Роботизированная коробка передач что это: Как работает роботизированная коробка передач — ДРАЙВ

  • 24.07.2019

Содержание

Как работает роботизированная коробка передач — ДРАЙВ

Чтобы ответить на этот вопрос, придётся вспомнить устройство обычной механической коробки передач. Основу классической «механики» составляют два вала — первичный (ведущий) и вторичный (ведомый). На первичный вал через механизм сцепления передаётся крутящий момент от двигателя. Со вторичного вала преобразованный момент идёт на ведущие колёса. И на первичный, и на вторичный валы посажены шестерни, попарно находящиеся в зацеплении. Но на первичном шестерни закреплены жёстко, а на вторичном — свободно вращаются. В положении «нейтраль» все вторичные шестерни прокручиваются на валу свободно, то есть крутящий момент на колёса не поступает.

Перед включением передачи водитель выжимает сцепление, отсоединяя первичный вал от двигателя. Затем рычагом КПП через систему тяг на вторичном валу перемещаются специальные устройства — синхронизаторы. При подведении муфта синхронизатора жёстко блокирует на валу вторичную шестерню нужной передачи.

После включения сцепления крутящий момент с заданным коэффициентом начинает передаваться на вторичный вал, а от него — на главную передачу и колёса. Для сокращения общей длины коробки вторичный вал часто делят на два, распределяя ведомые шестерни между ними.

Упрощённая схема работы 5-ступенчатой механической коробки передач.

Принцип действия роботизированных коробок передач абсолютно тот же. Единственное отличие в том, что смыканием/размыканием сцепления и выбором передач в «роботе» занимаются сервоприводы — актуаторы. Чаще всего это шаговый электромотор с редуктором и исполнительным механизмом. Но встречаются и гидравлические актуаторы.

Роботизированная КПП SensoDrive применяется на автомобилях марки Citroen.

Управляет актуаторами электронный блок. По команде на переключение первый сервопривод выжимает сцепление, второй перемещает синхронизаторы, включая нужную передачу. Затем первый плавно отпускает сцепление. Таким образом, педаль сцепления в салоне больше не нужна — при поступлении команды электроника всё сделает сама. В автоматическом режиме команда на смену передачи поступает от компьютера, учитывающего скорость движения, обороты двигателя, данные ESP, ABS и других систем. А в ручном — приказ на переключение отдаёт водитель при помощи селектора КПП или подрулевых лепестков.

Фирма Ricardo на примере «робота» Easytronic от модели Opel Corsa предложила заменить раздельные актуаторы для сцепления и выбора передачи одиночным электромагнитным актуатором. Благодаря этому уменьшились размеры и масса агрегата. И самое главное — механизм выбора передачи стал работать в восемь раз быстрее, а общий период разрыва потока мощности сократился до 0,35 с. Вверху — серийный Easytronic, внизу — рисунок разработки Ricardo.

Проблема «робота» — отсутствие обратной связи по сцеплению. Человек чувствует момент смыкания дисков и может переключить скорость быстро и плавно.

А электроника вынуждена перестраховываться: чтобы избежать рывков и сохранить сцепление, «робот» надолго разрывает поток мощности от двигателя к колёсам во время переключения. Получаются дискомфортные провалы на разгоне. Единственный способ достичь комфорта при переключениях — сократить их время. А это, увы, означает рост цены всей конструкции.

Пионером массового использования преселективных коробок стал концерн Volkswagen, использующий DSG (S tronic у Audi) как на переднеприводных, так и на полноприводных моделях с продольно и поперечно установленными двигателями. Аббревиатура DSG (Direct Shift Gearbox — коробка прямого включения) стала нарицательным для коробок с двумя сцеплениями — хотя на самом деле это просто товарный знак.

Революционным решением стала появившаяся в начале 80-х трансмиссия с двумя сцеплениями DCT (dual clutch transmission). Рассмотрим её работу на примере 6-ступенчатой коробки DSG концерна Volkswagen. У коробки два вторичных вала с расположенными на них ведомыми шестернями и синхронизаторами — как у шестиступенчатой «механики» Гольфа.

Фокус в том, что первичных валов тоже два: они вставлены друг в друга по принципу матрёшки. Каждый из валов соединяется с двигателем через отдельное многодисковое сцепление. На внешнем первичном валу закреплены шестерни второй, четвёртой и шестой передач, на внутреннем — первой, третьей, пятой и заднего хода. Допустим, автомобиль начинает разгон с места. Включается первая передача (муфта блокирует ведомую шестерню первой передачи). Замыкается первое сцепление, и крутящий момент через внутренний первичный вал передаётся на колёса. Поехали! Но одновременно с включением первой передачи умная электроника прогнозирует последующее включение второй — и блокирует её вторичную шестерню. Именно поэтому такие коробки ещё называют преселективными. Таким образом, включены две передачи сразу, но заклинивания не происходит, — ведущая шестерня второй передачи находится на внешнем валу, сцепление которого пока разомкнуто.

Состояние DSG при движении на первой передаче. Муфтами блокированы шестерни 1-й и 2-й передач.

Когда машина достаточно разгонится и компьютер решит повысить передачу, размыкается первое сцепление и одновременно замыкается второе. Крутящий момент теперь идёт через внешний первичный вал и пару второй передачи. На внутреннем валу уже выбрана третья. При замедлении те же операции происходят в обратном порядке. Переход происходит практически без разрыва потока мощности и с фантастической скоростью. Серийная коробка Гольфа переключается за восемь миллисекунд. Сравните со 150 мс на Ferrari Enzo!

Состояние DSG после переключения на 2-ю передачу. 3-я передача ожидает своей очереди.

Коробки с двойным сцеплением экономичнее и быстрее традиционных механических, а также более комфортны, чем «автоматы». Главный их недостаток — высокая цена. Вторую проблему — неспособность передавать большой крутящий момент — решили с появлением DSG фирмы Ricardo на 1000-сильном купе Bugatti Veyron. Но пока удел большинства суперкаров — «роботы».

Хотя, например, коробка Ferrari 599 GTB Fiorano — не чета опелевскому Изитронику: время переключения у суперробота исчисляется десятками миллисекунд.

Роботизированная коробка AMG Speedshift, устанавливаемая на новейший SL 63 AMG, представляет собой модифицированный мерседесовский «автомат» 7G-Tronic. Только крутящий момент вместо тяжёлого и инертного гидротрансформатора передаёт одинарное многодисковое «мокрое» сцепление. Благодаря применению сложных электрогидравлических актуаторов время переключения составляет 0,1 с.

Сегодня коробки DCT есть не только у Фольксвагена, но и у компаний BMW, Ford, Mitsubishi и FIAT. Преселективные коробки признали даже инженеры Porsche, которые используют в своих машинах только проверенные технологии. Аналитики прогнозируют, что в будущем наиболее распространёнными трансмиссиями станут DCT и вариаторы. А дни третьей педали, похоже, сочтены — скоро она исчезнет даже из самых драйверских спорткаров. Человечество выбирает то, что удобнее.

Что делать, чтобы роботизированная коробка передач не ломалась

Что может сломаться в «роботе» 

Самый пугающий (но на самом деле самый безобидный) симптом проявляется в следующем: «мозги» коробки в какой-то момент перестают распознавать положение селектора или не разрешают включить Drive или Reverse, а в некоторых случаях — даже завести мотор. В режим самозащиты «робот» может перейти либо при перегреве, либо при сбоях в работе датчиков. Сильный перегрев, кстати, их и «пере­кашивает», делая проблему регулярной.

«Робот» с одним диском, несмотря на простоту конструкции, не может похвастаться огромным ресурсом. Если сама коробка обычно служит долго, то сцепление изнашивается быстрее, чем у опытного водителя, ездящего на «механике» — порой уже через 20–30 тыс. км. Нередки и отказы его серво­привода, которому требуется немалое усилие для размыкания дисков.

Тонким местом преселективных коробок тоже оказались сцепления. Их износ — самая распро­странённая неисправ­ность трансмиссий этого типа.

Традици­онные «сухие» диски сцепления, нормально работающие в паре с МКПП, при быстрых и частых пере­ключениях «робота» склонны к перегреву и, как следствие, быстрому износу и деформации, поэтому их применяют только там, где нагрузки на коробку относительно невелики. С мощными моторами или на тяжёлых машинах приходится использовать много­дисковые сцепления, работающие в специальном масле, которое их охлаждает. И всё равно для узла «сухих» сцеплений в пресе­лективной коробке неплохим ресурсом считаются 60–70 тыс. км, «мокрые» могут прослужить вдвое дольше, но их обслужи­вание и замена обходятся значительно дороже. Верные признаки износа сцеплений — толчки при пере­ключениях, вибрации при старте автомобиля с места.

Чтобы коробка переключалась плавно, а сцепления служили долго, требуется очень точная и согласованная работа систем управления сцепле­ниями и сменой передач. Если заведующий этим мехатронный блок настроен недостаточно тонко и неточно исполняет команды электронной программы управления, то коробка начинает методично убивать сама себя.

