В каких областях применяют компьютерную диагностику – В каких областях применяют промышленных роботов, компьютерную диагностику и автоматизированные системы управления…

  • 23.09.2020

Содержание

В каких целях применяют компьютерную диагностику автомобиля?

На сегодняшний день авто оснащены разными технологиями. А, значит, время от времени нуждаются в компьютерном диагностировании, которое нужно для срочного и действенного определения фундаментальных неисправностей. Что из себя представляет это диагностирование?

Автомобильное диагностирование при помощи компьютера — процедура, с помощью которой компьютер считает коды неисправностей с основных узлов, сотрет их и в последующем исправит. При этом ему необходимо использовать сканирующие устройства и другие системы вроде мультифункциональных стендов или портативных ридеров. На сегодняшний день качественное функционирование диагностирующей техники и программного обеспечения разрешает считать и засечь мельчайшие неисправности в функционировании систем, в подчинении которых находятся важные детали.

Демонстрация данных происходит при помощи многоканального мультиметра, эта система используется в режиме реального времени. Она позволяет сразу отслеживать несколько графиков параметров, предоставляя выбор максимально комфортного вида вывода на экран. Последняя система позволяет еще и перекодировать параметры для повышения характеристик мощности автомобиля.

Например, нужно перенастроить блок управления с целью оптимизации этого блока под автомобильную комплектацию. Система откорректирует обороты холостого хода или отрегулирует топливную систему. При загрузке отдельных плагинов реально перепрограммирование электроники в согласовании со стилистикой новых моделей этой линии, а именно тех, что еще не вышли в продажу. Система работает на автомате, идентифицируя отличия, и не нуждается в ручном выставлении изначальных и конечных параметров.

В основном этот тип диагностики используется в том случае, если панель приборов сигнализирует о каких-либо неполадках, или в том случае, если владелец сам недоволен чем-то в работе своего авто и нуждается в удостоверении того, в хорошем ли виде пребывает автомобиль, и как поступать, если это не так. По-хорошему, компьютерное диагностирование должно проводиться хозяином каждый год для сокращения риска возникновения неисправностей.

Компьютерное диагностирование является действенной и новой процедурой, это детальная проверка всех систем машины, используется для того, чтобы выявить и предупредить неисправность. С ее помощью узнают, в каком виде находятся блоки управления на сегодняшний день, а также определяют состояние прочих деталей.

Как осуществляется это процесс?

Автомобильный сканер для диагностики, имеющий нешуточное программное обеспечение, подключается к бортовым системам при помощи спецразъемов. Он начинает считывание всех транслируемых автомобилем кодов, после чего их расшифровывают специалисты при помощи специализированных под это программ. После анализа считываемой системой информации, специалисты выносят заключение, в котором говорится о наличии различных неисправностей.

Сам процесс подразделяется на несколько шагов:

Диагностирование подвески. Нужно, если обнаружится неравномерный износ шин, а также стук при неаккуратных поворотах или при ходу на равномерной скорости по кривой поверхности, при обнаружении разрушения одной из осей при неаккуратном повороте, при большом ходу свободного рулевого колеса.

Диагностирование двигателя проводят при долгом прогреве последнего, возросшем использовании горючего, потерянной мощности двигателя, при обнаружении шумов…

При сравнении сегодняшней диагностики и вчерашней, сегодняшняя рассматривается как более продвинутая технология, потому что обнаруживает почти все неполадки при меньшей затрате физических сил и времени.

Применение компьютерной диагностики | Суставы в норме

Рубрика: Другие новости

Все течет и меняется в современном мире высоких технологий. Если еще лет двадцать-тридцать назад классический автомеханик – это дяденька в промасленной робе с набором гаечных ключей, то сейчас молодой человек в стерильно чистом комбинезоне с кейсом компьютерных прибамбасов. Вместо того, что бы посмотреть-послушать-понюхать, современный мастер подключает пачку разъемов и считывает поступающую информацию с монитора компьютера.

