Устройство кислотного аккумулятора: Свинцово-кислотный Аккумулятор: как Правильно Заряжать АКБ Зарядным Устройством, Типы Восстановления Батареи, Номинальное Напряжение  – азбука импульсного заряда / Habr

  • 07.01.2021

Содержание

Свинцово-кислотный аккумулятор — Википедия

Свинцо́во-кисло́тный аккумуля́тор — тип аккумуляторов, получивший широкое распространение ввиду умеренной цены, неплохого ресурса (от 500 циклов и более), высокой удельной мощности. Основные области применения: стартерные аккумуляторные батареи в транспортных средствах, аварийные источники электроэнергии, резервные источники энергии. Строго говоря, аккумулятором называется один элемент аккумуляторной батареи, но в просторечии «аккумулятором» называют аккумуляторную батарею (сколько бы в ней не было элементов).

История

Свинцовый аккумулятор изобрёл в 1859—1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля[1]. В 1878 году Камилл Фор усовершенствовал его конструкцию, предложив покрывать пластины аккумулятора свинцовым суриком. Русский изобретатель Бенардос применил покрытие губчатым свинцом для увеличения мощности батарей, которые использовал в своих работах со сваркой.

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца (в классическом варианте аккумулятора). Проведенные в СССР исследования показали, что при разряде аккумулятора протекает как минимум ~60 различных реакций, порядка 20 из которых протекают без участия кислоты электролита[2].

Во время разряда происходит восстановление диоксида свинца на катоде

[2][3] и окисление свинца на аноде. При заряде протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца, начинается электролиз воды, при этом на аноде (положительный электрод) выделяется кислород, а на катоде — водород.

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}
Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}}

При разряде аккумулятора из электролита расходуется серная кислота и выделяется относительно более лёгкая вода, плотность электролита падает. При заряде происходит обратный процесс. В конце заряда, когда количество сульфата свинца на электродах снижается ниже некоторого критического значения, начинает преобладать процесс электролиза воды. Газообразные водород и кислород выделяются из электролита в виде пузырьков — так называемое «кипение» при перезаряде. Это нежелательное явление, при заряде его следует по возможности избегать, так как при этом вода необратимо расходуется, нарастает плотность электролита и есть риск взрыва образующихся газов. Поэтому большинство зарядных устройств снижает зарядный ток при повышении напряжения аккумулятора. Потери воды восполняют доливкой в аккумуляторы дистиллированной воды при обслуживании аккумуляторной батареи (некоторые автомобильные батареи не имеют открывающихся/отвинчивающихся пробок)[4].

Устройство

Brockhaus-Efron Electric Accumulators 6.jpg

Элемент свинцово-кислотного аккумулятора состоит из электродов и разделительных пористых пластин, изготовленных из материала, не взаимодействующего с кислотой, препятствующих замыканию электродов (сепараторов), которые погружены в электролит. Электроды представляют собой плоские решётки из металлического свинца. В ячейки этих решёток запрессованы порошки диоксида свинца (PbO2) — в анодных пластинах и металлического свинца — в катодных пластинах. Применение порошков увеличивает поверхность раздела электролит — твердое вещество, тем самым увеличивает электрическую ёмкость аккумулятора.

Электроды вместе с сепараторами погружены в электролит, представляющий собой водный раствор серной кислоты. Для приготовления раствора кислоты применяют дистиллированную воду.

Электрическая проводимость электролита зависит от концентрации серной кислоты и при комнатной температуре максимальна при массовой доле кислоты 35%[5], что соответствует плотности электролита 1,26 г/см³[6]. Чем больше проводимость электролита, тем меньше внутреннее сопротивление аккумулятора, и, соответственно, ниже потери энергии на нём. Однако, на практике в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29−1,31 г/см³, это связано с тем, что при снижении концентрации из-за разряда электролит может замёрзнуть, а при замерзании образуется лёд, который может разорвать банки аккумулятора и повреждает губчатый материал пластин.

Существуют экспериментальные разработки аккумуляторов, где свинцовые решетки заменяют пластинами из переплетённых нитей углеродного волокна, покрытых тонкой свинцовой пленкой. При этом используется меньшее количество свинца, распределённого по большой площади, что позволяет изготовить аккумулятор не только компактным и лёгким, при прочих равных параметрах, но и значительно более эффективным — помимо большего КПД, заряжается значительно быстрее традиционных аккумуляторов

[7].

В аккумуляторах, применяемых в бытовых ИБП, систем охранной сигнализации и др. жидкий электролит загущают водным щелочным раствором силикатов натрия (Na2Si2O4) до пастообразного состояния. Это так называемые гелевые аккумуляторы (GEL), имеющие длительный ресурс. Другой вариант исполнения − с пористыми сепараторами из стеклоткани (AGM), допускающими более жёсткие режимы заряда[8].

Электрические и эксплуатационные параметры

Brockhaus-Efron Electric Accumulators 6.jpg
  • Удельная предельная теоретическая энергоёмкость (Вт·ч/кг): около 133.
  • Удельная энергоёмкость (Вт·ч/кг): 30—40[9].
  • Теоретическая удельная энергоплотность (Вт·ч/дм³): 1250[10].
  • ЭДС одного элемента заряжённого аккумулятора = 2,11—2,17 В, рабочее напряжение 2 В (3 или 6 секций в итоге дают стандартные 6 В или 12 В соответственно)[2].
  • Напряжение полностью разряженного аккумулятора = 1,75—1,8 В (на 1 элемент). Ниже разряжать их нельзя[2].
  • Рабочая температура: от −40 °C до +40 °C.
  • КПД: порядка 80—90 % (по току). КПД по энергии 70-80%[11].

Эксплуатационные характеристики

  • Номинальная ёмкость, показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде малым током (1/20 номинальной ёмкости, выраженной в А·ч)[12].
  • Стартерный ток (для автомобильных аккумуляторов). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев измеряется при −18 °C (0 °F) в течение 30 секунд. Различные методики замера отличаются (главным образом, допускаемым конечным напряжением) поэтому дают различные результаты[13].
  • Резервная ёмкость (для автомобильных аккумуляторов) — характеризует время, в течение которого аккумулятор может отдавать ток 25 А до конечного напряжения 10,5 В согласно ГОСТ Р 53165-2008[14].