Именно мехатроника — самая капризная часть «робота». Этот блок, совмещающий в себе электронные и гидравли­ческие части для приводных механизмов, работает в довольно сложных условиях — ему приходится с большой частотой выполнять разные команды, выдер­живать большое давление рабочей жидкости (она отличается от масла, залитого в саму коробку), подстраивать свои режимы под текущие условия езды, режимы и фактический износ сцеплений. В общем, сбои, перегревы, отклонения в работе управляющих соленоидов, загряз­нение масляных каналов, подтёки и даже трещины в корпусе мехатронного блока — список возможных проблем довольно обширен.

Самые редкие, но тоже больно бьющие по карману неисправ­ности связаны с механической частью коробки. Износ валов, шестерёнок, вилок пере­ключения, подшип­ников и прочих деталей редуктора (всё это проявляется специфи­ческим шумом или заминками в пере­ключениях передач) лечится, как правило, только капитальным ремонтом «робота». Либо его полной заменой.

Впрочем, не всё так драматично. Инженеры постоянно работают над повышением надёжности «роботов» с двумя сцеплениями. Если правильно эксплу­атировать и обслуживать, то сегодня даже «сухая» конструкция способна без каких-либо проблем и дорого­стоящих замен пройти 150–200 тысяч пробега.

Преселективная роботизированная коробка передач DSG в автомобилях Volkswagen

Специалисты компании Volkswagen создали новую, уникальную коробку переключения скоростей DSG (Direct Shift Gearbox), которая по своим техническим характеристикам намного превосходит существующие образцы.

В настоящее время преселективные роботизированные коробки передач DSG второго поколения устанавливаются на большинство моделей Volkswagen: Golf, Passat B8,Passat СС, Tiguan, Jetta.

Использование этой коробки передач позволяет почувствовать комфорт и удобство при переключении. Данная коробка сочетает в себе все современные технологии трансмиссий различных типов. Переключение скоростей осуществляется вручную, но за весь процесс отвечает электроника и различные автоматизированные механизмы.

Отличительной особенностью работы коробки является то, что во время переключения передач не изменяется поток мощности. Плавность работы такого агрегата по достоинству оценят как любители загородной быстрой езды, так и владельцы автомобилей, передвигающиеся преимущественно в городской черте.

Особенности работы коробки-робота

Коробка передач DSG может эксплуатироваться в двух режимах — спортивном и нормальном.

Спортивный режим. Данный режим предусматривает более длительное раскручивание при переходе на повышенные скорости и быстрый переход на пониженные передачи. Такой режим является предпочтительным при скоростной езде. Имеется функция Tiptronik, которая позволяет производить управление передачами в ручном режиме.

Всем, кто любит спортивный тип езды, можно использовать переключатели-лепестки, смонтированные на руле. Такие лепестки позволяют почувствовать мощь автомобиля и от души насладиться спортивной ездой.

Нормальный режим. Такой режим является привычным для всех автомобилистов и может использоваться при передвижении по городу или для небыстрого, экономного вождения.

Устройство DSG

6-ступенчатая коробка DSG имеет два, независимых друг от друга блока трансмиссий. Благодаря такой конструкции, происходит поочередное сцепление с двигателем, в зависимости от включенной в данный момент передачи. Для управления используется двойное сцепление, которое состоит из пары муфт, которые установлены в едином корпусе.

Одно сцепление отвечает за работу 1, 3, 5 передачи, второе за 2, 4, 6 передачу. Каждый блок оснащен отдельным приводным валом, передающий вращающее действие на колеса. Передача осуществляется с помощью дифференциала.

КПД роботизированных коробок передач

Применение схемы двойного сцепления в коробках DSG, при сравнении с АКП, имеющей гидротрансформатор, позволяет в значительной мере увеличить КПД. Интеллектуальная система коробки в сочетании с небольшой массой, позволяет значительно понизить расход топлива. Оценить все положительные качества данной коробки можно на автомобилях Passat CC, Golf GTI, Passat Variant.

Интеллектуальный блок управления

Коробка снабжена встроенным блоком, который проводит анализ оборотов двигателя, скорости движения, нажим на педаль газа.

На основе полученных данных автоматически выбирается необходимая передача или момент перехода на другую передачу. Это обеспечивает плавность движения и снижает нагрузку на двигатель.


Роботизированная коробка передач автомобиля — устройство и как работает

Роботизированная коробка передач автомобиля — разновидность полуавтоматических КПП, которая объединяет черты механической коробки и автоматической. Расскажем что такое коробка — робот, как работает и в чем преимущество перед другими типами трансмиссии.

Что это такое

Вместо третьей педали, которую нужно выжать для переключения скоростей с механической коробкой передач, в авто с роботизированной коробкой передач две педали. Роль третьей педали играет целая система сенсоров, передатчиков и исполнительных механизмов, которые при помощи бортового компьютера переключают коробку без участия водителя и сцепления. Компьютер синхронизирует работу деталей коробки, а некоторые электронные системы способны научиться распознавать стиль вождения водителя и предугадывать его действия. У роботизированной КПП ручка переключения скоростей находится там же, где и ручка механической коробки, но вместо Ж-образного переключения, ручка переключается только вперед или назад.

Как работает

Работает следующим образом. При переключении ручки передач и нажатии педали газа сенсоры передают информацию в блок управления, который в свою очередь передает сигнал в коробку передач. Сенсоры коробки передач также сообщают в блок информацию о действующей скорости и новом требовании переключения скоростей.

Блок управления синхронизирует информацию, полученную от сенсоров, и выбирает оптимальную скорость и время переключения скоростей и обеспечивает слаженность работы механизмов коробки передач. При этом принимается в расчет скорость вращения двигателя, работа кондиционера, показатели спидометра.

Бортовой компьютер роботизированной КПП управляет гидромеханикой, который смыкает или размыкает сцепление. Этот процесс происходит синхронно с действием водителя, переключающего ручку скоростей. Гидромеханический блок использует жидкость из тормозной системы для запуска гидравлического цилиндра, обеспечивающего движение актуатора.

В чём преимущество

Электроника реагирует быстрее человека и более точно, поэтому «выжать» сцепление можно без участия водителя. Для парковки автомобиля, обратного хода или нейтрального положения трансмиссии водитель должен предварительно выжать обе педали одновременно, после этого можно выбрать один из трех вариантов.

Сцепление нужно только, чтобы машина пришла в движение. Для быстрого переключения скорости на более высокую необходимо убрать ногу с педали газа, чтобы двигатель сбавил обороты для подходящей скорости. Для этого ручка передачи скоростей должна стоять на нужной позиции.

Описание принципов работы роботизированной КПП DCT Хендай

Рассмотрим DCT автомобилей Hyundai: принцип работы, характерные особенности, плюсы и минусы.

Роботизированная трансмиссия — новшество из мира спортивных автокаров

Роботизированная КП (DCT Хендай) — преселиктивная коробка передач, попавшая на любительский рынок в модифицированном виде относительно недавно из автоспорта, оснащенная прямым включением и двумя сцеплениями, на которые возложены разные функции:

  • Контроль над нечетными передачами.
  • Контроль над четными передачами.

Сравнительно быстрый и, что немаловажно, плавный разгон, в процессе которого скорости переключаются в доли секунды — главные особенности роботизированной трансмиссии автомобиля Hyundai. Кроме этого, сочетание комфортного управления транспортным средством, которое дает автомат, с неоспоримым экономичным режимом и динамикой от МКП — так же отличительная характеристика роботизированной КП, относящиеся к достоинствам этой трансмиссии.

К преимуществам так же можно отнести следующее:

  • дешевле автоматической КП;
  • небольшая масса робота;
  • некоторые модели Hyundai оснащены подрулевыми лепестками — альтернатива традиционному рычагу переключения скоростей, что позволяет быстро поставить необходимую передачу, а значит предать динамичности транспортному средству.

Корейские кроссоверы премиум класса — например, Hyundai Tucson (2016 года), при желании автолюбителя могут комплектоваться 7-ступенчатой роботизированной коробкой с двойным сцеплением и подрулевыми лепестками (несмотря на название, они расположены сразу за рулем). Данная система КПП идет исключительно с силовой установкой мощностью в 175 лошадиных сил.

Категорически противопоказаны пробуксовки, страдает плавность переключения скоростей, при даже кратковременной остановке необходимо переходить в нейтральное положение. Это очевидные недостатки роботизированной коробки. К ним же следует присовокупить дороговизну устройства, как при приобретении, так и в последующем обслуживании и ремонте.

Идеальной коробки передач не существует. Поэтому, выбирая, необходимо расставлять приоритеты. То есть, что предпочтительней: динамика, стоимость, экономичность или комфорт. Определившись, проще осуществить правильный выбор относительно трансмиссии.

Роботизированная коробка передач DSG, или новое это хорошо забытое старое.

Роботизированная коробка передач DSG (Direct Shift Gearbox). Это коробка передач прямого переключения. В настоящее время она является самой совершенной автоматизированной коробкой, устанавливаемой на массовые модели легковых автомобилей – так, или примерно так начинаются все описания данного агрегата во многих, если не сказать во всех, рекламных источниках. Давайте разберемся, что это такое и так ли это на самом деле.