Если после проведенной диагностики, было выявлено, что автомобилю требуется замена кольца глушителя, то обратитесь в Автосервис «Altair-Auto». Официальный сайт автосервиса vash-glushitel.ru.

Что же из себя представляет процедура, называемая компьютерной диагностикой автомобиля. Это процесс считывания сигналов от автомобильных систем, сравнивание их с эталоном, и в зависимости от полученных результатов уже и назначается «лечение». Так как производители забивают основные коды практически на всех важных узлах автомашины, имеется возможность их коррекции или даже замены без долгих мучений. Для диагностики обычно используются родные дилерские сканеры, но возможно использовать и то, что есть под рукой, но в этом случае значительно возрастает возможность увеличения погрешности. К дополнительным возможностям относятся портативные ридеры, многофункциональные стенды и тому подобное. Нынешнее оборудование и нужная подборка диагностических программ позволяют увидеть любые отклонения от оптимальной работы двигателя, трансмиссии, электронного оборудования автомобиля. Вся поступающая информация поступает и обрабатывается, а затем выводится на монитор в удобном для пользователя виде( график, диаграмма, цветовая картинка, буквенно-цифровая). Наиболее продвинутые автосервисы, получившие соответствующую лицензию, имеют возможность перекодировать заводские установки, в основном это делается для увеличения мощности и скоростных характеристик в ущерб безопасности для участия в полулегальных спортивных соревнованиях.

Обычно компьютерная диагностика проводится в трех случаях: когда сам автомобиль начинает возмущаться и сигнализирует об этом сиянием самых разных пиктограмм на панели приборов, когда автолюбитель визуально обращает внимание на очевидные неполадки в работе, скажем двигателя (черный или белый дым из трубы, рывки, падение мощности, и так далее), и, как рекомендуется при ежегодном плановом осмотре на автосервисе. К тому же данная процедура совсем не помешает при покупке подержанного агрегата. Таким образом, затратив минимум средств и времени, можно получить совершенно достоверную информацию о состоянии автомобиля.

Каким образом проводится эта процедура. К основным системам авто подключается специальный сканер, который через систему датчиков считывает информацию, с помощью специализированных программ обрабатывает ее и выдает результаты. Полученная информация анализируется уже профессионалом, опять же с помощью компьютера, и только после этого выносится вердикт. Сам же процесс включает в себя несколько этапов. Это диагностика подвески. Ее необходимо проводить немедля при обнаружении следующих признаков: различное стирание протектора на колесах, посторонние шумы при поворотах или даже при равномерном движении, увеличении люфта руля. Проверка двигателя. Производится при увеличении расхода топлива, неестественном выхлопе, странных звуках в глушителе, уменьшении мощности, опережении или замедлении зажигания, дергании автомобиля. Ну и конечно, диагностика автоматической коробки передач. Производится при протечках масла, пробуксовке при начале движения, пропадании одной из передач, повышении температуры двигателя.

Как видно из вышеизложенного, часто проблемы взаимосвязаны, поэтому компьютерную диагностику нужно проводить комплексно, не ограничиваясь полумерами.

Автор: Павел Салодоев

история связи, значение и перспективы. Часть I / ua-hosting.company corporate blog / Habr

Ни для кого не секрет, что компьютерные технологии проникли практически во все аспекты современного общества: политика, оборона, развлечения, образование и многое другое. Медицина не стала исключением. Сейчас это не секрет, однако 60 лет назад все это казалось научной фантастикой.

Сегодня мы затронем прошлое, настоящее и будущее партнерства этих столь разных отраслей, медицины и компьютерных технологий. Узнаем какие революционные открытия были сделаны, какие недостатки и опасности несет в себе данное партнерство и, наконец, какое будущее медицины нас ждет.

Применение компьютерных технологий в медицине

На данный момент компьютеры приобрели широкое распространение во многих ветвях медицины. Начиная с CPOE (computerized physician order entry) — компьютеризованной системы предписаний врача (назначение анализов и/или медикаментов), заканчивая роботами-интернами, помогающими хирургам во время операций. Также не малое значение компьютеры играют и в работе клиник в целом, помогая планировать и выполнять различные административные задачи, отслеживать финансы, проводить инвентаризации и т.д.