Эксплуатация

Ареометр может быть использован для проверки плотности электролита в каждом отдельном элементе

При эксплуатации «обслуживаемых» аккумуляторов (с открываемыми пробками на банках) на автомобиле при движении по неровной дороге неизбежно происходит просачивание электролита из-под пробок на корпус аккумулятора. Через электропроводную не высыхающую, из-за гигроскопичности, пленку электролита происходит постепенный саморазряд аккумулятора. Во избежание глубокого саморазряда необходимо периодически нейтрализовать электролит протиранием корпуса аккумулятора, например, слабым раствором пищевой соды или разведенным в воде до консистенции жидкой сметаны хозяйственным мылом. Кроме того, особенно в жаркую погоду, происходит испарение воды из электролита; также количество воды в электролите уменьшается при перезаряде аккумулятора за счёт её электролиза. Потеря воды увеличивает плотность электролита, увеличивая напряжение на аккумуляторе. При существенной потере воды могут оголиться пластины, что одновременно увеличивает саморазряд и вызывает сульфатацию батареи. Поэтому необходимо следить за уровнем электролита и при необходимости доливать дистиллированную воду.

Эти меры вместе с проверкой автомобиля на паразитную утечку тока в его электрооборудовании и периодической подзарядкой аккумулятора могут существенно продлить срок эксплуатации аккумуляторной батареи.

Работа свинцово-кислотного аккумулятора при низких температурах

По мере снижения окружающей температуры параметры аккумулятора ухудшаются, однако, в отличие от прочих типов аккумуляторов, у свинцово-кислотных аккумуляторов это снижение относительно мало, что и обуславливает их широкое применение на транспорте. Эмпирически считается, что свинцово-кислотный аккумулятор теряет ~1 % отдаваемой ёмкости при снижении температуры на каждый градус от +20 °C. То есть, при температуре −30 °C свинцово-кислотный аккумулятор покажет примерно 50 % ёмкости.

Снижение ёмкости и токоотдачи при низких температурах обусловлено, в первую очередь, снижением скорости химических реакций (закон Аррениуса). Единственным способом повышения отдаваемой ёмкости является подогрев холодной батареи, как вариант — встроенным подогревателем (6СТ-190ТР-Н).

Разряженный аккумулятор в мороз может раздуться из-за замерзания электролита низкой плотности (близкой к 1,10 г/см3) и образования кристаллов льда, что приводит к необратимому повреждению свинцовых пластин внутри аккумулятора.

Низкие температуры электролита негативно влияют на работоспособность и зарядно-разрядные характеристики аккумулятора[15]:

  • при температуре от 0 °C до −10 °C снижение зарядных и разрядных характеристик несущественно влияют на работоспособность аккумулятора;
  • при температуре от −10 °C до −20 °C происходит снижение тока в стартерном режиме и ухудшение заряда;
  • при температуре ниже −20 °C аккумуляторные батареи не обеспечивают надежного пуска двигателя и не способны принимать заряд от генератора.

Из-за большего внутреннего сопротивления, присущего современным аккумуляторам закрытого типа (т. н. «необслуживаемым», герметичным, герметизированным) при низких температурах по сравнению с обычными аккумуляторами (открытого типа), для них эти вопросы ещё более актуальны[16].

Для эксплуатации транспортных средств при очень низких температурах предназначены конструкции аккумулятора с внутренним электроподогревом

[17].

Хранение

Свинцово-кислотные аккумуляторы следует хранить только в заряженном состоянии. При температуре ниже −20 °C подзаряд аккумуляторов должен проводиться постоянным напряжением 2,45 В/элемент 1 раз в год в течение 48 часов. При комнатной температуре — 1 раз в 8 месяцев постоянным напряжением 2,35 В/элемент в течение 6—12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи, солей и плёнки электролита на поверхности корпуса аккумулятора создаёт проводник для тока между электродами и приводит к саморазряду аккумулятора, при глубоком разряде начинается преждевременная сульфатация пластин, и поэтому поверхность аккумулятора необходимо поддерживать в чистоте. Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные циклы, то есть разряд-заряд токами номинальной величины.

При подготовке аккумуляторной батареи к зимнему хранению, что актуально для автомобилей не эксплуатируемых в холодное время года специалисты старейшей лаборатории НИИАЭ рекомендуют следующие действия:

1. Правильно и до конца зарядите аккумуляторную батарею. 2. Нанесите на положительный вывод АКБ пластичную смазку (литол, солидол и т. п.), так как плёнка электролита способна абсорбировать влагу из атмосферы, что может приводить к повышенному саморазряду. 3. Хранить аккумуляторы на холоде, так как при низких температурах саморазряд намного ниже. Электролит полностью заряженного аккумулятора начинает замерзать при температуре ниже −55 С.

В случае необходимости поездки в морозы следует перенести аккумулятор в отапливаемое помещение и в течение 7—9 часов (например, за ночь) он придёт в пригодное для пуска двигателя состояние.

Износ свинцово-кислотных аккумуляторов

При использовании технической серной кислоты и недистиллированной воды ускоряются саморазряд, сульфатация, разрушение пластин и уменьшение ёмкости аккумуляторной батареи[18].

При химических реакциях в аккумуляторе образуется плохо растворимое вещество — сульфит свинца PbSO3, осаждающийся на пластинах и который образует диэлектрический слой между электролитом и активной массой. Это один из факторов, снижающих срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

  • сульфатация пластин[2], заключающаяся в образовании крупных кристаллов сульфата свинца, который препятствует протеканию обратимых токообразующих процессов;
  • коррозия электродов, то есть электрохимические процессы окисления и растворения материала электродов в электролите, что вызывает осыпание материала электродов;
  • слабая механическая прочность или плохое сцепление активной массы с электродными решётками, что приводит к опаданию активной массы[2][19];
  • оползание и осыпание активной массы положительных электродов, связанное с разрыхлением, нарушением однородности[2].

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, в домашних условиях восстановить нельзя, в литературе описаны химические растворы и прочие способы, позволяющие «десульфатировать» пластины. Простой, но чреватый полным отказом аккумулятора способ предполагает использование раствора сульфата магния[2]. Раствор сульфата магния заливается в секции, после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно банок, это может привести к замыканию элемента, поэтому обработанные банки желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства.

Вторичная переработка

Brockhaus-Efron Electric Accumulators 6.jpg Кодовый символ, указывающий на то, что свинцовые батареи могут быть вторично переработаны

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах, является токсичным тяжёлым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны для возможности его вторичного использования.