Эту коробку изобрел пионер автомобилестроения Адольф Кегресс (Adolphe Kegresse) (1879-1943), больше известный изобретением полугусеничных машин, оснащенных резиновыми гусеницами, которые помогают ездить по различным формам рельефа. Кстати, интересный факт, Адольф Кегресс с 1904 года работал в России, организовывая там автомобильную почту. С 1906 года А. Кегресс стал техническим директором гаража царя Николая II, а после – личным шофером императора.

Так вот, в 1939 году Кегресс впервые сформулировал идею КПП с двойным сцеплением, которую он надеялся воплотить в легендарном Citroen Traction. К сожалению, неблагоприятные условия бизнеса, а затем вторая мировая война, не позволили претворить идею в жизнь.

К идее создания КПП с двойным сцеплением вернулись только в 80-х годах прошлого века разработчики спортивных болидов. Они смогли автоматически переключать механические КПП. В автомобиле педалью сцепления и кулисой переключения передач управляет электроника, все действия совершаются электромагнитными или гидравлическими механизмами. Давайте разберемся, как это работает. Для того, чтобы понять, как это работает, необходимо вспомнить, как работает механика.

Итак, как работает механическая КПП? Прежде чем переключить передачу с помощью кулисы переключения передач, необходимо выжать педаль сцепление, которая отсоединяет двигатель от коробки передач и прекращает подачу силового потока к коробке. Когда водитель выбирает нужную передачу с помощью кулисы, зубчатая муфта перемещается от одной шестерни к другой, синхронизаторы выравнивают скорость вращения муфты, после чего передача безударно включается. После того, как шестерня пришла в движение, необходимо отпустить педаль сцепления, после чего происходит повторное соединение двигателя с трансмиссией и посылает крутящий момент на колеса. Таким образом, в обычной механической коробке передач, поток мощности от двигателя к колесам при переключении скоростей прерывается. Это вызывает толчок переключения передачи или прерывание крутящего момента. В случаях неправильного, или несвоевременного включения передачи, автомобиль может заметно подергиваться, или как говорят в народе – «козлить».

Коробка DSG работает по-другом, она объединяет в одном корпусе две механические коробки передач, одну для четных скоростей, а другую для нечетных, и каждая из которых оснащена своим сцеплением, Но зачем это нужно? Оказывается, для того, чтобы включать две передачи одновременно!

Пока автомобиль разгоняется на четной скорости, шестерни следующей, нечетной, уже находятся в зацеплении. Когда обороты двигателя достигают точки включения следующей передачи, сцепление четной передачи размыкается, а нечетной одновременно замыкается, при этом передача тяги между коробками происходит без разрыва потока мощности, а смена скорости получается быстрой и почти незаметной. И все это при минимальных потерях энергии – будучи производной от обычной “механики” коробка наследует и высокую эффективность передачи мощности. Управляется все это автоматикой, поэтому в системе отсутствует педаль сцепления, как таковая, и ручка управления КПП такая, как у автоматической коробки.

“Вот она, идеальная трансмиссия”- воскликнет восторженный читатель, но… Как говорил известный персонаж товарищ Саахов из Кавказской пленницы – “э нет… тарапица не надо”. Коробка DSG, как уже было сказано выше, управляется электроникой, и при наборе скорости компьютер почти мгновенно переключает передачи, экономя топливо, сохраняя динамику и сглаживая рывки, потому что сразу после включения, например, четвертой передачи он готов включить пятую. А если Вы в процессе разгона решили притормозить, а такое в пробках и на трассе бывает часто? А система управления об этом не знала и готовилась включить передачу выше? Ей нужно гораздо больше времени для отключения более высокой передачи и подготовки к включении более низкой передачи. На это уходит уже не 100 мс, а до полусекунды. Вы скажете, “Ну и что этого и не заметишь”, и будете правы, при торможении этого практически не заметно, но автоматам такое угадывание не свойственно. Это минус.

Не всегда удается обеспечить и низкие потери энергии. Проблема в том, что сухие сцепления (такие же, как и у ручных коробок) в DSG трансмиссиях могут перегреваться, поэтому в моделях, рассчитанных на мощные моторы, вместо них применяются пакеты фрикционов, работающие в масле. Они лучше держат нагрузки, но из-за большего проскальзывания и гидродинамических потерь эффективность передачи мощности снижается до 96%, в то время как ручные коробки и их роботизированные версии достигают величины в 98-99%. Впрочем, это, конечно, лучше обычного “автомата” с его 91-94%. Разработчики заявляют, что коробка DSG экономит до 10% топлива. Ой, как я сомневаюсь. Несколько процентов – да, и это безусловно радует.

Неоспоримым минусом является стоимость коробки и огромные проблемы с ремонтопригодностью. В связи с чем, возникает необходимость правильного обслуживания КПП и своевременной замены масла. Так как это, как не крути, рекламная статья, не примену возможностью обратить Ваше внимание, что компания North Sea Lubricants для таких коробок производит специальное масло ATF POWER DSG.

Так почему же коробки передач DSG стали так популярны? Ведь по каждому из параметров обязательно находится какой-то более подходящий тип трансмиссии. А секрет заключается в том, что, не являясь лидером в отдельных номинациях, эти коробки, тем не менее, совместили в себе удачный набор характеристик: достаточно эффективные, относительно недорогие, вполне комфортные и довольно быстрые. Золотая середина.

Катайтесь на машинах с коробками DSG и получайте от этого удовольствие.

Коробка передач — устройство, назначение, виды

Коробка передач или коробка переключения передач (КПП) – это один из важнейших агрегатов трансмиссии – наряду с карданным валом, сцеплением и задним ведущим мостом. Как составляющая трансмиссии КПП характерна для всех автомобилей ДВС.


Назначение и устройство

КПП предназначена для нескольких задач:
  • изменения крутящего момента,
  • изменения скорости,
  • коррекции направления движения автомобиля,
  • разъединения ДВС и трансмиссии и, напротив, их соединения (такая потребность актуальна при переключении передач, необходимости получения малых «ползучих» скоростей, кратковременной остановки транспортного средства),
  • блокировки гидротрансформатора (функция ценна для уменьшения потери полезной энергии «автомата» при передаче крутящего момента в ситуации, когда выравниваются обороты ведомой и ведущей турбин).
При этом одни КПП способны решать все эти задачи, а другие, как например, механическая, только базовые – изменение крутящего момента и скорости. Схема устройства зависит от вида КПП.

В корпусе устройства коробки передач с “механикой” объединены валы (2, 3 или более),  синхронизатор, шестерни, рычаг для переключения скоростей, проволочные кольца, подшипники, сальники.

Устройство АКПП (КПП с “автоматикой”) представляет собой узел, в который входят гидротрансформатор, планетарный ряд, фрикционы, тормозная лента, узел управления (насос + маслосборник + клапанная коробка).

В основе роботизированных коробок могут лежать как решения механического типа с электрической либо гидравлической системой управления сцеплением и передачами, так и автоматические коробки, оборудованные электрогидравлическим приводом сцепления.

На сцеплении, шестернях, валах и синхронизаторах остановимся более подробно.

Сцепление

Предназначено для передачи крутящего момента от маховика коленвала ДВС к первичному валу коробки передач.

Именно благодаря наличию сцепления двигатель на короткий промежуток времени можно аккуратно отсоединить от трансмиссии, а трансмиссию защитить от перегрузок.

Стандартная муфта сцепления большинства транспортных средств  с механической коробкой включает маховик, нажимной диск, ведомый диск, выжимной подшипник, привод, вилку и выключатель сцепления.

Один двигатель соединен с колёсами, другой — с ДВС. В момент, когда водитель отпускает педаль, диски прижимаются друг к другу и начинают совместное вращение.

Именно о классическом сцеплении как таковом чаще говорят при использовании механической коробки передач, а при езде с ДВС на АККП говорят о совмещенном решении сцепления и гидротрансформатора. Его непосредственная функция аналогична сцеплению. Но водителю не нужно совершать никаких рутинных действий и выжимать сцепление вручную. За него все будет делать сама КПП.

Что касается роботизированных решений типа DSG (с мехатроникой), то они располагают двумя сцеплениями. Наличие двух сцеплений ценно для повышения мощности транспортного средства, и при этом минимизации пробуксовок, оптимизации расхода топлива.

Ведь физически в момент переключения обороты двигателя при использовании двух сцеплений способны остаются на прежнем уровне.

На картинке ниже вы видите “поведение” сцепления в роботизированной коробке  DSG в момент после переключения на вторую передачу.

Шестерни и валы

Шестерни и валы –  главные «управляющие» крутящим моментом. Именно шестерни и валы помогают изменять передаточное отношение. Неотъемлемые элементы устройства всех механических КПП и некоторых АКПП (например, Honda).

Устройство механической коробки передач чаще всего сконструировано так, что оси валов находятся в параллельной плоскости. Сверху монтированы шестерни. 

Первичный или ведущий вал (ведвал) посредством корзины сцепления присоединен к маховику. Выступы способствуют продвижению второго диска сцепления и направления крутящего момента на промежуточный вал посредством шестерни.

Конец вторичного вала примыкает к подшипнику на хвостовике ведущего. Так как нет фиксированной связи, валы независимы, и нет препятствий для того, чтобы они вращались в разные стороны. Нет препятствий и для варьирования скоростей.

