Следует напомнить о том, что некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.

Видео про принцип работы турбокомпрессора:

Узнайте, как устроен принцип работы дизельной турбины!

Узнайте, как устроен принцип работы дизельной турбины!

Турбокомпрессор — это компрессор, или воздушный насос, который приводится в работу от турбины. Турбина вращается за счет использования энергии потока отработанных газов. Частота вращения турбокомпрессора дизельного двигателя находится в пределах от 1 000 до 130 000 об/мин (это значит, что лопатки турбины разгоняются почти до линейной скорости звука).

Турбина непосредственно соединяется с компрессором жесткой осью. Компрессор засасывает через воздушный фильтр свежий воздух, сжимает его и затем под давлением подает во впускной коллектор двигателя.
Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, а это повышает мощность двигателя.

Теоретически существует равновесие мощностей между турбиной и компрессором турбокомпрессора. Чем большую энергию имеют отработанные газы, тем быстрее будет вращаться турбина.
Как следствие, компрессор тоже будет вращаться быстрее.


1. Всасываемый воздух
2. Ротор компрессора
3. Сжатый воздух
4. Вход отработавших газы
5. Ротор турбины
6. Выход отработавших газов

Турбина

Турбина состоит из корпуса и ротора Отработанные газы из выпускного коллектора двигателя попадают в приемный патрубок турбокомпрессора. Проходя по сужающемуся внутреннему каналу корпуса турбины, они ускоряются, и минуя «улитку» направляются к ротору турбины, который приводят во вращение.

Скорость вращения турбины определяется размером и формой канала в ее корпусе.

Корпусы турбин значительно различаются в зависимости от сферы применения. Корпус турбины двигателя грузовика может быть разделен на два параллельных канала, поэтому на ротор воздействуют два потока отработанных газов.

В турбокомпрессоры с большим объемом часто устанавливают дополнительное кольцо с направляющими лопатками. Оно облегчает создание постоянного потока отработанных газов на роторе турбины и делает возможным регулировку потока.

Корпус турбины и ротор отливаются из сплава с высокой термостойкостью.

На оси жестко крепится ротор турбины. Материал оси отличается от материала, используемого для ротора турбины.
Сборка этого соединения осуществляется следующим способом:

  • Ось и ротор, вращающиеся в противоположных направлениях на очень большой скорости, прижимают друг к другу.
  • Выделяющееся при трении тепло сплавляет их друг с другом, образуя неразъемное соединение.
  • Ось в месте соединения пустотелая. Эта пустота затрудняет передачу тепла от ротора турбины к ее оси. На оси со стороны турбины имеется углубление, в котором располагается уплотнительное кольцо.
  • Рабочая поверхность радиальных подшипников упрочняется и полируется.
  • На более тонкий конец оси устанавливается ротор компрессора; там имеется резьба, на которую навинчивается предохранительная гайка для закрепления ротора.
  • После того, как ось изготовлена, она должна быть отбалансирована с максимально возможной точностью, прежде чем она будет установлена в корпус.
  • Компрессор

    Компрессор состоит из корпуса и ротора
    Размеры компрессора определяются количеством воздуха, требуемого для двигателя, и скоростью вращения турбины. Ротор компрессора жестко закреплен на оси турбины и, следовательно, вращается с той же скоростью, что и ротор турбины.

    Лопатки ротора компрессора, изготавливаемые из алюминия, имеют такую форму, что воздух засасывается через центр ротора. Всасываемый таким образом воздух направляется к периферии ротора и при помощи лопаток отбрасывается на стенку корпуса компрессора.
    Благодаря этому воздух сжимается и через впускной коллектор попадает в двигатель.
    Корпус компрессора также изготовлен из алюминия.

    Корпус подшипников

    Смазка турбокомпрессора производится от системы смазки двигателя:

  • Корпус оси образует центральную часть турбокомпрессора, расположенную между турбиной и компрессором
  • Ось вращается в подшипниках скольжения
  • Моторное масло по каналам проходит между корпусом и подшипниками, а также между подшипниками и осью
  • Примечание: В настоящее время появились конструкции, в которых подшипник неподвижен, а ось вращается в масляной ванне. В таких конструкциях масло не только служит для смазки оси, но и охлаждает подшипники с корпусом.

    Для уплотнения турбокомпрессора с двух сторон устанавливаются маслоотражательные прокладки и уплотнительные кольца. Но, несмотря на то, что эти кольца помогают избежать утечек масла, они в действительности не являются уплотнительными прокладками. Их нужно рассматривать как элемент, затрудняющий утечку воздуха и газов между турбиной, компрессором и корпусом оси.

    В обычном режиме работы турбокомпрессора давление в турбине и компрессоре больше давления в корпусе оси.
    Часть газов из турбины и часть воздуха, сжатого в компрессоре, попадают в корпус оси и вместе с моторным маслом по сливному маслопроводу проходят в масляный картер двигателя.

    Все масляные уплотнения динамического типа, т.е. работают на принципе разности давлений:

  • Уплотнительное кольцо вращается с той же скоростью, что и ось. Благодаря имеющимся в нем трем отверстиям создается противодавление маслу
  • Внутренняя часть корпуса оси на уровне кольца имеет сложную герметическую форму для предотвращения просачивания масла к компрессору
  • У нас новая услуга!

    Независимая экспертиза и дефектовка вышедших из строя турбокомпрессоров

    Подробности по телефону: 8-912-895-44-41

    Автомобильные турбины и турбокомпрессоры – принцип работы


    ПРИНЦИП РАБОТЫ


    Для получения более четкого представления о принципе работы турбокомпрессора, необходимо ознакомиться с системой функционирования двигателя внутреннего сгорания. На сегодняшний день, большинство дизельных легковых и грузовых автомобилей оснащаются 4-х тактными поршневыми двигателями, работа контролируется при помощи впускных и выпускных клапанов. Каждый рабочий цикл состоит из 4 тактов при 2 полных оборотах коленвала.