Свинец из изношенных аккумуляторов используется для кустарной переплавки, например, при изготовлении грузил рыболовных снастей, охотничьей дроби или гирь. Для безопасности из аккумулятора следует слить электролит, для нейтрализации его остатков банки заливаются раствором пищевой соды, после чего корпус батареи разрушают и извлекают свинцовые электроды, клеммы и перемычки банок. У электродов в переплавку годится только их каркас в виде решётки, прессованная в них рассыпчатая масса — смесь соединений Pb, а не металл. Перемычки и клеммы аккумулятора могут быть переплавлены целиком.[источник не указан 629 дней] Кустарное извлечение свинца из аккумуляторов серьезно вредит как окружающей среде, так и здоровью плавильщиков, поскольку свинец и его соединения с парами и дымом разносятся по всей округе[20][21].

См. также

Примечания

  1. Bertrand Gille Histoire des techniques. — Gallimard, coll. «La Pléiade», 1978, ISBN 978-2070108817.
  2. 1 2 3 4 5 6 7 8 Свинцовые аккумуляторы. Эксплуатация: Правда и вымыслы.
  3. ↑ Н. Ламтев. Самодельные аккумуляторы. Москва: Государственное издательство по вопросам радио, 1936 год.
  4. ↑ Как отрыть автомобильный аккумулятор: делаем батарею обслуживаемой (рус.), AkkumulyatorAvto.ru (2 августа 2017). Проверено 12 августа 2018.
  5. ↑ Удельная электропроводность х водных растворов серной кислоты и температурный коэффициент аt. chemport.ru. Проверено 1 июля 2018.
  6. ↑ Концентрация и плотность серной кислоты. Зависимость плотности серной кислоты от концентрации в аккумуляторе автомобиля (рус.), FB.ru. Проверено 1 июля 2018.
  7. ↑ http://auto.lenta.ru/news/2006/12/19/battery/ Американцы облегчили и уменьшили аккумуляторы
  8. ↑ Аккумуляторы для бесперебойного питания. Статьи компании «ООО Новая система». aegmsk.ru. Проверено 12 августа 2018.
  9. ↑ Свинцовый кислотный аккумулятор. Устройство и принцип действия аккумулятора. (рус.). www.eti.su. Проверено 1 июля 2018.
  10. ↑ Расчет идеального свинцового аккумулятора.
  11. ↑ Свинцовый кислотный аккумулятор. Устройство и принцип действия аккумулятора. (рус.). www.eti.su. Проверено 1 июля 2018.
  12. ↑ ГОСТ 26881-86 Методика проверки свинцовых аккумуляторов
  13. ↑ Краткий аналитический обзор существующих способов оценки ёмкости ХИТ и приборов, реализующих эти способы
  14. ↑ ГОСТ Р 53165-2008: Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия
  15. ↑ Руководство, 1983, с. 70.
  16. ↑ Железнодорожный транспорт. — 2011. № 12. — c.35.
  17. ↑ Руководство, 1983, с. 21-23.
  18. ↑ Вредные добавки к электролиту свинцовых аккумуляторов
  19. ↑ О противоречиях в теории работы свинцового кислотного аккумулятора к. т. н., проф. Кочуров А. А. Рязанский военный автомобильный институт Архивировано 20 сентября 2011 года.
  20. ↑ Отравление свинцом | ProfMedik Медицинский Портал (рус.). profmedik.ru (22 февраля 2016). Проверено 4 февраля 2017.
  21. Кочуров. http://echemistry.ru/assets/files/books/hit/statya-o-protivorechiyah-v-teorii-raboty-svincovogo-kislotnogo-akkumulyatora.pdf (рус.). Новости. Первоуральск.Ru (17 июля 2014). Проверено 4 февраля 2017.

Ссылки

Литература

  • Каштанов В. П., Титов В. В., Усков А. Ф. и др. Свинцовые стартерные аккумуляторные батареи. Руководство.. — М.: Воениздат, 1983. — 148 с.

устройство, емкость. Зарядное устройство для кислотных аккумуляторов. Восстановление кислотных аккумуляторов

Кислотные аккумуляторы характеризуются повышенным параметром стойкости. По конструкции устройства довольно сильно отличаются. Емкость кислотного аккумулятора всегда указана в инструкции. На рынке представлены модификации на 2 и 4 вывода. Показатель саморазряда у них может отличаться.

Электролит в устройствах чаще всего применяется серии КС. Выходное напряжение, как правило, не превышает 10 В. Для того чтобы более подробно разобраться в указанном вопросе, надо рассмотреть устройство кислотного аккумулятора.

Устройство аккумуляторной батареи

Стандартный аккумулятор средней емкости состоит из блока, герметичной оболочки, пластин, электролита, а также клемм. Крышки в устройствах производятся с выходным контактами. Пластины у моделей фиксируются на стойках. Некоторые модификации производятся с клапанами. Если рассматривать аккумуляторы с высокой емкостью, то у них имеется сепаратор. Указанный элемент устанавливается с перемычкой. Как правило, минусовые выводы соединяются с платинами напрямую. Непосредственно блок батареи обрабатывается каучуком.

зарядка кислотных аккумуляторов

Модификации с емкостью 8 Ач

Аккумуляторы кислотные (необслуживаемые) данного типа используются часто для компрессоров на 2 кВт. Частота в данном случае равняется минимум 30 Гц. Электролит в устройствах применяется разных серий. Проводимость напряжения у них отличается. Показатель перегрузки батарей в среднем равняется 40 А.

У некоторых модификаций установлена система защиты от перегрева. Если рассматривать устройства на две клеммы, то у них имеются проводные пластины. Сепаратор, как правило, устанавливается в нижней части блока. Камера у моделей обрабатывается смолой. Показатель герметичности в среднем колеблется в районе 85 %. Параметр саморазряда, как правило, не превышает 0.2 %.

Допустимый уровень температуры зависит от электролита. Для приводов указанные аккумуляторы подходят плохо. Также важно отметить, что современные устройства производятся с блоками рекомбинации. Процесс восстановления у них много времени не отнимает. Однако важно отметить, что стоят они на рынке довольно много.