Устройство автоматической коробки передач вместо шестерён и валов предполагает планетарный редуктор. Вращаются шестерни и валы всегда как единое целое. Но конструктивно это могут быть как разные детали, так и неразборный узел.

Синхронизаторы

Синхронизаторы – неотъемлемый элемент КПП с шестернями – кроме решений со скользящими шестернями. Физически работа синхронизаторов обязана силе трения.

Функция синхронизаторов – выравнивание частоты вращения шестерен и валов, благодаря чему создаются все условия для плавного переключения скоростей. Благодаря синхронизаторам КПП меньше изнашивается и меньше шумит.

Синхронизаторы активно присутствуют у МКП и роботизированных КПП. У автомобилей с планетарными АКП альтернатива синхронизаторам – фрикционные управляющие элементы. Синхронизаторы состоят из муфты, блокировочных колец, стопорного кольца, пружины, шестерён.


Как работает стандартный синхронизатор?

  • Муфта подается в сторону шестерни.
  • Блокировочное кольцо муфты принимает на себя усилие.
  • Поверхности зубьев начинают взаимодействовать.
  • Блокировочное приобретает положение “на упор”.
  • Зубья муфты оказываются напротив зубьев блокировочного кольца.
  • Муфта оказывается в зацеплении с венцом на шестерне.
  • Муфта и шестерня блокируется.

Казалось бы шагов достаточно много, но все это происходит за доли секунд – в момент  включения водителем передачи.

Принцип работы механических коробок переключения передач

КПП с “механикой” во время работы задействуют различные комбинации зубчатых колес.

Принцип работы МКПП базируется на создании соединений между первичным и вторичным валом. Благодаря использованию шестерен с разным количеством зубьев трансмиссия подстраивается под условия на дороге, цели водителя.

При возрастании скорости вращения выходного вала МКПП по отношению к скорости вращения входного величина крутящего момента от ДВС к колёсной базе уменьшается.

При уменьшении скорости вращения выходного вала МКПП по отношению к скорости вращения входного вала величина крутящего момента, от двигателя к ведущим колесам, наоборот увеличивается.

КПП различны по количеству ступеней. Каждая ступень имеет свое передаточное число. Оно представляет собой отношение зубьев количества зубьев ведомой шестерни по отношению к числу зубьев ведущей шестерни.

У пониженной передачи – наибольшее передаточное число, а у повышенной передачи, наоборот, наименьшее передаточное число.Чем ниже передаточные числа, тем быстрее транспортное средство способно разогнаться.

При изменении передаточных чисел и скорости транспортного средства  для кратковременного отключения коробки передач применяется сцепление.

В зависимости от конструкции КПП при этом могут быть двухвальные и трехвальные. И устройство, и процесс работы агрегатов несколько отличается.


2-х-вальная коробка передач: устройство и принцип работы

Двухвальные решения очень популярны на переднеприводных авто.
Конструкция включает следующие элементы:
  • картер – несущий элемент, корпус. К нему крепятся все остальные детали устройства. Он же защищает агрегат  от внешнего воздействия, а человека – от вращающихся деталей, а также выполняет функцию хранилища для масла.
  • валы – первичный и вторичный,
  • шестерни (в блоках), часть крепится к ведущему, часть к ведомому валу,
  • шлиц (соединяет ПВ и сцепление),
  • синхронизаторы.
Важно! Главная передача и дифференциал также находятся внутри картера, но механизм переключения передач вынесен за его пределы.

Рычаг переключения – в нейтральном положении: шестерни прокручиваются, крутящий момент от ДВС не передается к колёсам.

Рычаг перемещен – муфта синхронизатора также изменяет положение. Уравниваются угловые скорости соответствующего вала и шестерни. Крутящий момент передаётся с первичного вала на вторичный. От ДВС на ведущие колеса с заданным передаточным числом .передается крутящий момент.

Отдельно на картинке показан задний ход. Для него в КПП есть задняя передача. Для коррекции направления задействуется промежуточная шестерня. Она монтируется на отдельную ось.


3-вальная КПП: устройство и принцип работы

3-х вальные решения популярны у авто с задним приводом.

Устройство:

  • Картер.
  • Ведвал.
  • Ведомый вал. Находится на одной оси с ведущим.
  • Промежуточный вал. Монтирован параллельно первичному.
  • Шестерни. Блок шестерен ведомого вала свободно вращается на нем. Блоку шестерен промежуточного и ведвала обеспечена жесткая связь, а шестерни на ведомом валу свободно вращаются, четкой фиксации нет.
  • Синхронизаторы. Стоят  на всех передачах. Благодаря шлицу беспрепятственно перемещаются в продольном направлении.
  • Механизм переключения (рычаг + ползунки + блокатор). Монтирован на картере.

Система функционирует схоже с двухвальной, но за счёт наличия промежуточного вала возможностей больше. 

Первичный вал работает в тандеме со сцеплением и отвечает за передачу крутящего момента к промежуточному валу. Все детали находятся в зацеплении. Принципиальное отличие – меньше потерь на трение при первой передачи и возможность обеспечить зацепление сразу двух пар зубчатых колёс. Соответственно у решения более высокий КПД на первой передаче.

Виды коробок переключения передач

Рассматривая устройство и назначение КПП,невозможно было не упомянуть, что они бывают разных типов: механические, автоматические, роботизированные. Кроме того, существует ещё такая подгруппа устройств как вариаторы. Рассмотрим эти КПП более подробно. 

Механические КПП

“Механика” — это классика. Для работы с “механикой” нужны навыки, понимание, как выполнять выбор передаточных чисел, но при умении управлять в ручном режиме, водитель виртуозно может подстроиться под любые условия движения.

Главное при езде на механике научиться чувствовать, когда точно переключать передачи и как достигать нужную динамику.

Впрочем, умение работать с “механикой” – это не только безупречная езда, но ещё и продление службы эксплуатации самой КПП.

Один из неудобных моментов – требуется постоянно следить за тахометром. Но это важно. ДВС работает правильно, если параметры варьируются от 2,5 до 3,5 тысяч оборотов в минуту, если цифры другие, требуется переключить передачу.

Автоматические КПП


Подбор оптимального передаточного числа осуществляется не водителем, а автоматически — посредством модуля управления. Именно посредством электроники (модуля управления) легко контролировать скорость движения транспортного средства.

Наиболее популярны гидравлические “автоматы”. Крутящий момент у них передаётся с помощью турбин через рабочую жидкость.

Несмотря на то, что для машины с “автоматом” нужно больше топлива, чем с механикой и даже больше времени на разгон, всё чаще водители предпочитают именно “автоматы”. Ведь с ними гораздо удобней, чем с “механикой”.

Тем более, что современные АКПП адаптивны и могут беспрепятственно подстраиваться под абсолютно разные стили вождения. В том числе, спортивный.

Роботизированные вариаторы

Роботизированные (автоматизированные, полуавтоматические) КПП как агрегаты – это промежуточные вариант между “механикой” и “автоматом”.

Переключение может быть и ручным, и автоматическим, а вот управление устройством  осуществляется посредством переключателя, джойстика.

Полностью вручную (при любом режиме) нужно только нажимать рычаг переключателя. А вот дальше при выборе автоматического режима работа будет возложена на робота. В том числе, автоматически согласуются частота вращения звеньев и оборотов ДВС.

Вариатор

Отдельно можно выделить вариатор. Это изменяющаяся трансмиссия или бесступенчатая КПП. Изменение передаточного числа производится в заданном диапазоне.

Вариаторы позволяют достигнуть наивысшую топливную экономичность, ведь нагрузки в таких решениях идеально согласованы с оборотами коленвала.

Есть вариаторы, которые по своему устройству ближе к МКПП (с центробежным сцеплением), есть решения, которые ближе к АКПП (такое устройство включает гидротрансформатор).

Но, увы, любая конструкция не позволяет создать очень мощный вариатор. Поэтому на практике поставить вариатор получается только на легковые автомобили, всевозможную мототехнику (очень популярный вариант для скутеров), но не на большегрузный коммерческий транспорт (автобусы, грузовики), т.е. транспортные средства, которые как раз и “съедают” больше всего топлива.

 Исключение составляют только лёгкая коммунальная, сельскохозяйственная техника.

Плюсы и минусы


Тип коробки

Плюсы

Минусы
Механическая коробка
  • низкая стоимость (как устройства, так и ремонта),
  • хорошая динамика,
  • простой ремонт.
  • в «пробках» требуется регулярное переключение передач,
  • сложность в управлении.

Автоматическая коробка передач
  • не нужно думать, какую передачу выбрать,
  • простота разгона (нет крена авто назад),
  • защита ДВС от перегрева.
  • высокая стоимость агрегата,
  • высокий расход топлива,
  • высокая стоимость ремонта.

Роботизированная
  • можно выбрать ручной или автоматический режим работы,
  • топливная эффективность.
  • есть риски крена авто при разгоне,
  • возможны
  • рывки при переключении передач.
Вариатор
  • сниженная нагрузка на двигатель,
  • плавность езды.
  • высокая стоимость коробки и ее ремонта,
  • можно поставить только на маломощный двигатель.