    • Впуск – при движении поршня вниз, воздух (в дизельном двигателе) или смесь топлива и воздуха (в бензиновом двигателе) проходит через открытый впускной клапан.
    • Компрессия – происходит сжатие горючей массы.
    • Расширение – смесь воздуха и топлива воспламеняется при помощи свечей (бензиновый двигатель), дизельное топливо впрыскивается под давлением и воспламенение происходит произвольно.
    • Выпуск – при движении поршня вверх, выпускаются выхлопные газы.

    Данные принципы работы предоставляют следующие пути увеличения эффективности работы двигателя:
    1. Увеличение объема
    2. Увеличение скорости работы двигателя
    3. Турбокомпрессия

    Увеличение объема

    Увеличение объема обеспечивает увеличение мощности двигателя, так как увеличение камеры сгорания позволяет нагнетание большего объема воздуха и большее колличество сжигаемого топлива. Увеличение объема может быть достигнуто путем увеличения колличества цилиндров или увеличения объема каждого цилиндра. В целом, увеличения объема приводит к увеличению массы двигателя. Этот способ не обеспечивает значительных преимушеств по уровню выбросов и потреблению топлива.

    Увеличение скорости работы двигателя

    Другим способом увеличения мощности двигателя является увеличение скорости работы двигателя. Увеличение скорости проводится путем увеличения колличества ходов поршня на единицу времени. Однако, по техническим причинам этот способ имеет жесткие ограничения. Увеличение скорости работы двигателя приводит к увеличению потерь при накачивании и других операциях, что вызывает падение эффективности работы.

    Турбокомпрессия

    При применении двух первых способов, двигатель обеспечивается только собственным нагнетанием. Воздух для сгорания проходит прямо в цилиндр во время впускного такта. При использовании турбокомпрессора, воздух, поступающий в камеру сгорания предварительно сжимается. В двигатель поступает тот же объем воздуха, однако, более высокое давление обеспечивает прохождение большего колличества воздушной массы, что позволяет увеличить объем сжигаемого топлива. Таким образом, при использовании турбокомпрессора, мощность двигателя увеличивается по отношению к его объему и колличеству потребляемого топлива. 

    Охлаждение нагнетаемого воздуха.

    В ходе компрессии, нагнетаемый воздух нагревается до 180 С. При охлаждении, плотность воздуха увеличивается,что позволяет увеличить объем нагнетаемого воздуха.
    Охлаждение нагнетаемого воздуха является одной из немногих мер по увеличению мощности двигателей внутреннего сгорания, которые положительно влияют на уровень потребления топлива и уровень выброса вредных веществ. Снижение температуры входящего воздуха обеспечивает снижение температуры сгорания и, таким образом, снижение колличества вырабатываемого NO (x). Увеличение плотности воздуха снижает расход топлива и уровень загрязнения окружающей среды.

    Существуют два типа турбокомпрессии – механическая турбокомпрессия и компрессия выхлопных газов.

    Механическая турбокомпрессия

    При механической турбокомпрессии, воздух сжимается при помощи компрессора, приводимого от двигателя. Однако, часть получаемого увеличения мощности уходит на привод компрессора. В зависимости от размера двигателя, мощность, необходимая для привода компрессора составляет от 10 до 15% от общей выработки двигателя. Таким образом, при сравнении с обычным двигателем такой же мощности, двигатель с механической турбокомпрессией имеет повышенный расход топлива.

    Турбокомпрессия выхлопных газов

    При использовании компрессии выхлопных газов, энергия газа, которая не используется в обычных условиях, направлена на привод турбины. Компрессор находится на одном валу с турбиной и обеспечивает забор, сжатие и подачу воздуха в камеру сгорания. В этом случае механичекие соединения с двигателем отсутствуют.

    Преимущества турбокомпрессии выхлопных газов.

    • По сравнению с обычным двигателем такой же мощности, турбодвигатель имеет меньший расход топлива, так как часть энергии выхлопных газов способствует увеличению мощности двигателя. Меньший объем двигателя сокращает термические и др. потери.
    • Турбодвигатель имеет значительно лучшее соотношение веса к мощности, т.е. Kw / кг.
    • Необходимая площадь двигательного отсека турбодвигателя меньше, чем у обычного двигателя.
    • При использовании турбодвигателя, возможно дальнейшее улучшение характеристик крутящего момента для поддержания мощности, близкой к максимальной при очень низкой скорости двигателя, что позволяет избежать частого переключения скоростей при езде в гористой местности.
    • Турбодвигатели имеют значительно лучшие характеристики работы в условиях высокогорья. В условиях пониженного давления обычный двигатель теряет значительную часть мощности. В противоположность, рабочие характеристики турбодвигателя улучшаются вследствие увеличения разницы между постоянным давлением вверх по соединениям турбины и пониженным внешним давлением у входа турбины. Низкая плотность воздуха у входа компенсируется, обеспечивая почти нулевую потерю мощности.
    • Так как турбодвигатель имеет меньшие размеры, а соответственно и площадь шумовыделяющей поверхности, его шумовые характеристики лучше, чем у обычных двигателей. В данном случае, турбокомпрессор действует как добавочный глушитель.

     

    ЧЕТЫРЕ ОСНОВНЫХ ПРИЧИНЫ ОТКАЗА ТУРБИНЫ

    Вышла из строя турбина? Такое случается, и не обязательно что это проблемы неисправности узлов самой турбины. Практика показывает, что существует ряд причин, по которым турбина выходит из строя и кроются они во внешних факторах. Давайте рассмотрим и обсудим причины выхода турбины  из строя.

    ОДНА ИЗ ПРИЧИН ВЫХОДА ИЗ СТРОЯ ТУРБИНЫ — ЭТО ЗАГРЯЗНЕНИЕ МАСЛА

    Бывает такое, что масло загрязняется мелкими частицами. Для глаза эти частицы настолько малы настолько, что мы их не видим. Они полируют поверхности подшипников и скругляют тем самым их внешние кромки, что приводит к тому что подшипник на стороне компрессора изнашивается по наружному диаметру.