Модели на 20 Ач

Аккумуляторные батареи на 20 Ач производятся под приводные устройства. Также модели подходят для освещения местности. На рынке представлены модификации на 2 и 4 клеммы. Перемычки в устройствах используются с различной проводимостью. Электролит чаще сего применяется с маркировкой КС202. Заряд устройства осуществляется при напряжении в 10 В. Пластины в данном случае устанавливаются в вертикальном положении.

По степени герметичности устройства довольно сильно отличаются. Блоки рекомбинации установлены не во всех модификациях. Для компрессоров малой мощности устройства подходят плохо. Параметр допустимой температуры у батарей в среднем равняется 40 градусов. Сепараторы чаще всего используются коммутируемого типа. У некоторых модификаций выходное напряжение достигает 15 В. Параметр порогового сопротивления находится в пределах 18 Ом. Срок службы устройств колеблется от 3 до 10 лет.

восстановление кислотных аккумуляторов

Аккумуляторные батареи указанной емкости используются для компрессоров на 6 кВт. В данном случае устройства выпускаются с пластинами из свинца. Многие модификации оснащаются проводными сепараторами. Положительный выход в устройствах устанавливается на крышке. Модификации с двумя клеммами обладают проводимостью на уровне 3 мк. Клапана у моделей, как правило, находятся в нижней части блока. Выходное напряжение у моделей составляет около 13 В.

Система защиты от перегрузок используется второй либо третей степени. Герметичность блоков в среднем составляет 90 %. Заряд аккумуляторных батарей осуществляется при напряжении в 4 В. Допустимый уровень температуры, как правило, не превышает 45 градусов. По плотности энергии модификации довольно сильно отличаются. Для приводных устройств модели не подходят. Диоксидные пластины в них устанавливаются редко.

Устройства на 100 Ач

Кислотные аккумуляторы на 100 Ач производятся для контрольных блоков. Для облуживания генераторов и котлов модификации подходят отлично. Допустимая температура устройств в среднем равняется 35 градусов. Современные батареи производятся с четырьмя пластинами. Система защиты от перегрузок имеется не во всех модификациях.

Уровень внутреннего сопротивления, как правило, не превышает 30 Ом. По герметичности устройства довольно сильно отличаются. Срок службы аккумуляторных батарей колеблется от 5 до 10 лет. В среднем параметр проводимости у них равняется 3 мк. Выходное напряжение, в свою очередь, составляет не менее 15 В. Электролит в устройствах используется серии КС200. Для силового оборудования батареи применяются часто. Клапана, как правило, соединены с положительными выходами.

аккумуляторы кислотные необслуживаемые

Модели с емкостью 120 Ач

Кислотные аккумуляторы на 120 Ач имеют высокую плотность энергии. В среднем проводимость у них равняется 3 мк. Показатель выходного напряжения зависит от размеров пластин. Многие модификации производятся с четырьмя клеммами. Для компрессоров на 5 кВт устройства подходят замечательно. Крышки у моделей используются герметичного типа. Допустимая температура батарей составляет около 40 градусов. Для приводов низкочастотного типа устройства подходят плохо.

Параметр герметичности, как правило, не превышает 80 %. Кислотные аккумуляторы для фонарей со свинцовыми пластинами встречаются не часто. По параметру саморазряда модели отличаются. В данном случае многое зависит от чувствительности сепаратора. Плюсовые выводы в устройствах, как правило, находятся на крышке. Плотность энергии аккумуляторных батарей — в пределах 3 %.

Аккумуляторные батареи на 150 Ач

Кислотные аккумуляторы на 150 Ач производятся с проводными сепараторами. Некоторые модификации оснащаются коммутируемыми клапанами. Пластины чаще всего изготовлены из свинца. В среднем показатель проводимости не превышает 3 мк. Выходное напряжение модификаций зависит от чувствительности сепаратора. Срок службы моделей колеблется от 3 до 10 лет.

Электролит в устройствах чаще всего применяется серии КС200. Плотность энергии — около 3 %. Блоки рекомбинации встречаются редко. Для компрессоров на 10 кВт устройства подходят замечательно. Однако важно отметить, что у некоторых моделей отсутствует выходной клапан. Показатель герметичности находится в пределах 90 %. Однако в данном случае многое зависит от торговой марки.

емкость кислотного аккумулятора

Восстановление устройств

Восстановление кислотных аккумуляторов осуществляется при помощи зарядных устройств. Указанные приборы выпускаются различной чувствительности. Параметр перегрузки в среднем равняется 20 А. Чтобы ускорить восстановление кислотных аккумуляторов используются триггеры с переходниками. Если рассматривать батареи малой емкости, то у них зарядка в среднем занимает 2 часа. Однако в данном случае важно учитывать параметры модели. Аккумуляторные батареи на 120 Ач восстанавливаются около 10 часов при среднем напряжении.

зарядить кислотный аккумулятор

Зарядные устройства Pulso BC-15860

Зарядные устройства данной серии хорошо подходят для аккумуляторных батарей емкостью до 20 Ач. Расширитель у модели применяется аналогового типа. Параметр проводимости, как правило, не превышает 3 мк. В среднем рабочая частота составляет 35 Гц. Система защиты от импульсных скачков имеется. Восстановление батарей занимает не более двух часов. Обкладка у данного зарядного устройства отсутствует. Всего в комплекте имеется два зажима. Стабилитрон у зарядного устройства указанной серии отсутствует. Если работать с батареями на 15 Ач, то выходное напряжение следует выбирать 10 В.

Особенности зарядных устройств Pulso BC-15855

Зарядные устройства представленной серии производятся с двумя зажимами. Для аккумуляторных батарей на 50 Ач модель подходит хорошо. Параметр выходного напряжения у модификации регулируется контроллером. Расширитель в устройстве применяется лучевого типа. Диодный мост имеет высокую проводимость, и сбои в системе происходят не часто. Защита от импульсных скачков есть.

Преобразователь в данном случае отсутствует. Для аккумуляторных батарей на100 Ач устройство не подходит однозначно. Демпфер у модификации применяется переменного типа. Параметр чувствительности в среднем составляет 4 мВ. В свою очередь показатель перегрузки не превышает 50 А. С моделями на две клеммы зарядное устройство для кислотных аккумуляторов работать может.

Параметры зарядных моделей Lavita 192204

Зарядное устройство представленной серии состоит и проводного расширителя. Триггер в данном случае используется электродного типа. Также важно отметить, что у модели имеется преобразователь. Зажимы установлены с фиксаторами и соединены в устройстве с выпрямителем.