Обратите внимание, в нашем курсе “Автомобильные основы” на базе LCMS ELECTUDE КПП уделяется огромное внимание. При этом доступны учебные материалы для обучающихся всех уровней:

  • базовый,
  • продвинутый,
  • специалист.
Огромное внимание уделяется не только теоретической части, но и оттачиванию навыков, выполнению сервисных операций.

Дополнительную информацию вы можете посмотреть непосредственно в модулях LCMS LCMS ELECTUDE — платформе для обучения автомехаников, автомехатроников, автодиагностов.

Коробки передач для роботов из пластика

Зубчатые передачи robolink®
Компактные зубчатые передачи igus® GmbH исключительно легкие и эффективные. Они обеспечивают высокие передаточные числа, точные вращательные движения и быстрое изменение направления. Они работают практически без зазоров и отличаются очень тихой и плавной работой.
В ассортименте продукции igus® GmbH есть зубчатые передачи robolink® двух размеров. Коробка передач 100 г типоразмера 17 имеет передаточное число 28: 2.Коробка передач типоразмера 20 весит 290 г и имеет передаточное число 38: 1.
Основными компонентами зубчатого колеса деформации являются генератор вала, гибкое кольцо вала с наружными зубьями и жесткое внешнее кольцо с внутренними зубьями. Кольцо вала имеет на два зубца меньше наружного кольца. Вал генератора представляет собой деталь эллиптической формы внутри кольца вала. Кольцо вала изготовлено из износостойкого высокопрочного пластика iglidur®. Таким образом, он может принимать форму валогенератора и выступать в двух противоположных точках.Если валогенератор приводится в движение двигателем, выступ перемещается по окружности кольца вала. Создается циркулирующая эллиптическая деформация кольца вала. В области концевых точек длинной эллиптической оси внешнее зубчатое зацепление кольца вала входит в зацепление с внутренними зубьями наружного кольца. Из-за разного количества зубцов внешнее кольцо поворачивается на угол, который два соседних зуба образуют со средней точкой внешнего кольца, и это происходит каждый раз, когда валогенератор вращается.

Червячные передачи robolink®
Ассортимент продукции igus® GmbH включает большой выбор червячных передач robolink®. Помимо стандартных моделей и недорогих типов, есть особенно высококлассные устройства. В каждой категории предлагаются симметричные и асимметричные коробки передач для роботов типоразмеров 20, 30 и 50.
Червячные передачи очень эластичны и производят очень мало шума. Также есть самоблокирующиеся версии. В этом случае движение возможно только через приводной вал.Если вращение приводного вала прекращается из-за того, что находящийся там компонент все еще движется, редуктор робота останавливается.
В червячных передачах robolink® двигатель приводит в движение винтовой червяк. Червяк представляет собой вал с резьбой. В эту резьбу входит косозубая шестерня (червячная передача). Контакт между червячной резьбой и зубчатым колесом включает линейное и одновременное зацепление нескольких зубцов. Это причина исключительной устойчивости червячных передач robolink®.
Во время работы червяк подвергается воздействию высоких осевых сил и напряжения изгиба.Материал, используемый igus® GmbH, был выбран с учетом особых требований к нагрузке в этом случае. Используемые червячные валы изготовлены из высококачественной пластмассы iglidur® или твердо анодированного алюминия.

Коробка передач | Урок | Академия роботов

Практически все электродвигатели используются вместе с редукторами. Причина этого в том, что электродвигатели развивают относительно низкий крутящий момент. Они не особо сильные. Однако они способны очень и очень быстро вращаться. Таким образом, мы можем использовать коробку передач, чтобы найти компромисс между скоростью и крутящим моментом.Конечно, бесплатного обеда не бывает, а коробка передач вносит некоторую неэффективность, есть некоторую потерю мощности. Эта потеря мощности связана с тепловым и акустическим шумом.

Если вы используете велосипед, вы, вероятно, хорошо знакомы с концепцией передачи. Электродвигатели могут вращаться очень-очень быстро, но они не развивают большой крутящий момент, они слабые.

Теперь это немного похоже на езда на велосипеде в гору. Вы хотите изменить большое количество оборотов педалей, чтобы уменьшить нагрузку, которую вы должны оказывать на эти педали.Вы жертвуете большой скоростью ради большого крутящего момента.

Для электродвигателя это то же самое, что и для велосипеда, у вас есть маленькая звездочка спереди на педалях, а у вас есть звездочка большего размера на заднем колесе. Таким образом, на каждый оборот электродвигателя приходится только половина оборота выходного вала редуктора двигателя. Таким образом, двигатель вращается довольно быстро, выходной вал вращается довольно медленно, но крутящий момент двигателя увеличивается за счет передаточного числа.

Вот двигатель с одноступенчатым редуктором. Мы называем это редуктором, потому что за каждый оборот двигателя выходной вал поворачивается меньше одного раза. Когда мы говорим о двух сторонах коробки передач, мы называем ее стороной двигателя, которая обозначена индексом M, а сторона нагрузки — индексом L. Передаточное число коробки передач — заглавная G, и это соотношение числа зубьев на зубчатом колесе. большое колесо к числу зубцов на маленьком колесе. А для понижающей коробки G больше единицы.

Выходная скорость омега L равна 1 на G, умноженном на омега N. Таким образом, скорость выходного вала ниже скорости двигателя. Выходной крутящий момент tau L равен G, умноженному на крутящий момент двигателя tau M, поэтому выходной крутящий момент больше крутящего момента двигателя. Это фундаментальные уравнения, описывающие характеристики коробки передач. Он снижает скорость и увеличивает крутящий момент.

Планетарный роботизированный редуктор с нулевым люфтом, серия GPL

Роботизированная планетарная коробка передач

GAM серии GPL сочетает в себе самый низкий люфт и высокую жесткость при опрокидывании с безвибрационным движением для плавного, контролируемого движения в робототехнике и управлении движением.

Характеристики

  • Люфт ≤ 0,1 угл. Мин. (6 угл. Сек.) , в 10 раз лучше, чем у других прецизионных редукторов
  • Лучшая на рынке жесткость на кручение для ≤ 0,6 угл. Мин. Без холостого хода
  • Запатентованная конструкция гарантирует, что люфт не увеличится на в течение срока службы коробки передач
  • Проверенная производительность, признанная в отрасли
  • Семь типоразмеров с номинальным выходным крутящим моментом от 445 до 3505 Нм и передаточным числом от 50: 1 до 200: 1
  • Фланцевый выход со сплошным валом (GPL-F) или фланцевый выход с полым валом (GPL-H) (сквозное отверстие до 75 мм)
  • Встроенная пластина адаптера двигателя , готовая к установке двигателя
  • Доступен георадар под прямым углом
  • Заменяет двигатели с прямым приводом со значительной экономией средств

Конструкция коробки передач

Серия GPL состоит из трех этапов:

  1. Цилиндрическая шестерня и шестерня : высокие передаточные числа и тихая работа
  2. Планетарная шпора : фиксированное передаточное число
  3. Коническая шпора : за весь срок службы без люфта

Особенности и преимущества

Характеристики Преимущества
Нулевой люфт ≤ 0.1 угл. Мин.
Не увеличивается в течение срока действия GPL
Высочайшая точность для вашего применения
Наименьший потерянный ход ≤ 0,6 угл. Мин. Превосходная точность даже при низком крутящем моменте
Расчетный срок службы 20000 часов эксплуатации Продлевает срок службы, снижает затраты на техническое обслуживание
Высокая жесткость при опрокидывании и скручивании Лучшая двухточечная точность
Самый низкий уровень вибрации Превосходное управление для приложений непрерывного движения
Самый низкий момент отрыва Лучшая управляемость, особенно на коротких дистанциях
Максимальный КПД на всех скоростях> 90% Более короткое время цикла и более низкая температура
Самый низкий уровень шума <65 дБ Может работать в непосредственной близости от операторов
Самая низкая рабочая температура Компоненты с увеличенным сроком службы и возможен режим работы S1
Выходная сторона полностью закрыта Более простой монтаж, дополнительное уплотнение не требуется