    Более крупные частицы, соответственно могут нанести повреждение более масштабное, царапины и задиры. Как правило, внутренняя поверхность подшипника повреждается в меньшей степени, она как и вал так и центральный корпус подшипников, изготовливается из более крепких материалов.

    Еще одной проблемой износа подшипника является химическое воздействие на масло. Признаки выхода из строя похожи на недостаток необходимого количества смазки. Такое происходит из-за разбавления моторного масла топливом. Следовательно, смазывающие свойства масла ухудшаются.

    ВТОРАЯ ИЗ ПРИЧИН ВЫХОДА ТУРБИНЫ — НЕДОСТАТОЧНАЯ СМАЗКА.

    Бывает, что количество масла, которое подаётся к турбине может уменьшаться. Такое случается, например, когда материал прокладки немного перекрывает канал впуска или отверстие во фланце выпуска. Нехватка смазочного материала визуально проявляется сменой цвета поверхностей вала. Так же причиной плохой смазки турбины может быть – масляный насос, который не создаёт должного давления в системе. В последнее время участились случаи, когда «залипал» клапан в болте крепления трубки подвода масла. А из-за полного отсутствия смазочного материала, повреждение происходит очень быстро!

    ТРЕТЬЯ ИЗ ПРИЧИН ВЫХОДА ТУРБИНЫ — ЭТО ИСКЛЮЧИТЕЛЬНЫЕ УСЛОВИЯ ЕЁ РАБОТЫ

    Эффект «апельсиновой корки» на задней стороне появляется в следствии преувеличения допустимых оборотов. В этом случае происходит перегрев поверхностей. Смазочный материал возгорается и происходит коксование и в последствии нагар. Эти признаки перекручивания турбины явно скажутся на её работоспособности в последствии.

    Так же усиленная эксплуатация турбины может проявляется и в виде отрывания частей крыльчатки турбинного колеса. Визуально будет похоже на попадание посторонних предметов. Еще это может выглядеть в виде трещин на колесе турбины, оно даже может разрушится из- за излишнего перекручивания.

    Цикл разрушения этого колеса напоминает арифметическую прогрессию, чем больше эксплуатация с трещинами, тем быстрее выходит из строя турбина. Ведь её эксплуатация с разрушенным колесом не возможна.

    ЧЕТВЕРТАЯ ПРИЧИНА ВЫХОДА КРОЕТСЯ В ПОВРЕЖДЕНИИ ПОСТОРОННИМИ ПРЕДМЕТАМИ

    Тут рассматривается 2 варианта повреждения. Повреждение жестким предметом и повреждение мягким предметом. Соль, песок эрозируют и вызывают коррозию. Твердые предметы попадая в отверстие патрубка и продвигаясь к входу в компрессор, могут вызвать повреждения.

    А такие предметы как части робы или ветошь (бумажные салфетки) и пр, это мягкие предметы. Они могут оказать такое воздействие на лопатки, что те могут загнуться назад, в некоторых случаях происходит даже отрыв кусков, т,к, метал имеет свойство уставать, при работе с посторонними мягкими предметами.

    Проникнувший в турбину жесткий предмет разрушает входные кромки лопаток крыльчатки. Даже незначительные частицы ржавчины из коллектора выпуска  могут вызвать большие повреждения компонентов, так как те вращаются с огромной скоростью.

     

     

    принципов | BorgWarner Turbo Systems

    Чтобы лучше понять технику турбонаддува, полезно ознакомиться с принципами работы двигателя внутреннего сгорания. Сегодня большинство пассажиров легковые и коммерческие дизельные двигатели представляют собой четырехтактные поршневые двигатели, регулируемые впуском. и выпускные клапаны. Один рабочий цикл состоит из четырех ходов в течение двух полных. обороты коленчатого вала.

    • Всасывание (ход перезарядки)
      Когда поршень движется вниз, воздух (дизельный двигатель или бензиновый двигатель с прямым впрыском) или топливно-воздушная смесь (бензиновый двигатель) всасывается через впускной клапан.
    • Компрессия (рабочий ход)
      Объем цилиндра сжат.
    • Расширение (рабочий ход)
      В бензиновом двигателе топливно-воздушная смесь воспламеняется от свечи зажигания, тогда как в топливо для дизельного двигателя впрыскивается под высоким давлением, и смесь самовоспламеняется.
    • Выхлоп (ход перезарядки)
      Выхлопные газы удаляются при движении поршня вверх.

    Эти простые принципы работы предоставляют различные возможности увеличения мощность двигателя:

    Увеличение рабочего объема

    Увеличение рабочего объема позволяет увеличить выходную мощность, поскольку больше воздух доступен в камере сгорания большего размера, и, таким образом, можно сжечь больше топлива. Это увеличение может быть достигнуто за счет увеличения количества цилиндров или объем каждого отдельного цилиндра.В общем, это приводит к большему и большему весу двигатели. Что касается расхода топлива и выбросов, то существенных можно ожидать преимуществ.

    Увеличение оборотов двигателя

    Еще одна возможность увеличения выходной мощности двигателя — увеличение его мощности. скорость. Это достигается за счет увеличения количества ударов в единицу времени. Так как пределов механической стабильности, однако такое улучшение производительности ограничено.Кроме того, увеличение скорости приводит к увеличению потерь на трение и накачку. экспоненциально и КПД двигателя падает.

    Турбонаддув

    В описанных выше процедурах двигатель работает как безнаддувный. двигатель. Воздух для горения втягивается непосредственно в цилиндр во время всасывания. Инсульт. В двигателях с турбонаддувом воздух для горения уже предварительно сжимается. подается в двигатель.Двигатель всасывает такой же объем воздуха, но из-за с более высоким давлением в камеру сгорания поступает больше воздушных масс. Вследствие этого, может быть сожжено больше топлива, так что выходная мощность двигателя увеличивается по сравнению с та же скорость и стреловидность.