Далеко не второстепенную роль сыграл и Интернет. Благодаря ему появилось новое направление в медицинской диагностике — телерадиология (проще говоря передача через всемирную паутину изображений и данных медицинского характера). Это новшество дало возможность анализировать данные пациента и принимать решения касательно его лечения, находясь в дали от него, тем самым экономя драгоценное время. Также врачи получили возможность быстро консультироваться со своими коллегами со всего мира. Огромная база медицинских знаний, хранимая в Интернете, доступна и пациентам, давая им возможность ознакомится со своим заболеванием, распознать симптомы, узнать нужную информацию о враче и/или клинике, о препаратах и т.д. Касательно использования Интернета пациентом ходит не мало споров. Дело в том, что доверять самому пациенту устанавливать себе диагноз и назначать лечение — крайне опасно для него самого. С другой стороны, если пациент совмещает использование информации из Интернета с посещением реального врача, это может улучшить качество его лечения.

И, возможно, самое необычное применение компьютерных технологий в медицине это видеоигры. Они используются для тренировки хирургов, которые в дальнейшем будут выполнять лапароскопические операции (когда в области проведения операции делаются небольшие надрезы для проведения операции внутри, вместо большого надреза и «открытой» операции). Исследования 2004 года показали, что хирурги, играющие в видеоигры примерно по 3 часа в неделю, допускают во время подобных операций на 37% меньше ошибок.

Хронологическая шкала взаимосвязи компьютерных технологий и медицины (1954-2006)