Редукторы — поиск деталей для роботов

Планетарный поворот на 180 градусов
AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro 1 Двигатель Планетарный ввод Versa 1 Скорость Шкив 2: 1 VEXproWest Coast Products
2 Шаровая манетка CIM
CIM, Mini CIM 2 двигателя 1/2 «шестигранник 2 скорости Шпора 3.67: 1, 5,39: 1, 6,6: 1, 8,33: 1, 9,17: 1, 11,73: 1, 12,26: 1, 15: 1, 20,83: 1, 26,67: 1 Робот SpaceVEXproWest Coast Products
3 Шаровая муфта CIM
CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 2 скорости Шпора 2,83: 1, 4,17: 1, 5: 1, 6,13: 1, 7,08: 1, 7,5: 1, 9,01: 1, 9,07: 1, 10,42: 1, 11,03: 1, 13,5: 1, 15,32: 1, 18,75 : 1, 19.61: 1, 24: 1, 26.04: 1, 33.33: 1 Робот SpaceVEXproWest Coast Products
57 Спорт
AM 9015, AM RedLine, NeveRest, RS-550, RS-775, RS-775pro 1 Двигатель 1/2 «шестигранник 1 Скорость Планетарный 4: 1, 12: 1, 16: 1, 20: 1, 36: 1, 48: 1, 64: 1, 80: 1, 100: 1 ЭндиМарк
Привод Armabelt
RS-775, RS-775pro 1 Двигатель Планетарный ввод Versa 1 Скорость Шкив 1.1: 1, 1.8: 1, 3: 1, 3.4: 1, 4.5: 1, 5.6: 1, 5.7: 1, 7.5: 1, 8: 1, 9: 1, 9.4: 1, 10.2: 1, 11.4: 1, 12: 1, 13.2: 1, 13.6: 1, 15: 1, 16.9: 1, 17: 1, 18.2: 1, 18.8: 1, 21: 1, 22.6: 1, 22.7: 1, 23.9: 1, 27: 1, 28.2: 1, 28.4: 1, 30: 1, 30.1: 1, 30.7: 1, 31.8: 1, 34.1: 1, 36: 1, 37.6: 1, 39.5: 1, 39.8: 1, 40.9: 1, 45: 1, 45.4: 1, 47.1: 1, 48: 1, 50.8: 1, 51.1: 1, 52.7: 1, 55.7: 1, 56.5: 1, 56.8: 1, 60: 1, 63: 1, 65.9: 1, 67.8: 1, 71.6: 1, 75: 1, 75.3: 1, 79.5: 1, 81: 1, 84: 1, 84.7: 1, 90: 1, 92: 1, 92.2: 1, 94.1: 1, 102,2: 1, 105: 1, 108: 1, 113,6: 1, 118,6: 1, 120: 1, 131.7: 1, 135: 1, 147: 1, 150: 1, 152.4: 1, 169.4: 1, 188.2: 1, 189: 1, 210: 1, 243: 1, 270: 1, 300: 1 Армабот
CIM Sport
CIM, Mini CIM 1 Двигатель 1/2 «шестигранник 1 Скорость Планетарный 4: 1, 12: 1, 16: 1, 20: 1, 36: 1, 48: 1, 64: 1, 80: 1, 100: 1 ЭндиМарк
CIM-ile
AM 9015, RS-550, RS-775, RS-775pro 1 Двигатель 8 мм (CIM Style) 1 Скорость Шпора 9.29: 1, 12.29: 1 Робот SpaceVEXproWest Coast Products
CIMple Box
CIM, Mini CIM 2 двигателя 1/2 «Круглый 1 Скорость Шпора 4,67: 1 ЭндиМарк
DeCIMate
AM Красная Линия 2 двигателя 1/2 «шестигранник 1 Скорость Шпора 3,75: 1 ЭндиМарк
Двойной 775 Спорт
AM Redline, RS-775, RS-775pro 2 двигателя 1/2 «шестигранник 1 Скорость Планетарный 13: 1, 39: 1, 52: 1, 65: 1, 117: 1, 156: 1, 208: 1, 260: 1, 325: 1 ЭндиМарк
EVO
CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник, 1/2» круглый 2 скорости Шпора 4.77: 1, 5,45: 1, 6: 1, 6,86: 1, 7,56: 1, 8,63: 1, 9,54: 1, 10,86: 1, 12: 1, 12,41: 1, 15,11: 1, 16,37: 1, 18,71: 1, 21,72: 1, 22,67: 1, 25,9: 1, 32,74: 1, 45,33: 1 ЭндиМарк
Переключатель EVO для RedLine
AM Красная Линия 2 двигателя, 3 двигателя, 4 двигателя 1/2 «шестигранник 2 скорости Шпора 13,58: 1, 28,33: 1 ЭндиМарк
EVO Slim для RedLine
AM Красная Линия 2 двигателя, 3 двигателя, 4 двигателя 1/2 «шестигранник 1 Скорость Шпора 13.58: 1, 17.71: 1, 20.46: 1, 28.33: 1 ЭндиМарк
Hex PG Series
AM 9015, RS-775, RS-775pro 1 Двигатель 1/2 «шестигранник, 3/8» шестигранник 1 Скорость Планетарный 27: 1, 71: 1, 188: 1 ЭндиМарк
Коническая коробка LJ
CIM, Mini CIM 1 Двигатель 1/2 «шестигранник, 3/8» шестигранник 1 Скорость Фаска 1: 1, 2: 1 ЭндиМарк
NeveRest Orbital 20
NeveRest 1 Двигатель 6мм D 1 Скорость Планетарный 19.2: 1 ЭндиМарк
Планетарное устройство NeveRest
NeveRest 1 Двигатель 6мм D 1 Скорость Планетарный 3,7: 1 ЭндиМарк
NeveRest Sport
NeveRest 1 Двигатель 5 мм шестигранник, 6 мм D 1 Скорость Планетарный 4: 1, 16: 1, 20: 1, 64: 1, 81: 1, 104: 1, 256: 1 ЭндиМарк
NeveRest Spur
NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 20: 1, 40: 1, 60: 1 ЭндиМарк
PG188
AM 9015, RS-775, RS-775pro 1 Двигатель 10 мм 1 Скорость Планетарный 188: 1 ЭндиМарк
PG27
AM 9015, RS-775, RS-775pro 1 Двигатель 10 мм 1 Скорость Планетарный 27: 1 ЭндиМарк
PG71
AM 9015, RS-775 1 Двигатель 10 мм 1 Скорость Планетарный 71: 1 ЭндиМарк
PI SS CIM
CIM, Mini CIM 2 двигателя 1/2 «шестигранник 1 Скорость Шпора 12.05: 1, 15.5: 1, 17.8: 1 Plummer Robotics
PI SS Triple CIM
AM Redline, RS-775, RS-775pro 2 двигателя, 3 двигателя 1/2 «шестигранник 1 Скорость Шпора 25,8: 1, 29,6: 1, 40,5: 1 Plummer Robotics
PicoBox Duo
NeveRest 2 двигателя 6мм D 1 Скорость Шпора 1: 1, 1: 1.28, 1.28: 1 ЭндиМарк
PicoBox GEO
Орбитальный мотор-редуктор NeveRest 2 двигателя 6мм D 1 Скорость Шпора 1: 1, 1: 1,28, 1,28: 1 ЭндиМарк
PicoBox LEO
Орбитальный мотор-редуктор NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 1: 1, 1: 1,28, 1,28: 1 ЭндиМарк
PicoBox MEO
NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 1: 1, 1: 1.28, 1.28: 1 ЭндиМарк
PicoBox Turbo
NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 1: 1, 1: 1,28, 1,28: 1 ЭндиМарк
PicoBox Twin Turbo
NeveRest 2 двигателя 6мм D 1 Скорость Шпора 1: 1, 1: 1,28, 1,28: 1 ЭндиМарк
PicoBox Uno
NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 1: 1, 1: 1.28, 1.28: 1 ЭндиМарк
RAW Box
CIM, Mini CIM 2 двигателя 1/2 «шестигранник 1 Скорость Червячная передача 7,1: 1, 14,2: 1 ЭндиМарк
Угловой привод
AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro 1 Двигатель 3/8 дюйма, шестигранник 1 Скорость Фаска 1: 1 Армабот
МОМ Rocketbox
CIM, Mini CIM 2 двигателя 1/2 «шестигранник 1 скорость, 2 скорости Шпора 5.95: 1, 7.31: 1, 8.45: 1, 10.71: 1, 12.71: 1 ЭндиМарк
Редуктор с одинарным редуктором
CIM, Mini CIM 1 Двигатель 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник 1 Скорость Шпора 5: 1, 5,38: 1, 6: 1, 6,55: 1 Робот SpaceVEXproWest Coast Products
Односкоростной, двойной редуктор
CIM, Mini CIM 2 двигателя 1/2 «шестигранник 1 Скорость Шпора 4.17: 1, 5,67: 1, 9,52: 1 Робот SpaceVEXproWest Coast Products
Односкоростной, одинарный редуктор
CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 1 Скорость Шпора 5,33: 1, 6: 1, 7: 1 Робот SpaceVEXproWest Coast Products
Звуковой переключатель
CIM, Mini CIM 2 двигателя 1/2 «шестигранник, 1/2» круглый 2 скорости Шпора 3.7: 1, 4,7: 1, 5,8: 1, 6: 1, 7,3: 1, 7,5: 1, 9,4: 1, 11,8: 1, 14,8: 1, 18,6: 1, 24: 1, 30: 1 ЭндиМарк
SpinBox
CIM, Mini CIM 1 Двигатель 1/2 «Круглый 1 Скорость Шпора 1: 1,21, 1: 1,67 ЭндиМарк
SR Тонкий
CIM, Mini CIM 2 двигателя 1/2 «Круглый 1 Скорость Шпора 5: 1, 5: 45: 1 221 Робототехнические системы
SR Slim Triple
CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «Круглый 1 Скорость Шпора 5: 1, 5: 45: 1 221 Робототехнические системы
Super Shifter
CIM, Mini CIM 2 двигателя 1/2 « 2 скорости Шпора 6: 1, 9.4: 1, 24: 1 ЭндиМарк
Super Sonic Shifter
CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 2 скорости Шпора 4,5: 1, 11,4: 1 ЭндиМарк
Односкоростная трансмиссия SuperLight
CIM, Mini CIM 2 двигателя 1/2 «Круглый 1 Скорость Шпора 5,95: 1, 6.94: 1, 7,14: 1, 8,45: 1, 9,87: 1, 10,71: 1, 12,5: 1, 12,75: 1, 14,88: 1 221 Робототехнические системы
Трансмиссия SuperLight SuperShifter
CIM, Mini CIM 2 двигателя 1/2 «Круглый 2 скорости Шпора 3,7: 1, 4,7: 1, 5,8: 1, 6: 1, 7,3: 1, 7,5: 1, 9,4: 1, 11,8: 1, 14,8: 1, 18,6: 1, 24: 1, 30: 1 221 Робототехнические системы
TB3, 3-ступенчатый Toughbox
CIM, Mini CIM, RS-550 2 двигателя 1/2 «Круглый 1 Скорость Шпора 33.8: 1, 42,8: 1, 51: 1 ЭндиМарк
Toughbox
CIM, Mini CIM 2 двигателя 1/2 «Круглый 1 Скорость Шпора 5,95: 1, 6,94: 1, 8,45: 1, 9,87: 1, 10,71: 1, 12,5: 1, 12,75: 1, 14,88: 1 ЭндиМарк
Toughbox Micro
CIM, Mini CIM 1 Двигатель 1/2 «шестигранник 1 Скорость Шпора 5.95: 1, 8,45: 1, 10,71: 1, 12,75: 1 ЭндиМарк
Toughbox Mini
CIM, Mini CIM 2 двигателя 1/2 «шестигранник, 1/2» круглый 1 Скорость Шпора 5,95: 1, 8,45: 1, 10,71: 1, 12,75: 1 AndyMarkStudica
VersaDM
AM Redline, СУМКА, RS-550, RS-775, RS-775pro 2 двигателя Планетарный вход Versa, 1/2 дюйма, шестигранник, 3/8 дюйма, шестигранник, 8 мм (стиль CIM) 1 Скорость Фаска 1: 1, 3.75: 1, 5,33: 1 VEXWest Coast Products
VersaPlanetary
AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro 1 двигатель, 2 двигателя 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник, 8 мм (стиль CIM) 1 Скорость Планетарный 3: 1, 4: 1, 5: 1, 7: 1, 9: 1, 10: 1, 12: 1, 15: 1, 16: 1, 20: 1, 21: 1, 25: 1, 27 : 1, 28: 1, 30: 1, 35: 1, 36: 1, 40: 1, 45: 1, 49: 1, 50: 1, 63: 1, 70: 1, 81: 1, 90: 1 , 100: 1 Робот SpaceVEXproWest Coast Products
Планетарный привод Versa, 90 градусов
VersaPlanetary 1 Двигатель 1/2 «шестигранник, 3/8» шестигранник 1 Скорость Фаска 1: 1 VEX
VersaPlanetary Lite
AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro 1 двигатель, 2 двигателя 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник, 8 мм (стиль CIM) 1 Скорость Планетарный 3: 1, 4: 1, 5: 1, 7: 1, 9: 1, 10: 1, 12: 1, 15: 1, 16: 1, 20: 1, 21: 1, 25: 1, 27 : 1, 28: 1, 30: 1, 35: 1, 36: 1, 40: 1, 45: 1, 49: 1, 50: 1, 63: 1, 70: 1, 81: 1, 90: 1 , 100: 1 Робот SpaceVEXWest Coast Products
WCP DS
CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 2 скорости Шпора 3.53: 1, 3,8: 1, 4,12: 1, 4,4: 1, 4,49: 1, 4,74: 1, 5,13: 1, 5,6: 1, 6,25: 1, 6,73: 1, 7,29: 1, 7,95: 1, 12,85: 1, 13,85: 1, 15: 1, 16,36: 1 Робот SpaceVEXproWest Coast Products
WCP SS
CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 1 Скорость Шпора 4,2: 1, 4,29: 1, 4,52: 1, 4,9: 1, 5,23: 1, 5,35: 1, 5,64: 1, 6,11: 1, 6,67: 1, 7,44: 1, 8,01: 1, 8,68: 1, 9,45 : 1, 9,64: 1, 10,38: 1, 11,25: 1, 12.27: 1, 15.31: 1, 16.48: 1, 17.86: 1, 19.48: 1 Робот SpaceVEXproWest Coast Products