    По сути, следует различать механический наддув и выхлопные газы. двигатели с турбонаддувом.

    Механический наддув

    При механическом наддуве воздух для горения сжимается компрессором. приводится непосредственно от двигателя.Однако прирост мощности частично теряется. из-за паразитных потерь от привода компрессора. Способность управлять механическим турбокомпрессор составляет до 15% мощности двигателя. Следовательно, расход топлива выше по сравнению с безнаддувным двигателем с той же выходной мощностью.

    Турбонагнетатель выхлопных газов

    При турбонаддуве выхлопных газов часть энергии выхлопных газов, которая обычно быть потраченным впустую, используется для привода турбины.Устанавливается на том же валу, что и турбина. представляет собой компрессор, который всасывает воздух для горения, сжимает его, а затем подает это к двигателю. Механической связи с двигателем нет.

    Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

    Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры? Рекламное объявление

    Криса Вудфорда. Последнее изменение: 18 февраля 2021 г.

    Идеального изобретения не бывает: всегда можно сделать что-нибудь лучше, дешевле, более эффективный или более экологически чистый.Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью, может сбить вас с дороги или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе. Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топливо. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопных газов в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше «энергии», чем в противном случае. получать.Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!

    Фото: В типичном автомобильном турбокомпрессоре используется пара таких вентиляторов в форме улитки. Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.

    Что такое турбокомпрессор?

    Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

    Вы когда-нибудь видели, как мимо вас проносятся машины, из выхлопной трубы которых струится сажа? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше очевидно, что они одновременно тратят энергию. Выхлоп смесь горячих газов, откачиваемых на скорости, и вся энергия в ней содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель Могли ли как-то использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.

    Автомобильные двигатели получают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля. Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра в качестве выхлопа. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. В у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.

    Один из способов ускорить движение автомобиля — это добавить больше цилиндров. Вот почему супер-быстрые спорткары обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле. Другой вариант — использовать турбонагнетатель, который каждую секунду нагнетает в цилиндры больше воздуха, они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!

    Рекламные ссылки

    Как работает турбокомпрессор?

    Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбонагнетателя автомобиля.А реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины. В виде горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень принцип аналогичен поршневому двигателю. Он использует выхлопные газы для водить турбину.Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»). Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отработанной энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.

    Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу. Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

    Как на практике работает турбонаддув? Турбокомпрессор — это два маленьких вентилятора (также называемых крыльчатками). или газовые насосы), сидящие на одном металлическом валу, так что оба вращаются все вместе. Один из этих вентиляторов, названный турбиной , находится в выхлопная струя из цилиндров.Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются и вал, с которым они соединены (технически называется вращающийся узел центральной ступицы или CHRA) также вращается. Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, так что, вращаясь, он втягивает воздух в автомобиль и нагнетает его в цилиндры.

    Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины).Горячее воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры. Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.

    Как работает турбокомпрессор — подробнее

    Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель.Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:

    1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
    2. Вентилятор компрессора помогает всасывать воздух.
    3. Компрессор сжимает и нагревает поступающий воздух, а затем снова его выдувает.
    4. Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
    5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра.Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
    6. Поскольку цилиндр сжигает больше топлива, он быстрее вырабатывает энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
    7. Отработанный газ из цилиндра выходит через выхлопное отверстие.
    8. Горячие выхлопные газы, обдувающие турбинный вентилятор, заставляют его вращаться с высокой скоростью.
    9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показан здесь бледно-оранжевой линией).Итак, когда вращается турбина, вращается и компрессор.
    10. Выхлопные газы покидают автомобиль, расходуя меньше энергии, чем в противном случае.

    На практике компоненты можно было соединить примерно так. Турбина (красная справа) забирает отработанный воздух через свой впуск, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.

    Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    Откуда берется дополнительная мощность?

    Турбокомпрессоры придают автомобилю больше мощности, но эта дополнительная мощность не поступать напрямую из отработанных выхлопных газов, что иногда сбивает людей с толку.С турбонагнетателем мы используем часть энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы приводят в действие турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не напрямую, каким-либо образом увеличивает мощность автомобиля. Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.

    Сколько дополнительной мощности вы можете получить?

    Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива они могут сжечь ровно столько, сколько нужно. Через впускное отверстие определенного размера вы можете втолкнуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; вы не можете просто ускорить свой путь до бесконечности!

    Преимущества и недостатки турбокомпрессоров

    Фото: Типичный автомобильный турбокомпрессор. Вы можете четко видеть два вентилятора / нагнетателя (один над другим) и их вход / выход. Фото любезно предоставлено Армией США.

    Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус).Основное преимущество использования турбонагнетателя заключается в увеличении выходной мощности. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует большую мощность, чем в противном случае). Однако чем больше мощность, тем выше выход энергии в секунду, и закон сохранения энергии говорит нам, что вы должны вкладывать больше энергии, поэтому вы должны сжигать, соответственно, больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него.Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, производящий такую ​​же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении. Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива.Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.

    « Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащены одним двигателем.

    The New York Times, 2018

    Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами).Одно исследование 2013 года, проведенное Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету. Есть более эффективные способы экономить топливо, в том числе гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые могут пойти не так.Это может значительно удорожать обслуживание турбин. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго. Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонагнетателя, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении.В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.

    Кто изобрел турбокомпрессор?

    Кого благодарим за турбокомпрессоры? Альфред Дж. Бюхи (1879–1959), инженер-автомобилестроитель, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбонагнетателем, который я проиллюстрировал выше, в его первоначальной конструкции использовался приводной от выхлопа вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя.Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

    Однако

    Бючи была не единственной важной фигурой в истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое может быть сожжено.Другие инженеры, в том числе Луи Рено, Готлиб Даймлер и Ли Чедвик также успешно экспериментировал с системами наддува.

    Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят по трубе (зеленого цвета), приводящей в движение турбину.Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синий ящик), который нагнетает воздух в цилиндр через синюю трубу. Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    Рекламные ссылки

    Узнать больше

    На сайте

    Книги для старших читателей

    Книги для юных читателей

    • Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).

    Статьи

    • Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Терпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
    • «Прыжки с турбонаддувом с гоночной трассы на Кюль-де-Сак», автор Стивен Уильямс. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью современного автомобильного двигателя.
    • Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис.Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
    • Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
    • Автопроизводители считают, что турбины — мощный путь к экономии топлива Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, так активно продвигают двигатели с турбонаддувом.
    • 50 лет назад турбонагнетатель был революционной технологией Джима Косса. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конце концов преодолели свои первые проблемы.
    • Чак Скватриглиа, «Если вы не водите турбо», скоро вы его узнаете. Wired, 24 сентября 2010 г. Ожидается, что к 2015 году количество автомобилей с установленными турбокомпрессорами удвоится, поскольку производители ищут новые способы повышения производительности от двигателей меньшего размера.
    • Turbo приветствует экологический сертификат Йорна Мадслиена.BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их «экологичнее» за счет снижения расхода топлива.

    Патенты

    Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Здесь Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:

    • Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж. Бючи, выдан 17 апреля 1934 г. Первый турбомотор, разработанный самим изобретателем турбокомпрессоров.
    • Патент США №
    • №2,309,968: Управление турбокомпрессором и метод, разработанный Ричардом Дж. Ллойдом, корпорация Garrett, выдан 1 февраля 1977 года. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
    • Патент США № 4083188: Система турбонаддува двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 года. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
    • Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г.Новый метод охлаждения турбокомпрессора.

    Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

    статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

    Авторские права на текст © Chris Woodford 2010, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

    eBooster является зарегистрированным товарным знаком BorgWarner Inc. Corporation

    Следуйте за нами

    Сохранить или поделиться этой страницей

    Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

    Цитировать эту страницу

    Вудфорд, Крис. (2010/2020) Турбокомпрессоры. Получено с https://www.explainthatstuff.com/how-turbochargers-work.html. [Доступ (укажите дату здесь)]

    Подробнее на нашем сайте…

    Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

    Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры? Рекламное объявление

    Криса Вудфорда. Последнее изменение: 18 февраля 2021 г.

    Идеального изобретения не бывает: всегда можно сделать что-нибудь лучше, дешевле, более эффективный или более экологически чистый. Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью, может сбить вас с дороги или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе.Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топливо. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопных газов в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше «энергии», чем в противном случае. получать. Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!

    Фото: В типичном автомобильном турбокомпрессоре используется пара таких вентиляторов в форме улитки.Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.

    Что такое турбокомпрессор?

    Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

    Вы когда-нибудь видели, как мимо вас проносятся машины, из выхлопной трубы которых струится сажа? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше очевидно, что они одновременно тратят энергию.Выхлоп смесь горячих газов, откачиваемых на скорости, и вся энергия в ней содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель Могли ли как-то использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.

    Автомобильные двигатели получают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля.Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра в качестве выхлопа. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. В у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.

    Один из способов ускорить движение автомобиля — это добавить больше цилиндров. Вот почему супер-быстрые спорткары обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле.Другой вариант — использовать турбонагнетатель, который каждую секунду нагнетает в цилиндры больше воздуха, они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!

    Рекламные ссылки

    Как работает турбокомпрессор?

    Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбонагнетателя автомобиля. А реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины.В виде горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень принцип аналогичен поршневому двигателю. Он использует выхлопные газы для водить турбину. Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»).Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отработанной энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.

    Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу.Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

    Как на практике работает турбонаддув? Турбокомпрессор — это два маленьких вентилятора (также называемых крыльчатками). или газовые насосы), сидящие на одном металлическом валу, так что оба вращаются все вместе. Один из этих вентиляторов, названный турбиной , находится в выхлопная струя из цилиндров. Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются и вал, с которым они соединены (технически называется вращающийся узел центральной ступицы или CHRA) также вращается.Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, так что, вращаясь, он втягивает воздух в автомобиль и нагнетает его в цилиндры.

    Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины). Горячее воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры.Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.

    Как работает турбокомпрессор — подробнее

    Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель. Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:

    1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
    2. Вентилятор компрессора помогает всасывать воздух.
    3. Компрессор сжимает и нагревает поступающий воздух, а затем снова его выдувает.
    4. Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
    5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
    6. Поскольку цилиндр сжигает больше топлива, он быстрее вырабатывает энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
    7. Отработанный газ из цилиндра выходит через выхлопное отверстие.
    8. Горячие выхлопные газы, обдувающие турбинный вентилятор, заставляют его вращаться с высокой скоростью.
    9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показан здесь бледно-оранжевой линией). Итак, когда вращается турбина, вращается и компрессор.
    10. Выхлопные газы покидают автомобиль, расходуя меньше энергии, чем в противном случае.

    На практике компоненты можно было соединить примерно так.Турбина (красная справа) забирает отработанный воздух через свой впуск, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.

    Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г.Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    Откуда берется дополнительная мощность?

    Турбокомпрессоры придают автомобилю больше мощности, но эта дополнительная мощность не поступать напрямую из отработанных выхлопных газов, что иногда сбивает людей с толку. С турбонагнетателем мы используем часть энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы приводят в действие турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не напрямую, каким-либо образом увеличивает мощность автомобиля.Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.

    Сколько дополнительной мощности вы можете получить?

    Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива они могут сжечь ровно столько, сколько нужно. Через впускное отверстие определенного размера вы можете втолкнуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; вы не можете просто ускорить свой путь до бесконечности!

    Преимущества и недостатки турбокомпрессоров

    Фото: Типичный автомобильный турбокомпрессор. Вы можете четко видеть два вентилятора / нагнетателя (один над другим) и их вход / выход. Фото любезно предоставлено Армией США.

    Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус).Основное преимущество использования турбонагнетателя заключается в увеличении выходной мощности. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует большую мощность, чем в противном случае). Однако чем больше мощность, тем выше выход энергии в секунду, и закон сохранения энергии говорит нам, что вы должны вкладывать больше энергии, поэтому вы должны сжигать, соответственно, больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него.Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, производящий такую ​​же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении. Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива.Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.

    « Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащены одним двигателем.

    The New York Times, 2018

    Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами).Одно исследование 2013 года, проведенное Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету. Есть более эффективные способы экономить топливо, в том числе гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые могут пойти не так.Это может значительно удорожать обслуживание турбин. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго. Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонагнетателя, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении.В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.

    Кто изобрел турбокомпрессор?

    Кого благодарим за турбокомпрессоры? Альфред Дж. Бюхи (1879–1959), инженер-автомобилестроитель, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбонагнетателем, который я проиллюстрировал выше, в его первоначальной конструкции использовался приводной от выхлопа вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя.Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

    Однако

    Бючи была не единственной важной фигурой в истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое может быть сожжено.Другие инженеры, в том числе Луи Рено, Готлиб Даймлер и Ли Чедвик также успешно экспериментировал с системами наддува.

    Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят по трубе (зеленого цвета), приводящей в движение турбину.Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синий ящик), который нагнетает воздух в цилиндр через синюю трубу. Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    Рекламные ссылки

    Узнать больше

    На сайте

    Книги для старших читателей

    Книги для юных читателей

    • Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).

    Статьи

    • Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Терпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
    • «Прыжки с турбонаддувом с гоночной трассы на Кюль-де-Сак», автор Стивен Уильямс. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью современного автомобильного двигателя.
    • Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис.Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
    • Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
    • Автопроизводители считают, что турбины — мощный путь к экономии топлива Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, так активно продвигают двигатели с турбонаддувом.
    • 50 лет назад турбонагнетатель был революционной технологией Джима Косса. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конце концов преодолели свои первые проблемы.
    • Чак Скватриглиа, «Если вы не водите турбо», скоро вы его узнаете. Wired, 24 сентября 2010 г. Ожидается, что к 2015 году количество автомобилей с установленными турбокомпрессорами удвоится, поскольку производители ищут новые способы повышения производительности от двигателей меньшего размера.
    • Turbo приветствует экологический сертификат Йорна Мадслиена.BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их «экологичнее» за счет снижения расхода топлива.

    Патенты

    Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Здесь Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:

    • Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж. Бючи, выдан 17 апреля 1934 г. Первый турбомотор, разработанный самим изобретателем турбокомпрессоров.
    • Патент США №
    • №2,309,968: Управление турбокомпрессором и метод, разработанный Ричардом Дж. Ллойдом, корпорация Garrett, выдан 1 февраля 1977 года. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
    • Патент США № 4083188: Система турбонаддува двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 года. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
    • Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г.Новый метод охлаждения турбокомпрессора.

    Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

    статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

    Авторские права на текст © Chris Woodford 2010, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

    eBooster является зарегистрированным товарным знаком BorgWarner Inc. Corporation

    Следуйте за нами

    Сохранить или поделиться этой страницей

    Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

    Цитировать эту страницу

    Вудфорд, Крис. (2010/2020) Турбокомпрессоры. Получено с https://www.explainthatstuff.com/how-turbochargers-work.html. [Доступ (укажите дату здесь)]

    Подробнее на нашем сайте…

    Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?

    Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры? Рекламное объявление

    Криса Вудфорда. Последнее изменение: 18 февраля 2021 г.

    Идеального изобретения не бывает: всегда можно сделать что-нибудь лучше, дешевле, более эффективный или более экологически чистый. Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью, может сбить вас с дороги или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе.Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топливо. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопных газов в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше «энергии», чем в противном случае. получать. Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!

    Фото: В типичном автомобильном турбокомпрессоре используется пара таких вентиляторов в форме улитки.Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.

    Что такое турбокомпрессор?

    Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

    Вы когда-нибудь видели, как мимо вас проносятся машины, из выхлопной трубы которых струится сажа? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это гораздо меньше очевидно, что они одновременно тратят энергию.Выхлоп смесь горячих газов, откачиваемых на скорости, и вся энергия в ней содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель Могли ли как-то использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.

    Автомобильные двигатели получают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля.Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра в качестве выхлопа. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. В у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.

    Один из способов ускорить движение автомобиля — это добавить больше цилиндров. Вот почему супер-быстрые спорткары обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле.Другой вариант — использовать турбонагнетатель, который каждую секунду нагнетает в цилиндры больше воздуха, они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!

    Рекламные ссылки

    Как работает турбокомпрессор?

    Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбонагнетателя автомобиля. А реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины.В виде горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень принцип аналогичен поршневому двигателю. Он использует выхлопные газы для водить турбину. Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»).Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в движение выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отработанной энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.

    Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу.Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

    Как на практике работает турбонаддув? Турбокомпрессор — это два маленьких вентилятора (также называемых крыльчатками). или газовые насосы), сидящие на одном металлическом валу, так что оба вращаются все вместе. Один из этих вентиляторов, названный турбиной , находится в выхлопная струя из цилиндров. Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются и вал, с которым они соединены (технически называется вращающийся узел центральной ступицы или CHRA) также вращается.Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля, так что, вращаясь, он втягивает воздух в автомобиль и нагнетает его в цилиндры.

    Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины). Горячее воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры.Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.

    Как работает турбокомпрессор — подробнее

    Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель. Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:

    1. Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
    2. Вентилятор компрессора помогает всасывать воздух.
    3. Компрессор сжимает и нагревает поступающий воздух, а затем снова его выдувает.
    4. Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
    5. Охлажденный сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
    6. Поскольку цилиндр сжигает больше топлива, он быстрее вырабатывает энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
    7. Отработанный газ из цилиндра выходит через выхлопное отверстие.
    8. Горячие выхлопные газы, обдувающие турбинный вентилятор, заставляют его вращаться с высокой скоростью.
    9. Вращающаяся турбина установлена ​​на том же валу, что и компрессор (показан здесь бледно-оранжевой линией). Итак, когда вращается турбина, вращается и компрессор.
    10. Выхлопные газы покидают автомобиль, расходуя меньше энергии, чем в противном случае.