Параметр проводимости модификации равняется не менее 4 мк. Перегрузка системы в среднем составляет 30 А. Для аккумуляторных батарей на 100 Ач устройство подходит замечательно. Процесс зарядки в среднем времени занимает не более 5 часов. Стабилизатор используется с фильтром. Система защиты от импульсных скачков отсутствует.

зарядное для кислотных аккумуляторов

Зарядные устройства Lavita 192212

Зарядное устройство указанной серии имеет массу преимуществ. В первую очередь важно отметить, что у модификации используется два фильтра. Расширитель стандартно установлен проводного типа. Преобразователь у зарядного устройства производителем не предусмотрен. Параметр перегрузки системы, как правило, составляет 33 А. Выпрямитель применяется с обкладкой. Для аккумуляторных батарей на 150 Ач устройство подходит хорошо. Импульсные скачки в системе наблюдаются редко. Стабилитрон применяется регулируемого типа.

Особенности зарядных устройств TESLA ЗУ-10642

Зарядные устройства указанной серии производятся с двумя расширителями. Преобразователь у них используется коммутируемого типа. В среднем проводимость модели составляет 3 мк. Для аккумуляторных батарей на 10 Ач устройство подходит замечательно. Параметр пороговой чувствительности в устройстве невысокий. Проблемы с перегрузками наблюдаются очень редко. Система защиты от скачков есть. Фильтр у зарядки используется на 12 В.

Для аккумуляторных батарей на две клеммы устройство подходит. В данном случае выходное напряжение можно регулировать. Держатели в устройствах применяются довольно широкие. Непосредственно ручка в комплекте есть. Регулятор у зарядки применяется поворотного типа. Зажимы используются без фиксаторов. Для аккумуляторов на 100 Ач устройство не подходит. Показатель перегрузки в среднем составляет 33 А. Для моделей на четыре клеммы модификация не подходит.

Параметры зарядных моделей Deltran

Указанное зарядное для кислотных аккумуляторов производится с выпрямителем. Триггер применяется с фильтрами. Для аккумуляторных батарей на 10 Ач устройство подходит хорошо. Проводимость в данном случае составляет не менее 4 мк. Допустимый уровень перегрузки равняется 30 А. Система защиты от импульсов есть. Преобразователь у зарядки отсутствует.

С аккумуляторами на 20 Ач модель используется часто. Всего у модификации есть один держатель. Фиксаторы установлены на выходных контактах. Показатель напряжения максимум равняется 20 В. Компаратор в представленной зарядке отсутствует. Зажимы используются довольно широкие. Регулятор у зарядки установлен с поворотным механиком. По габаритам модель является компактной и весит крайне мало. Селектор в устройстве применяется открытого типа.

кислотные аккумуляторы

Зарядные устройства Tenex

Зарядка данной серии подходит для аккумуляторов на 100 Ач. В данном случае расширитель используется переходного типа. Показатель выходной проводимости у модели невысокий. Проблемы с диодным мостом наблюдаются редко. Зарядка кислотных аккумуляторов на 20 Ач примерно происходит за один час. Система защиты от импульсов имеется.

Динистор у модификации используется с двумя фильтрами. Показатель предельного напряжения находится на отметке 30 В. Регулятор тока у модели есть. При необходимости можно включать циклический режим. Зарядить кислотный аккумулятор на 500 Ач можно в среднем за три часа. Проблемы с кроткими замыканиями наблюдаются не слишком часто.

Свинцово-кислотный аккумулятор — это… Что такое Свинцово-кислотный аккумулятор?

Свинцово-кислотный аккумулятор — наиболее распространенный на сегодняшний день тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: аккумуляторные батареи в автомобильном транспорте, аварийные источники электроэнергии.

История

Свинцовый аккумулятор разработал в 1859—1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля. В 1878 году Камилл Фор усовершенствовал его конструкцию, покрыв пластины аккумулятора свинцовым суриком.

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде.

Энергия возникает в результате взаимодействия оксида свинца и серной кислоты до сульфата (классическая версия). Проведенные в СССР исследования показали, что внутри свинцового аккумулятора протекает как минимум ~60 реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические)[1]

Во время разряда происходит восстановление диоксида свинца на катоде[2][1] и окисление свинца на аноде. При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода — на отрицательном.

Химическая реакция (слева направо — разряд, справа налево — заряд):

В итоге получается, что при разряде аккумулятора расходуется серная кислота из электролита (и плотность электролита падает, а при заряде, серная кислота выделяется в раствор электролита из сульфатов, плотность электролита растёт). В конце заряда, при некоторых критических значениях концентрации сульфата свинца у электродов, начинает преобладать процесс электролиза воды. При этом на катоде выделяется водород, на аноде — кислород. При заряде не стоит допускать электролиза воды, в противном случае необходимо её долить для восполнения потерянного в ходе электролиза количества.

Устройство

Brockhaus-Efron Electric Accumulators 6.jpg

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных изоляторов (сепараторов), которые погружены в электролит. Электроды представляют собой свинцовые решётки. У положительных активным веществом является перекись свинца (PbO2), у отрицательных активным веществом является губчатый свинец.

На самом деле электроды выполнены не из чистого свинца, а из сплава с добавлением сурьмы в количестве 1-2 % для повышения прочности и примесей. Иногда в качестве легирующего компонента используются соли кальция, в обеих пластинах, или только в положительных. Применение солей кальция вносит не только положительные но и много отрицательных моментов в эксплуатацию свинцового аккумулятора, например, у такого аккумулятора при глубоких разрядах существенно и необратимо снижается емкость.


Электроды погружены в электролит, состоящий из разбавленной дистиллированной водой серной кислоты (H2SO4). Наибольшая проводимость этого раствора наблюдается при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) и при его плотности 1,23 г/см³

Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 −1,31 г/см³.

Существуют экспериментальные разработки аккумуляторов где свинцовые решетки заменяют вспененным карбоном, покрытым тонкой свинцовой пленкой. Используя меньшее количество свинца и распределив его по большой площади, батарею удалось сделать не только компактной и легкой, но и значительно более эффективной — помимо большего КПД, она заряжается значительно быстрее традиционных аккумуляторов.[3]

В батареях для бытовых ИБП жидкий электролит сгущают водным щелочным раствором силикатов натрия (Na2Si2O4)жидкое стекло до пастообразного состояния.