Высокоточный редуктор для робототехники Melior Motion

Прецизионные редукторы с низким люфтом:


Узлы PSC-V / H-E серии meliormotion®

Melior Motion предлагает высокоточные редукторы, которые при люфте ≤ 0,1 угл. Мин. Считаются беззазорными. Благодаря нашему запатентованному решению для регулирования износа мы гарантируем, что он не изменится в течение всего срока службы.

Прецизионные редукторы с низким люфтом — эффективные и надежные

Большую безопасность в вашем применении обеспечивают редукторы с низким люфтом благодаря высокой мощности, ускорению и моментам аварийной остановки. Наша серия коробок передач отличается исключительно высокой жесткостью на опрокидывание и скручивание. Это обеспечивает точное позиционирование прямо к точке.

Коробки передач и элементы привода

Наши прецизионные редукторы с низким люфтом достигают особенно высокого уровня производительности благодаря одновременному включению нескольких зубьев (солнечная шестерня, планетарная шестерня и коронная шестерня).КПД> 90% и чрезвычайно низкий момент отрыва обеспечивают выдающуюся энергоэффективность. Благодаря высокому КПД температура трансмиссии остается постоянно низкой, что продлевает срок службы сальников, компонентов трансмиссии и смазки.

Результат — впечатляющий срок службы — 20 000 часов. Это намного больше, чем возможно с другими конструкциями прецизионных редукторов, и это было подтверждено многочисленными испытаниями.

В то же время уникальная конструкция нашего прецизионного редуктора с низким люфтом обеспечивает чрезвычайно тихую работу.Таким образом снижается уровень шума в рабочей среде.

Не только тихие, но и точные, узлы эффективно работают даже при низком крутящем моменте, что позволяет точно контролировать небольшие движения.

Редукторы с полым валом для прокладки кабеля

Полые валы диаметром до 75 мм позволяют, например, прокладывать линии передачи данных или питания.

Конструкция шестерен в наших продуктах позволяет использовать стандартные трансмиссионные масла, а также подходит для использования со смазкой, совместимой с пищевыми продуктами.
Подузлы PSC-V / H-E также подходят в качестве высокоточных редукторов с выходным фланцем для ваших узкоспециализированных применений.

  • Диапазон крутящего момента 400 — 4500 Нм
  • Наружный диаметр 180-329 мм
  • Диапазон соотношений: 35: 1 — 200: 1

Подузлы PSC-V / H-E


Комплексная конструкция

Подузлы PSC обычно используются в робототехнике, где соединение с двигателем может быть включено в конструкцию манипулятора робота для оптимизации пространства и затрат.
Другие области применения этого варианта конструкции можно найти в автоматизации, станках, полиграфической промышленности, упаковочных машинах, поворотных столах, медицинской технике и т. Д.

Harmonic Drive — Руководство по выбору шестерен для робототехники

Постоянное давление на инжиниринговые компании с целью снижения затрат, повышения эффективности и повышения рентабельности инвестиций (ROI) подталкивает многих бизнес-лидеров к рассмотрению альтернатив системам двигателей с прямым приводом в виде различных решений с механической трансмиссией.Хотя зубчатые передачи могут предлагать простоту, экономичность и гибкость, не всегда ясно, какой тип настройки лучше всего использовать. Здесь Грэм Макрелл, управляющий директор Harmonic Drive UK, исследует и критикует четыре основных типа передач.

Нет сомнений в том, что зубчатые передачи играют решающую роль в мире, в котором мы живем. От крупномасштабного глубоководного бурения нефтяных и газовых скважин и промышленного производства по всему миру до небольших приложений, таких как конвейерная лента на кассовых станциях в вашем регионе. супермаркет и даже крошечная коробка передач в дворниках вашего автомобиля, шестерни бесценны.


Поэтому неудивительно, что, если не учитывать кратковременный спад во время финансового кризиса 2009 года, мировой рынок коробок передач и мотор-редукторов в последнее десятилетие рос из года в год. Недавнее исследование Frost & Sullivan показало, что в 2013 году рынок получил выручку в размере 12,8 млрд долларов и, отчасти благодаря продолжающимся инновациям в ветроэнергетике, по оценкам, к 2017 году достигнет 15,67 млрд долларов.

В настоящее время рынок ориентирован на азиатско-тихоокеанский регион.Однако замедление роста китайской экономики из-за перепроизводства в последние годы, в дополнение к растущему спросу на высокоточные зубчатые передачи для вещания и авиакосмической промышленности, должно обеспечить рост в регионах Северной Америки и Европы.

Технология зубчатой ​​передачи
Хотя сейчас есть множество электрических конфигураций на выбор, так было не всегда. До широкого распространения электрических инноваций в технологии асинхронных двигателей и появления приводов с регулируемой скоростью (VSD) регулирование выходной скорости системы осуществлялось с помощью зубчатых колес.

Это означает, что конечная выходная скорость типичного двигателя с короткозамкнутым ротором, работающего со скоростью 1440 об / мин, может быть уменьшена по мере необходимости путем изменения передаточного числа редуктора. Это увеличивает гибкость, позволяя использовать один и тот же двигатель для различных скоростей без преобразователя частоты.

