Устройство генератора и принцип действия – Устройство, принцип действия и конструкция синхронного генератора, режимы работы

  • 11.08.2020

устройство и принцип действия агрегата.

Генератор постоянного тока – это электрическая машина, производящая напряжение постоянной величины.

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции — возбуждение ЭДС во вращающемся проводнике.

Принцип работы генератора постоянного тока

устройство и принцип работы генератора постоянного токаЕсли к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан принцип работы генераторов переменного тока, являющихся братьями-близнецами машин постоянного напряжения.

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит. Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

как подключить генератор к сети домаЕсть несколько методов для решения вопроса: как подключить генератор к сети дома. Можно использовать перекидной или реверсивный рубильник, или же устанавливать агрегат с автоматической системой запуска.

Как находить возможные неисправности генераторов и чинить их — подскажет подробная инструкция.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора. Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Выясняем, как устроен агрегат

устройство генератора постоянного токаКак любая электрическая машина, генератор постоянного тока состоит из якоря и статора.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.
В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

Типы подключения электрических магнитов статора

параллельная работа генераторов постоянного токаГенераторы постоянного тока различаются по типу подключения электрических магнитов статора. Они могут быть:

  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

регулятор мощности для паяльника своими рукамиДля выбора оптимальной температуры жала инструмента вполне возможно сделать регулятор мощности для паяльника своими руками. При этом существует несколько схем сборки, у которых есть свои преимущества и недостатки.

С принципами работы симисторов познакомит эта статья. Как на таких полупроводниках собрать регулятор мощности, можно узнать тут.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная. Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков). Такие электрические машины применяются в том случае, если требуется ограничить ток короткого замыкания в нагрузке. Например, в мобильных сварочных агрегатах.
Наличие коллекторно-щеточного узла существенно усложняет конструкцию электрической машины. Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют асинхронными генераторами с выпрямительным мостом. Таковы, например, все автомобильные источники электроэнергии.

Устройство и принцип работы генератора постоянного тока на видео

Устройство, принцип действия и конструкция синхронного генератора, режимы работы

Синхронным генератором (СГ) называют устройство, выполняющее функцию трансформации механической энергии в электрическую. Принцип работы и устройство синхронного генератора достаточно просты и надежны. Такое энергетическое оборудование востребовано для использования в мобильных авторемонтных мастерских, для ремонта и обслуживания станков-качалок, спецмашин нефтегазовой отрасли, на ГЭС, ТЭС, АЭС, в транспортных системах.

Основные конструктивные элементы

Основные части синхронного генератора: неподвижная — статор, вращающаяся — ротор, представляющая собой электромагнит, и две основные обмотки.
  1. Одна обмотка статора («обмотка возбуждения») запитывается от источника постоянного тока, функцию которого выполняет электронный регулятор напряжения. Регулятор используется в генераторах с самовозбуждением. Принцип самовозбуждения основан на том, что первоначальное возбуждение осуществляется с использованием остаточного магнетизма магнитопровода СГ. При этом энергия переменного тока поступает от обмотки статора СГ. Комплекс из понижающего трансформатора и полупроводникового выпрямителя-преобразователя трансформирует ее в энергию постоянного тока.
  2. Ток, протекающий в обмотке возбуждения статора, наводит ЭДС на обмотке возбуждения якоря генератора. Статор возбудителя, как конструкционный элемент может отсутствовать, и тогда его функции выполняют постоянные магниты.
  3. Обмотка ротора, в которой индуцируется ЭДС, называется обмоткой возбуждения якоря, или якорем возбудителя.
  4. Переменное напряжение, возникающее на обмотке якоря возбудителя, выпрямляется в блоке вращающихся диодов, которые так же называются словосочетанием «диодный мост», и превращает силовую обмотку ротора во вращающийся электромагнит, который наводит ЭДС в силовой обмотке статора СГ.
  5. Силовые обмотки и обмотки возбуждения монтируются в пазы якоря и ротора.
  6. Генераторы по типу выходного напряжения делятся на одно-, или трехфазные. Основное распространение в промышленности имеют трехфазные синхронные генераторы, а в быту — однофазные.

В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.

Роторы изготавливаются явнополюсными или неявнополюсными.

  • Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
  • Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».

Определение скорости вращения

Понятие «синхронный» означает, что число оборотов находится в прямой математической зависимости от частоты тока. Эта зависимость определяется по формуле n = 60*f/p, где:

  • n — скорость вращения, об/мин;
  • f — частота, в бытовой электрической сети она равна 50 Гц;
  • p — количество пар полюсов.

Принцип работы СГ

Принцип работы синхронного генераторы: возбуждение ЭДСРабота синхронной машины в режиме электродвигателя

Принцип действия машины в режиме синхронного генератора:

  1. При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
  2. При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
  3. Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.

В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме. При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу. Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.

Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.

Устройство и принцип работы генератора переменного тока

Генератор тока— это электрическая машина, которая преобразует механическую энергию в электрическую. Они могут генерировать как постоянный, так и переменный ток.

До второй половины XX века на автотранспорте применялись генераторы постоянного тока. Затем широкое распространение получили полупроводниковые диоды, которые позволяли выпрямить переменный ток или сделать его постоянным. Поэтому и в этой сферы генераторы постоянного тока заменили более надежные и компактные трехфазные генераторы переменного тока.