Физические характеристики

Brockhaus-Efron Electric Accumulators 6.jpg Аккумулятор электромобиля
  • Теоретическая энергоёмкость (Вт·ч/кг): около 133.
  • Удельная энергоёмкость (Вт·ч/кг): 30-60.
  • Теоретическая удельная энергоплотность (Вт·ч/дм³): 1250.[4]
  • ЭДС заряжённого аккумулятора = 2,11 — 2,17 В, рабочее напряжение = 2 В (3 или 6 секций в итоге дают стандартные 6 В или 12 В (12 В)).[1]
  • Напряжение полностью разряженного аккумулятора = 1,75 — 1,8 В (из расчета на 1 секцию). Ниже разряжать их нельзя.[1]
  • Рабочая температура: от −40 °C до +40 °C.
  • КПД: порядка 80-90 %

Эксплуатационные характеристики

  • Номинальная ёмкость, показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде[5] малым током (1/20 номинальной емкости, выраженной в А*ч).
  • Стартерный ток (для автомобильных аккумуляторов). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев замеряется при −18 °C (0 °F) в течение 30 секунд. Различные методики[6] замера отличаются, главным образом, допускаемым конечным напряжением.
  • Резервная емкость (для автомобильных аккумуляторов). Характеризует время, в течение которого аккумулятор может отдавать ток 25А до конечного напряжения 10,5В согласно ГОСТ Р 53165-2008[7].

Эксплуатация

Ареометр может быть использован для проверки удельного веса электролита каждой секции

При эксплуатации «обслуживаемых» аккумуляторов (с открываемыми крышками над банками) на автомобиле при движении по неровностям неизбежно происходит просачивание проводящего электролита на корпус аккумулятора. Во избежание сильного саморазряда необходимо периодически нейтрализовывать электролит протиранием корпуса, например слабым раствором пищевой соды или разведенным в воде до состояния консистенции жидкой сметаны хозяйственным мылом. Кроме того, особенно в жаркую погоду, происходит испарение воды из электролита, что увеличивает его плотность, увеличивая напряжение на аккумуляторе, и может оголить свинцовые пластины. Поэтому необходимо следить за уровнем электролита и своевременно доливать дистиллированную воду.

Такие нехитрые операции вместе с проверкой автомобиля на утечку тока и периодической подзарядкой аккумулятора могут на несколько лет продлить срок эксплуатации батареи.

Свинцово-кислотный аккумулятор при низких температурах

По мере снижения окружающей температуры, параметры аккумулятора ухудшаются, однако в отличие от прочих типов аккумуляторов, свинцово-кислотные снижают их относительно медленно, что не в последнюю очередь обусловило их широкое применение на транспорте. Считается что свинцово-кислотный аккумулятор теряет ~1% ёмкости на каждый градус от +20°C. Т.е. в -30°C свинцово-кислотный аккумулятор будет иметь 50% ёмкости.

Снижение ёмкости и токоотдачи при низких температурах обусловлено, в первую очередь, ростом вязкости электролита, который уже не может в полном объёме поступать к электродам, и вступает в реакцию лишь в непосредственной близости от них, быстро истощаясь.

Не полностью заряженный аккумулятор в мороз может раздуться из-за замерзания электролита низкой плотности (близкой к 1.10)

Хранение

Свинцово-кислотные аккумуляторы необходимо хранить только в заряжённом состоянии. При температуре ниже −20 °C заряд аккумуляторов должен проводиться постоянным напряжением 2,45 В/секцию 1 раз в год в течение 48 часов. При комнатной температуре — 1 раз в 8 месяцев постоянным напряжением 2,35 В/секцию в течение 6-12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи и накипи на поверхности аккумулятора создаёт проводник для тока от одного контакта к другому и приводит к саморазряду аккумулятора,после чего начинается преждевременная сульфатизация пластин и поэтому поверхность аккумулятора необходимо поддерживать в чистоте. Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные циклы, то есть разряд-заряд токами номинальной величины.

Износ свинцово-кислотных аккумуляторов

При использовании технической серной кислоты и не дистиллированной воды, ускоряются саморазряд, сульфатация, разрушение пластин и уменьшение ёмкости аккумуляторной батареи.[8]

В результате каждой реакции образуется нерастворимое вещество — сернокислый свинец PbSO4, осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

  • сульфатация пластин[1], заключающаяся в образовании крупных кристаллитов сульфата свинца, который препятствует протеканию обратимых токообразующих процессов;
  • коррозия электродов, то есть электрохимические процессы окисления и растворения в электролите, что вызывает осыпание материала электродов;
  • слабая механическая прочность или плохое сцепление активной массы с токоотводами, что приводит к опаданию активной массы;[9][1]
  • оползание и осыпание активной массы положительных электродов, связанное с разрыхлением, нарушением однородности.[1]

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, самому починить нельзя, некоторые источники описывают химические растворы и прочие способы способные «десульфатировать» пластины. Простой но вредный для жизни аккумулятора способ предполагает использование раствора сульфата магния.[1] Раствор заливается в секции после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно батареи, что может привести к замыканию секции поэтому обработанные секции желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства. Если батарея имеет одну или несколько секций которые не работают (то есть не дают 2.17 вольта — например если корпус имеет трещины) возможно соединить две (или больше) батареи последовательно: к плюсовому контакту первой батареи подключаем плюсовой провод потребителя, к минусовому контакту второй батареи — минусовой провод потребителя, а две оставшихся контакта батареи соединяются кабелем. Такая батарея имеет суммарное напряжение работающих секций и поэтому количество работающих секций должно быть не более шести — то есть необходимо слить электролит из излишних секций. Такой вариант подходит для транспортных средств с большим моторным отсеком.

Вторичная переработка

Brockhaus-Efron Electric Accumulators 6.jpg Кодовый символ указывающий, что свинцовые батареи могут быть вторично переработаны

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах является тяжелым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

Выброшенные аккумуляторы часто используются как источник свинца для кустарной переплавки, например, в рыболовные грузила, дробь или гири. Для этого из аккумулятора сливается электролит, остатки нейтрализуются промыванием каким-либо безвредным основанием (например, гидрокарбонатом натрия), после чего корпус батареи разбивается и извлекается металлический свинец.