    На практике компоненты можно было соединить примерно так.Турбина (красная справа) забирает отработанный воздух через свой впуск, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.

    Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г.Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    Откуда берется дополнительная мощность?

    Турбокомпрессоры придают автомобилю больше мощности, но эта дополнительная мощность не поступать напрямую из отработанных выхлопных газов, что иногда сбивает людей с толку. С турбонагнетателем мы используем часть энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы приводят в действие турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не напрямую, каким-либо образом увеличивает мощность автомобиля.Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.

    Сколько дополнительной мощности вы можете получить?

    Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива они могут сжечь ровно столько, сколько нужно. Через впускное отверстие определенного размера вы можете втолкнуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; вы не можете просто ускорить свой путь до бесконечности!

    Преимущества и недостатки турбокомпрессоров

    Фото: Типичный автомобильный турбокомпрессор. Вы можете четко видеть два вентилятора / нагнетателя (один над другим) и их вход / выход. Фото любезно предоставлено Армией США.

    Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус).Основное преимущество использования турбонагнетателя заключается в увеличении выходной мощности. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует большую мощность, чем в противном случае). Однако чем больше мощность, тем выше выход энергии в секунду, и закон сохранения энергии говорит нам, что вы должны вкладывать больше энергии, поэтому вы должны сжигать, соответственно, больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него.Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче, чем двигатель, производящий такую ​​же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении. Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива.Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.

    « Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащены одним двигателем.

    The New York Times, 2018

    Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами).Одно исследование 2013 года, проведенное Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету. Есть более эффективные способы экономить топливо, в том числе гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые могут пойти не так.Это может значительно удорожать обслуживание турбин. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго. Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонагнетателя, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении.В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.

    Кто изобрел турбокомпрессор?

    Кого благодарим за турбокомпрессоры? Альфред Дж. Бюхи (1879–1959), инженер-автомобилестроитель, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбонагнетателем, который я проиллюстрировал выше, в его первоначальной конструкции использовался приводной от выхлопа вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя.Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.

    Однако

    Бючи была не единственной важной фигурой в истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое может быть сожжено.Другие инженеры, в том числе Луи Рено, Готлиб Даймлер и Ли Чедвик также успешно экспериментировал с системами наддува.

    Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят по трубе (зеленого цвета), приводящей в движение турбину.Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синий ящик), который нагнетает воздух в цилиндр через синюю трубу. Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    Рекламные ссылки

    Узнать больше

    На сайте

    Книги для старших читателей

    Книги для юных читателей

    • Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).

    Статьи

    • Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Терпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
    • «Прыжки с турбонаддувом с гоночной трассы на Кюль-де-Сак», автор Стивен Уильямс. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью современного автомобильного двигателя.
    • Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис.Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
    • Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
    • Автопроизводители считают, что турбины — мощный путь к экономии топлива Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, так активно продвигают двигатели с турбонаддувом.
    • 50 лет назад турбонагнетатель был революционной технологией Джима Косса. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конце концов преодолели свои первые проблемы.
    • Чак Скватриглиа, «Если вы не водите турбо», скоро вы его узнаете. Wired, 24 сентября 2010 г. Ожидается, что к 2015 году количество автомобилей с установленными турбокомпрессорами удвоится, поскольку производители ищут новые способы повышения производительности от двигателей меньшего размера.
    • Turbo приветствует экологический сертификат Йорна Мадслиена.BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их «экологичнее» за счет снижения расхода топлива.

    Патенты

    Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Здесь Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:

    • Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж. Бючи, выдан 17 апреля 1934 г. Первый турбомотор, разработанный самим изобретателем турбокомпрессоров.
    • Патент США №
    • №2,309,968: Управление турбокомпрессором и метод, разработанный Ричардом Дж. Ллойдом, корпорация Garrett, выдан 1 февраля 1977 года. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
    • Патент США № 4083188: Система турбонаддува двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 года. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
    • Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г.Новый метод охлаждения турбокомпрессора.

    Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

    статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

    Авторские права на текст © Chris Woodford 2010, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

    eBooster является зарегистрированным товарным знаком BorgWarner Inc. Corporation

    Следуйте за нами

    Сохранить или поделиться этой страницей

    Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

    Цитировать эту страницу

    Вудфорд, Крис. (2010/2020) Турбокомпрессоры. Получено с https://www.explainthatstuff.com/how-turbochargers-work.html. [Доступ (укажите дату здесь)]

    Подробнее на нашем сайте…

    ЧТО ТАКОЕ ТУРБОКОМПЕНСАТОР И РАБОТАЕТ ТУРБОКОМПЕНСАТОР

    Турбокомпрессор — это устройство, которое используется для увеличения мощности двигателя или, можно сказать, КПД двигателя за счет увеличения количества воздуха, поступающего в камеру сгорания. Больше воздуха в камеру сгорания означает, что в цилиндр будет поступать большее количество топлива, и в результате вы получите больше мощности от того же двигателя, если в нем будет установлен турбокомпрессор .

    Многие путают TURBOCHARGER и SUPERCHARGER . Функция нагнетателя такая же, как у турбокомпрессора , но нагнетатель приводится в движение двигателем механически, часто с помощью ремня, соединенного с коленчатым валом, тогда как турбокомпрессор приводится в движение турбиной, приводимой в действие выхлопными газами двигателя. Турбокомпрессор считается более эффективным, чем нагнетатели, поскольку они используют потерянную энергию выхлопных газов в качестве источника энергии.

    ПРИНЦИП РАБОТЫ ТУРБОКОМПЕНСАТОРА

    Количество двигателя, которое фактически входит в цилиндр двигателя, по сравнению с теоретическим количеством, если двигатель может поддерживать атмосферное давление, называется объемным КПД, а цель турбокомпрессора для повышения объемного КПД двигателя за счет увеличения плотности впускной газ .