В прошлой статье Я подробно рассмотрел вопросы работы электродвигателя, сейчас будут изложены общие принципы работы  и устройства генератора тока. Я не буду подробно останавливаться на машинах постоянного тока, потому что в быту, гаражах и на автотранспорте они сегодня не применяются. Они лишь широко используются в городском электротранспорте: троллейбусах и трамваях .

Принцип действия генератора тока

Генератор работает на основе закона электромагнитной индукции Фарадея— электродвижущая сила (ЭДС) индуцируется в прямоугольном контуре (проволочной рамке), вращающимся в однородном вращающемся магнитном поле.

ЭДС также возникает в неподвижной прямоугольной рамке, если в ней вращать магнит.

Простейший генератор представляет собой прямоугольную рамку, размешенную между 2 магнитами с разными полюсами. Для того что бы снять с вращающейся рамки напряжение используются токосъемные кольца.На практике же используются электромагниты, которые представляют собой катушки индуктивности или обмотки из медного провода в электроизоляционном лаке. При прохождении  электрического тока по обмоткам, они начинают обладать электромагнитными свойствами. Для их возбуждения необходим дополнительный источник тока- в автомобилях это аккумуляторная батарея. В бытовых электростанциях возбуждение при заводке происходит в результате самовозбуждения или от дополнительного маломощного генератора постоянного тока, который приводится в движение валом генератора.

По принципу работы генераторы могут быть синхронными или асинхронными.

  1. Асинхронные генераторы конструктивно просто устроены и недороги в изготовлении, более устойчивы к токам короткого замыкания и перегрузок. Асинхронный электрогенератор идеально подходит для питания активной нагрузки: ламп накаливания, электронагревателей, электроники, электрических конфорок и т. д. Но даже кратковременная перегрузка для них недопустима, поэтому при подключении электродвигателей, не электронного типа сварочного аппарата, электроинструмента и других индуктивных нагрузок- запас по мощности должен быть минимум трехкратным, а лучше четырехкратным.
  2. Синхронный генератор прекрасно подойдет для индуктивных потребителей с высокими значениями пусковых токов. Они способны в течении одной секунды выдерживать пятикратную токовую перегрузку.

Устройство генератора переменного тока

Для примера рассмотрения устройства возьмем автомобильный трехфазный генератор.

Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящий из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Оно отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимыми пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.

Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.

Бензиновый электрогенератор состоит из  двигателя и приводящего им в движение на прямую- генератора тока, который может быть как синхронного, так и асинхронного типа.

Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.

Блок автоматики и управления следит за работой электростанции и  при необходимости корректирует и защищает в аварийных ситуациях.

В более дешевых электростанциях происходит ручной запуск, а в более дорогих- автозапуск при помощи стартера и аккумуляторной батареи.

Более подробно об электростанциях Вы сможете узнать из нашей следующей статьи «Как выбрать электростанцию для дома или гаража».

Генератор постоянного тока: устройство и принцип действия

Одним из наиболее распространенных электрических устройств является генератор постоянного тока, принцип действия которого основан на таких понятиях, как электромагнитная сила и индукция. Согласно принципу обратимости электрических машин, данное устройство, в конкретных условиях, может выполнять функцию и генератора и электродвигателя.

Составные части генератора

Генератор постоянного тока состоит из двух основных частей – якоря и станины, где расположены электромагниты. На внутренней стороне станины устанавливаются сердечники полюсов, концы которых имеют полюсные наконечники. С помощью наконечников, магнитная индукция более равномерно распределяется по окружности якоря.

На сердечники надеваются катушки, входящие в состав обмотки возбуждения. Сама станина играет роль замыкающей части. Здесь расположены еще и дополнительные полюса, которые находятся между главными полюсами. Их катушки имеют последовательное соединение с якорем. Дополнительные полюса позволяют избежать появления искр на щетках коллектора, что значительно улучшает коммутацию.

Вращающаяся часть генератора называется ротором или якорем, имеющим цилиндрическую форму. Материалом для него служит листовая электротехническая сталь, толщиной до 1 мм. В пазах якоря размещена обмотка, которая соединяется в цепь с коллектором, установленным на якорном валу. Коллектор представляет собой ряд медных пластин, изолированных между собой. Коллектор взаимодействует с угольными или медными щетками, неподвижно установленными в специальных щеткодержателях.

Принцип действия

Генератор постоянного тока содержит две электрические цепи –якоря и возбуждения. С помощью постоянного тока, проходящего через цепь возбуждения и обмотку возбуждения, происходит создание основного магнитного поля.

В том случае, когда у генератора не два полюса, а четыре, то для обмотки якоря необходимо четыре щетки, попарно соединенные между собой. С помощью этих щеток обмотка разделяется на параллельные ветви, в количестве двух пар.

Когда к первичному двигателю прикладывается посторонняя механическая сила, происходит возбуждение магнитного поля и в якоре появляется электродвижущая сила. После этого, с помощью коллектора и щеток, постоянный ток уходит к внешней цепи. В этом случае устройство работает в качестве генератора. Когда к якорю и обмотке возбуждения подключается постоянное напряжение, то проходящий через обмотку электрический ток, взаимодействует с полем, создавая вращающий момент, который приводит якорь в движение. В таком варианте, генератор функционирует как электродвигатель.

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*