См. также

Примечания

Ссылки

Устройство, Эксплуатация и Принцип Работы АКБ, Обслуживание Электролита и Зарядное Устройство Для Зарядки на 6v и 12в

Щелочные аккумуляторы

Своё название щелочные аккумуляторы получили от используемого электролита. Применяется едкий калий (КОН) и едкий натрий (NaOH).  Как и другие батареи, этот тип зарядных устройств имеет свои достоинства и недостатки. Специфика работы щелочного аккумулятора делают их практически незаменимыми в ряде отраслей народного хозяйства.

Преимущества и недостатки

Аккумуляторы щелочного принципа действия отличаются:

  • Длительным сроком эксплуатации при должном обслуживании;
  • Имеют относительно небольшой вес и размеры;
  • Позиционируются с небольшим самопроизвольным разрядом;
  • Стабильной работой в условиях отрицательных t0.

Обратите внимание! Когда показатели отрицательных t0 опускаются ниже отметки – 250С, ёмкость щелочного аккумулятора с уменьшением на один градус, снижается на 0,5%.

В сравнении со свинцово-кислотной батареей – этот показатель выше в 2 раза. Хотя при низких t0, как отмечалось ранее, показатели ёмкости сокращаются.

К существующим минусам можно отнести незначительный коэффициент полезного действия (КПД), который по разным оценкам составляет от 50% до 55%. К сравнению, этот показатель у батарей кислотного принципа действия составляет 80%.

К тому же, наличие эффекта памяти неизбежно приводит к потере ёмкости. Она может появиться в случае неполной разрядки зарядного устройства.

Огорчает большой разброс рабочего напряжения зарядных элементов: 1-1,75 Вольта. Для набора показателя 12В разброс составит 10-17,5 вольта. В данном случае не избежать использования зарядного устройства для щелочного аккумулятора в целях стабилизации рабочих показателей.

На заметку. Обслуживание батарей такого типа должен выполнять квалифицированный сотрудник. Так как, в данном случае, используется электролит для щелочных аккумуляторов, который необходимо периодически менять.

Область применения

Щелочные аккумуляторы могут использоваться в качестве:

  • тяговых;
  • и стартерных устройств.

Они устанавливаются на рудничных электровозах, локомотивах, в пассажирских вагонах. Обеспечивают разные виды сигнализаций и аварийных систем энергетического снабжения.

Незаменимы при складировании продукции на складах: всевозможные погрузочные машины оснащены как раз такими акуумуляторами. Возможно применение для запуска силовых агрегатов (ДВС).

Бытовые аккумуляторные батареи

Батареи, о которых идёт речь, используются в портативной технике, домашнем и профессиональном электрическом инструменте.

Мы постоянно соприкасаемся с ними в домашних условиях. Включаем музыкальный центр, телевизор, используем пульт. Повседневно пользуемся телефонами и фотоаппаратами, где в качестве источника питания, работают пальчиковые батарейки.

Редко, но встречается, их использование в качестве стартерных устройств на грузовых автомобилях и военной технике.

Устройство щелочного аккумулятора

Устройства, работающие с использованием щелочного раствора, агрегируют:

  1. В комбинации: никель/кадмий;
  2. Или никель/металлогидрид.

В обоих случаях положительный электрод содержит гидроокись никеля (NiOOH) и добавкой графита и окиси бария, которые повышают рабочие показатели.

Графит положительно влияет на электропроводность, увеличивая её, а окись бария создаёт эффект стабильной работы.

Схема щелочного аккумулятора

На фото хорошо видно устройство продукта в разрезе. Указано, какие составляющие определяют целостность батареи.

Несколько слов о химических процессах

При разрядке гидроокись никеля + электрода вступает в активную реакцию с ионами электролита. При этой комбинации образуется Ni(OH)2 гидрат закиси никеля.

Аналогичный процесс протекает при – электроде. В данном случае получается образование гидратов окиси кадмия и железа. Разница видимых потенциалов в пределах 1,45 вольта возможна при обеспечении процесса прохождения тока по контурам внутренней и внешней сети. Это и есть принцип работы щелочного аккумулятора.

При зарядке проходит обратный химический процесс. Он заключается в следующем. При взаимодействии тока + электроды окисляются. При этом гидрат закиси никеля переходит в состояние гидроокиси этого элемента. Минусовый электрод постепенно восстанавливается. В нём образуется кадмий и железо.

Особенность происходящих процессов: вещества, выступающие в процессе электрохимических реакций, друг с другом не вступают в химические отношения, то есть, не растворяются в электролите.

В данном случае не предусмотрен расход электролита. Его плотность неизменна: всегда остаётся на прежнем уровне.

Как правильно заменить электролит

Специалисты рекомендуют замену электролита проводить через каждые 100-150 циклов.

До предполагаемой смены состава электролита необходимо разрядить аккумулятор до напряжения 1 вольт нормальным током.

Отработанный электролит следует слить. При этом сам аккумулятор нужно периодически встряхивать, чтобы удалить возможную грязь из сосуда. Затем промыть подщелочённой или дистиллированной водой, энергично встряхивая.

Вода должна к этому времени отстояться. Заливка нового продукта проводится незамедлительно. Залитый новым составом аккумулятор, оставить примерно на 120 минут и можно приступать к замеру плотности электролита. При необходимости, довести до требуемой величины и закрыть крышки.

Обратите внимание! Не рекомендуется после слива старого электролита оставлять аккумулятор сухим. Это может привести к образованию коррозии пластин!

Замена электролита потребуется при переходе в рабочий режим с t0 ниже 200С.

Характеристики щелочных аккумуляторов

Типы АКБНоминальная емкость, А-чНоминальное напряжение, ВКол-во электролита в литрах
НК-28281,250,27
НЖ-22221,250,27
НК-55551,250,45
НЖ-45451,250,45
НК-80801,250,75
НЖ-60601,250,75

В условном обозначении буквы отображают электрохимическую систему АКБ:

  • «НК» — никель-кадмиевая;
  • «НЖ» — никель-железная;
  • Цифры, идущие после букв — это номинальная ёмкость а/батарей, измеряемая в ампер-часах.

Заряд аккумуляторов и батарей щелочного принципа действия

Для подключения на зарядку однотипные продукты соединяются последовательно. Их количество регламентируется напряжением тока, а также напряжением в конце заряда. Эти показатели у рабочей а/батареи при нормальном зарядном токе должны быть в соответствии:

  • в начале заряда: 1,40В — 1.45 В;
  • в конце заряда: 1,75В — 1,85 В.