Теперь, конечно, можно управлять скоростью двигателя с помощью частотно-регулируемых приводов, однако привод не может заменить шестерни другие ключевые преимущества, умножение крутящего момента и согласование момента инерции, что позволяет относительно небольшому двигателю малой мощности перемещаться и точно управлять большим нагрузки, что снижает эксплуатационные расходы и общий вес и размер машины.

Цилиндрическая зубчатая передача
Попросите ребенка нарисовать шестерню, и вы получите прямозубую шестерню, диск с радиально выступающими зубьями. Цилиндрические зубчатые колеса, используемые во всем: от стиральных машин, автомобилей и часов до промышленных отрезных станков и электростанций, дешевы и просты в установке. Они обладают хорошей эффективностью передачи мощности и постоянным передаточным числом, с возможностью передачи большого количества энергии, до 50 000 кВт.

Для тех, кто использует этот базовый тип зубчатой ​​передачи и близкую к ней косозубую шестерню, следует учесть несколько соображений.Обычно эти шестерни имеют значительный люфт, и хотя они могут быть оснащены компенсацией люфта, эта точность не сохраняется на протяжении всего срока службы шестерни без регулировки.

Кроме того, прямозубые цилиндрические зубчатые колеса могут быть шумными на высоких скоростях, а косозубые — меньше. Кроме того, хотя они имеют возможность изменять конфигурацию, они могут занимать большую площадь, особенно при высоких передаточных числах, отчасти из-за того, что каждый отдельный вал шестерни должен поддерживаться в собственных подшипниках.

Коническая шестерня может рассматриваться в том же семействе, что и прямозубая / косозубая шестерня, а также может быть прямой или косозубой.Здесь применимы многие из вышеперечисленных соображений, хотя прямоугольный характер этой передачи может помочь в приложениях, где пространство ограничено.

Червячная передача
Так называемый, из-за движения, подобного дождевому червю, червячный привод состоит из двух частей: винтовой червячной передачи и большого прямозубого червячного колеса. Червячная передача, расположенная перпендикулярно оси вращения, представляет собой компактное решение и может быть достигнута большая одноступенчатая передача, однако большие передаточные числа страдают от низкого КПД.

Конструкция червячной передачи означает, что большой полый вал можно просверлить в центральном цилиндре червячного колеса, что облегчает прокладку кабелей и коммуникаций. С некоторыми модификациями этот тип зубчатого колеса также может обеспечивать относительно хорошую точность.

Путем увеличения давления на соприкасающиеся поверхности можно уменьшить люфт, поперечное перемещение, заметное в системе зубчатой ​​передачи. Тем не менее, это увеличивает износ зубьев, снижает эффективность и означает, что регулировка в течение эксплуатации часто необходима для поддержания точности коробки передач.

Планетарные передачи
Переходя к следующей категории, у нас есть планетарные передачи. Более известные как планетарные шестерни, они установлены таким образом, что ряд шестерен, обычно от трех до пяти, вращаются, как планеты, вокруг центральной солнечной шестерни, окруженной внешней кольцевой шестерней.

Планетарные передачи обеспечивают высокую удельную мощность, КПД более 95% и благодаря своей конструкции очень компактны. Точность может быть высокой, с минимальным люфтом до 1 угловой минуты.Комбинируя несколько ступеней зубчатой ​​передачи, можно достичь высоких передаточных чисел, при этом максимальное одноступенчатое передаточное число обычно составляет 10: 1. Планетарные шестерни обычно дороже, чем косозубые, и могут требовать большего обслуживания из-за большего количества деталей.

Для более точных применений мы разработали здесь, в Harmonic Drive, ряд планетарных шестерен. Наша линейка HPG оснащена уникальной гибкой коронной шестерней, позволяющей предварительно нагружать зацепление между планетарной и кольцевой шестернями, что увеличивает точность до одной угловой минуты, и испытания показали, что эта система предварительной нагрузки обеспечивает превосходную повторяемость во времени.

Усовершенствованный модельный ряд HPGP имеет 4 планетарных шестерни, увеличивающих крутящий момент в зависимости от размера. Наша серия HPN представляет собой более обычную шестерню с косозубой передачей для увеличения крутящего момента и снижения шума, она доступна с точностью до 5 угловых минут.

Тензорезистор
Наивысшая точность и качество — это деформационно-волновой механизм, также известный как гармонический привод. Для приложений, требующих высочайшей плотности мощности и точности, необходима волновая передача.В таких требовательных приложениях, как управление движением в радиовещании, добыча нефти и газа, робототехника, аэрокосмическая промышленность, метрология и высокоточные промышленные станки, необходимы деформационно-волновые передачи.

Тензорезистор состоит из трех частей. Внешний круговой шлиц, фиксированное кольцо с зубьями шестерни внутри, зацепляется с внутренним Flexspline, гибким кольцом с зубьями шестерни снаружи, Flexspline меньше по диаметру, чем круговой шлиц, и имеет меньше зубьев, поэтому не зацепляется без третьего компонента, эллиптический генератор волн, установленный по центру, прикрепленный к входному валу.

Деформационно-волновая передача уникальна тем, что возможны очень высокие одноступенчатые передаточные числа, от 30: 1 до 320: 1, в том же пространстве, в котором планетарная передача может достигать только передаточного числа 10: 1. Этот впечатляющий подвиг становится еще более впечатляющим благодаря сохранению компактных размеров, очень небольшого веса, нулевого люфта, небольшого количества компонентов и очень высокого уровня крутящего момента.

Центральный вал можно даже расточить, чтобы получить полый вал максимально большого диаметра на концентрической передаче. Именно эти характеристики привели к тому, что НАСА выбрало Harmonic Drive для включения в марсоход.

Подготовка к работе
Понятно, что мир шестеренок сложнее, чем кажется на первый взгляд. Правильный выбор передачи для вашего конкретного приложения может радикально изменить эффективность работы, потребление энергии и, в конечном итоге, общую стоимость владения. Это становится все более важным аспектом процесса принятия решений по мере того, как мы движемся к ориентированным на экономию средств высокоточным приложениям.

Редуктор для роботов-манипуляторов | Продукты и поставщики

  • Оценка инерции и трения сервопривода с регулируемой скоростью с использованием измерений положения

    Возможное применение SSRM включает идентификацию параметров промышленного робота-манипулятора уляторов с редукторами и последовательными упругими приводами. используется в экзоскелетах.

  • Анализ характеристик крутящего момента ультразвукового двигателя типа бегущей волны при высоком крутящем моменте нагрузки в диапазоне низких скоростей

    Когда в роботах-манипуляторах установлен двигатель, для поддерживать высокий крутящий момент на низкой скорости.

  • Конструктивные элементы машиностроения 2

    Типичной областью применения таких веломеханизмов и манипуляторов Harmonic являются приводные механизмы роботов и мотор-редукторы.

  • Inderscience Publishers — связь академических кругов, бизнеса и промышленности посредством исследований

    надежный контроль; ПИД-регуляторы; гибкие роботы; гибкие манипуляторы; Теорема Харитонова; оптимизация роя частиц; PSO; управление манипулятором; управление роботом; жесткость коробки передач; вариации конечной нагрузки; неопределенности; моделирование.

  • Разработка на основе оптимизации сверхвысокопроизводительной системы роботов для обслуживания прессов Twin Robot Xbar

    На основе этих характеристик движения цикл время работы робота-манипулятора и срок службы редукторов можно оценить.

  • Расширенная центробежная / кориолисова факторизация на основе Ньютона-Эйлера для серийных роботов-манипуляторов с редуктором и идеальными сочленениями

    Поскольку в предыдущем разделе описана общая динамика серийных роботов-манипуляторов без учета влияния исполнительных механизмов и редукторов, здесь общие отношения между шарнирными соединениями Обрисованы пространственные и пространственные эффекты исполнительного механизма.

  • Генетический алгоритм оптимальных динамических характеристик промышленных роботов на этапе концептуального проектирования

    В метод оптимизации на основе генетического алгоритма показал хорошая способность подобрать оптимальный комплект редукторов и длины рук для робота-манипулятора с тремя степенями свободы.

  • Тонкие подшипники с перекрестными роликами серии THB SX от Thb Bearings Co., Ltd, Китай

    Тонкие перекрестно-роликовые подшипники серии THB SX с высокой точностью в основном используются в манипуляторах, промышленных роботах, станках CT, редукторах скорости, коробках передач и т. Д.

  • Монтаж в промышленном производстве

    Полный робот позволяет себе следующие частичные системы растворения — направляющее устройство (рука, манипулятор), — рама, — источник питания, — система управления и программирования, — рабочий орган, — датчики, — системы защиты, — интерфейсы передачи данных.

  • Монтаж в промышленном производстве

    Робот в сборе имеет направляющее устройство • рама • источник питания • решает • управление на следующие частичные системы (рука, манипулятор) и систему программирования • концевой эффектор • датчиков • систем защиты • интерфейсов передачи данных.

  • alexxlab

    E-mail : alexxlab@gmail.com

        Submit A Comment

        Must be fill required * marked fields.

        :*
        :*