    Турбокомпрессор всасывает воздух из атмосферы и сжимает его с помощью центробежного компрессора, прежде чем он попадет во впускной коллектор под повышенным давлением.Это приводит к тому, что большее количество воздуха поступает в цилиндры на каждом такте впуска. Центробежный компрессор получает энергию за счет кинетической энергии выхлопных газов двигателя.

    Турбокомпрессор состоит из трех основных компонентов

    1. Турбина, которая представляет собой турбину с радиальным притоком.
    2. Компрессор почти центробежный.
    3. Узел вращения центральной ступицы.

    РАБОТА ТУРБОКОМПЕНСАТОРА

    A Турбокомпрессор в основном состоит из двух основных частей: турбины и компрессора. Турбина состоит из турбинного колеса и корпуса турбины, цель которых — направлять выхлопные газы в турбинное колесо. Кинетическая энергия выхлопных газов преобразуется в механическую после попадания их на лопатки турбины. Выхлопное отверстие помогает выхлопным газам выходить из турбины.Колесо компрессора в турбокомпрессоре прикреплено к турбине с помощью стального вала, и когда турбина вращает колесо компрессора, оно втягивает высокоскоростной воздушный поток низкого давления и преобразует его в воздух высокого давления и низкой скорости. поток. Этот сжатый воздух вдавливается в двигатель с большим количеством топлива и, следовательно, производит большую мощность.

    Как работает турбокомпрессор | Cummins

    Существенная разница между дизельным двигателем с турбонаддувом и традиционным бензиновым двигателем без наддува : воздух, поступающий в дизельный двигатель, сжимается перед впрыском топлива .Именно здесь турбокомпрессор имеет решающее значение для выходной мощности и эффективности дизельного двигателя.

    Работа турбокомпрессора заключается в сжатии большего количества воздуха, поступающего в цилиндр двигателя. Когда воздух сжимается, молекулы кислорода собираются ближе друг к другу. Это увеличение количества воздуха означает, что для безнаддувного двигателя такого же размера можно добавить больше топлива. Это приводит к увеличению механической мощности и повышению общей эффективности процесса сгорания. Следовательно, размер двигателя может быть уменьшен для двигателя с турбонаддувом, что приведет к лучшей компоновке, преимуществам экономии веса и общей улучшенной экономии топлива.

    Как работает турбокомпрессор?

    Турбокомпрессор состоит из двух основных частей: турбины и компрессора. Турбина состоит из турбинного колеса (1) и корпуса турбины (2) . Корпус турбины направляет выхлопные газы (3) в рабочее колесо турбины. Энергия выхлопного газа вращает турбинное колесо, и затем газ выходит из корпуса турбины через зону выхода выхлопных газов (4) .

    Компрессор также состоит из двух частей: крыльчатки компрессора (5) и корпуса компрессора (6) .Принцип действия компрессора противоположен турбине. Колесо компрессора прикреплено к турбине валом из кованой стали (7) , и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его. Затем корпус компрессора преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкого давления посредством процесса, называемого диффузией. Сжатый воздух (8) проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.

    1. Колесо турбины
    2. Корпус турбины
    3. Выхлопные газы
    4. Выходное отверстие для выхлопных газов
    5. Колесо компрессора
    6. Корпус компрессора
    7. Вал стальной кованый
    8. Сжатый воздух

    Узнайте, как работает Turbo

    Как работает турбокомпрессор? Принципы работы турбокомпрессора

    Принципы работы турбокомпрессора

    В двигателе внутреннего сгорания, где необходимо увеличить мощность, применяется турбокомпрессор.Для этого турбонагнетатель увеличивает массовый расход воздуха, поступающего в двигатель, за счет действия турбины, приводимого в действие ее выхлопом. Он широко применяется в самолетах, автомобилях и мотоциклах.

    Конструкция и принцип действия турбокомпрессора

    Турбокомпрессор похож на миниатюрную газовую турбину, это небольшой радиальный вентилятор, приводимый в движение поступательным движением выхлопных газов двигателя. Турбокомпрессор состоит из турбины и компрессора, работающих на одном валу. Когда выхлопные газы входят, вращается вентилятор, который приводит в движение компрессор.Затем воздух сжимается компрессором перед подачей во впускной коллектор двигателя. Поскольку воздух сжимается, двигатель может принимать большее количество воздуха в цилиндры. Обычно двигатель всасывает воздух через разрежение, создаваемое движением цилиндра вниз. Нормальное давление воздуха составляет 14,7 фунтов на квадратный дюйм, и существует предел разности давлений на впускных клапанах, что приводит к ограничению массового расхода воздуха. Затем для увеличения всасывания необходимо увеличить давление.Таким образом, дополнительный кислород к двигателю позволяет сжигать больше топлива, что увеличивает мощность двигателя. Повышение давления воздуха возможно при использовании турбонагнетателя.

    Турбокомпрессоры, хотя применяется то же самое, что и нагнетатели, за исключением небольших изменений. Нагнетатели, особенно центробежные нагнетатели, вращались за счет вращения коленчатого вала двигателя. Это сделало турбокомпрессоры более эффективными с точки зрения утилизации потерь энергии через выхлопные газы.

    Хотя турбокомпрессор состоит из турбины и компрессора, на самом деле он состоит из нескольких рабочих компонентов.Турбина и крыльчатка находятся в собственном корпусе. Корпуса, установленные вокруг крыльчатки компрессора и турбины, направляют поток газов через колеса. Движение газов заставляет крыльчатку вращаться. В этом случае размер рабочего колеса определяет количество газа, которое оно может принять. Единственный вал, соединяющий турбину с компрессором, расположен во вращающемся узле с центральной ступицей (CHRA).

    alexxlab

    E-mail : alexxlab@gmail.com

        Submit A Comment

        Must be fill required * marked fields.

        :*
        :*