Рекомендуется применять нижеуказанный режим заряда:

  1. Нормальный вариант: заряжать 6 часов нормальным током;
  2. Усиленный вариант:12 часов нормальным током.

Он сообщается при вводе в действие, а также:

  • через каждые 10 циклов. При нерегулярной работе 1 раз в 30 дней;
  • после замены электролита;
  • после глубоких разрядов ниже допустимых конечных напряжений;
  • после разрядов слабым током, с перерывами в 16 и более часов.

Важно! Перезаряды улучшают рабочий процесс щелочных АКБ.

Никель/кадмивые и никель/железные АКБ рекомендуется заряжать слабым током. При этом, постепенно повышая время зарядки, но понижать ток более чем в 2 раза нельзя.

На заметку. Зарядка с использованием слабого тока ухудшает рабочий процесс щелочных аккумуляторов. В данной ситуации рекомендуется использование этого варианта только при возникшей необходимости.

Кроме этого, никель/железные АКБ заряжать при t0 — 10°С и ниже не рекомендуется.

Нюансы использования батарей

С момента подключения к батарее плановой нагрузки напряжение начинает быстро понижаться, примерно до значения 1,3 вольта. Далее в процессе работы снижение показателей происходит в замедленном режиме.

Рекомендация. Когда напряжение опустится до критической отметки 1(одного) вольта, необходимо приостановить работу.

Заметим, что продолжение эксплуатации батареи со значение 1 вольт и ниже неизбежно приведёт к утрате ёмкости аккумулятора.

Это в свою очередь уменьшит эксплуатационный срок. Следует внимательно относиться к системной подзарядке и контролю уровня используемого электролита.

Как правильно хранить аккумуляторы и батареи

Производитель предусмотрел выпуск готовых изделий для временного и длительного хранения. Используя новые аккумуляторы, следует в обязательном порядке проверить плотное прилегание съёмных пробок.

Обратить внимание на исправность вентильной резины. На первоначальном этапе потребуется смазать никелированные пробки и гайки а/батарей. Слой смазки должен быть минимальных размеров.

Корпус аккумуляторов в заводском исполнении покрыт черным битумно-збонитовым лаком. Предотвратить порчу нанесённого лака можно, используя в качестве смазки вещества, предусмотренные и рекомендованные производителем.

Обратите внимание, что, вазелин, как смазку, применять запрещено!

Аккумуляторам, которые ранее эксплуатировались, а теперь отправляются на длительное хранение (от 1 года и более), требуется разрядка в ток до 1,0В. Кроме этого, для правильной консервации продукта на длительный период времени необходимо:

  1. Удалить весь электролит;
  2. Закрыть плотно фиксирующие пробки;
  3. Протереть корпус и удалить, используя ветошь, пыль и остатки соли;
  4. Если на корпусе не предусмотрено ранее лаковое покрытие(изоляционный лак чёрного цвета), нанести его.

Хранение аккумуляторов

Однако аккумуляторы, переведенные в спокойное состояние (от 30 дней до года), могут находиться в полу разряженном или полностью разряженном состоянии при условии плотно закрытых пробок.

Во время длительной консервации батареи должны периодически проверяться. При обнаружении на корпусе соли, её нужно удалять.

Если батареи нужно перевезти на большие расстояния, их следует перевести в состояние длительного хранения.

Нельзя хранить вместе аккумуляторы щелочного и кислотного принципа действия. Все кислоты, так или иначе, влияют на батареи, портят их.

Аккумуляторы, где используется никель/кадмиевое соединение, в спокойном состоянии хранятся до 5 лет. Условие: они должны быть без электролита.

Срок консервации составляет в сухом закрытом помещении 4,5 года, а в полевых условиях — полгода. В этом случае, необходимо создать условия хранения, при которых исключается попадание осадков и прямых солнечных лучей.

Хранение никель/железных аккумуляторов в разряженном состоянии с удалённым электролитом в закрытом и сухом помещении составляет не более 3,5 лет.

Читаем условные обозначения: маркировка

Существуют тяговые батареи, изготовленные в различных странах. Мы же с вами рассмотрим сокращения, применяемые на отечественных изделиях.

Отечественная маркировка

Итак, если в маркировке предусмотрены буквы, идущие перед цифрами, то они указывают на число элементов используемых в батареи.

Отечественная маркировка аккумуляторов

Далее буквы, указывающие на область применения:

  • Т – тяговый тип;
  • ТП – тепловозный вариант;
  • В – вагонное назначение.

Буквы, указывающие на тип: НЖ – никель/железная батарея. И так далее.

Буква «К» указывает на комбинацию блока электродов. Буква «Ш» говорит о назначении батареи для эксплуатации в шахтах и горных выработках.

Если после букв следуют цифры – это величина номинальной ёмкости АКБ, которая выражается в А-ч. Могут ставиться буквы «П» — пластмассовый корпус, или буква «В» говорит о высоком варианте, а «М» указывает на модернизацию.

Буква «У» свидетельствует о возможности эксплуатации батареи в умеренном климате. Буква «Т» подразумевает эксплуатацию а/батареи в тропиках.

Далее прописывается ГОСТ использования: цифра 2 сигнализирует о возможности работы над землёй, а цифра 5  допускает работу под землёй.

Международная маркировка

В международной классификации буква F – это аккумулятор с использованием комбинации никель/железо. О различном режиме разрядки говорят буквы:

  • L ─ до 0,5 градусов по Цельсию;
  • M ─ (0,5─3,5) градусов по Цельсию;
  • H ─ (3,5─7) градусов по Цельсию;
  • X ─ больше 7 градусов по Цельсию.

Щелочные АКБ — продукт многофункциональный, встречающийся в различных комбинациях и применяемый в самых разных отраслях хозяйствования. Щелочной аккумулятор в 12в мы используем практически ежедневно, а  в качестве тяговых устройств их могут видеть специалисты и обслуживающий персонал.

Однако любая эксплуатация щелочного аккумулятора требует повышенного внимания и правильного обслуживания. Эти мероприятия существенно увеличивают срок службы а/батарей.

Обслуживание щелочных аккумуляторов нужно проводить в строгом соответствии с рекомендациями изготовителя. Нельзя допускать к работе неподготовленный в техническом плане персонал.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*