Год Событие Описание
1954 Компьютеризированный цитоанализатор Электронное оптическое устройство для скрининга клеток, подозреваемых в злокачественности.
1960 “Brains” IBM 650 под названием «Brains» (Мозги) — сканирование медицинских записей для выявления тонких аномалий.
1960 Опрос пациента компьютером Компьютеризированный анамнез пациента
1961 Административные и фискальные функции Внедрение компьютеров для выполнения административных и фискальных функций
1962 Анализ электрокардиограммы Электрические импульсы от сердца передавались по телефону на центральный компьютер, который создавал кривую и анализировал ее.
1963 Первая система поддержки принятия решений Внедрен компьютерный подход к реабилитации. Например, компьютер использовался для определения оптимального времени ношения гипса при хирургическом вмешательстве.
1964 IBM System/360 Выход в свет компьютеров S/360
1964 DEC PDP-8 Презентация «мини»-компьютера PDP-8
1964 MEDLARS MEDLARS — компьютеризированная система баз данных для индексации и извлечения медицинских цитат из Национальной библиотеке медицины (NLM).
1965 Идея EMR Развитие идеи электронной медицинской записи
1966 MUMPS (Massachusetts General Hospital Utility Multi-Programming System) Мульти-программная система Общеклинической больницы Массачусетса (MUMPS) — также называемая «M» — была языком программирования для отрасли здравоохранения.
1968 IMIA Международная ассоциация медицинской информатики (IMIA) была создана во Франции.
1970 Компьютеризация обработки данных из лабораторий ИСпользование компьютеров для проведения лабораторных расчетов, таких как определение химических состава околоплодной жидкости.
1971 Компьютеризированная обработка записей IBM System/3 Модель 6 был использован для обработки результатов анализов пациентов
1971 COSTAR База амбулаторных записей пациентов, написанная на языке MUMPS
1971 MEDLINE MEDLINE вышел в он-лайн
1972 MYCIN MYCIN — интерактивная экспертная система диагностики и лечения инфекционных заболеваний. Разработана в Стэнфордской медицинской школе на базе DEC PDP-10.
1972 HELP Оценка состояния здоровья посредством логического процесса — Health Evaluation through Logical Process (HELP) была разработана в больнице LDS
1974 Компьютерная томография Сканер компьютерной томографии был изобретен Хаунсфилдом и Кормаком в 1972 году (только для головы). В 1976 году — для всего тела.
1974 Компьютеризированный гамма-нож Внедрение первой компьютерной программы планирования дозы обучения для гамма-ножа (способ радиохирургического удаления опухолей головного мозга).
1974 Internist-1 Компьютерная диагностическая система, разработанная в Университете Питтсбурга.
1977 Медицинская информатика Определен термин «медицинская информатика»
1978 Fileman Набор утилит, написанный на языке MUMPS, внедривший функции метаданных
1981 IBM PC Персональный компьютер от IBM вышел в свет
1983 Сети Представление общественности нетворкинга
1984 ACMI (American College of Medical Informatics) Был создан Американский колледж медицинской информатики (ACMI).
1987 HL7 Health Level Seven, Inc. (HL7) была основана в качестве стандарта для обмена клиническими данными.
1988 MUMPS и IBM MUMPS становится языком, поддерживаемым на IBM
1989 WWW (World Wide Web) Изобретение «Всемирной паутины»
1992 Windows 3.1 Выпуск Windows 3.1
1996 Palm Pilot Выпуск Palm Pilot (карманного персонального компьютера)
1996 HIPAA (Health Insurance Portability and Accountability Act) Конгресс принял Закон о переносимости и подотчетности медицинского страхования.
1999 Хирургическая система da Vinci Эта роботизированная хирургическая система была разработана Intuitive Surgical. Прототип был появился еще в конце 1980-х годов в Стэнфордском исследовательском институте по контракту с армией США.
2000 Передача изображений Клиники начала передавать электронные копии изображений диагностического характера (рентгеновские снимки, снимки МРТ)
2001 Широкое распространение КПК В начале 2000-х годов работники здравоохранения широко использовали карманные устройства для выполнения таких задач, как доступ к медицинской литературе и электронной фармакопеи.
2003 Виртуальная колоноскопия Виртуальная колоноскопия использует комбинацию технологии КТ-сканирования и компьютерной графики.
2004 WCG IBM запустила этот проект для поиска генетических маркеров различных заболеваний.
2004 Многоточечный КТ-сканер Эта новая технология сканирования сердца может в значительной степени заменить ангиограммы.
2004 Указ №13335 Президент Буш издал этот указ под названием «Стимулы для использования медицинских информационных технологий»
2005 Penelope Был представлен миру робот-интерн
2006 Microsoft покупает Azyxxi Microsoft купила клиническое медицинское программное обеспечение, которое может извлекать и отображать различные виды данных пациента.

Электронные медицинские записи (EMR)

Еще в далеком 1960 году в газете New York Times была опубликована статья, в которой один врач из Тулейнского университета высказывал интересную мысль о «медицинских записях, хранимых на пленке, или другим подходящим для компьютера способом, которые могут полностью вытеснить письменные записи пациентов». В 1967 году в другой статье упоминалось следующее видение будущего — «каждый мужчина, женщина или ребенок могут иметь все свои медицинские данные, электронно записанные в огромной системе памяти в Вашингтоне». Пошли обсуждения преимуществ такой системы. Если, к примеру, у человека случился сердечный приступ, а он находится в другом городе. В статье дан ответ: «назначенному врачу достаточно будет позвонить в Вашингтон, и спустя секунды перед ним будут все данные этого пациента». Сейчас, спустя более полвека, мы видим как такие системы стали реальностью и широко распространились в различных медицинских учреждениях всего мира.

В добавок к преимуществу удаленного доступа к данным, EMR обладает и другими, о которых мы поговорим далее. Исходя из этих преимуществ и того факта, что идея электронных записей существует уже много десятилетий, можно подумать, что EMR используются абсолютно везде. Однако это не совсем так. К примеру, в США EMR используется только в 17% клиник.

История EMR

В конце 1960-х годов был разработан язык программирования, называемый Мульти-программная система Общеклинической больницы Массачусетса — Massachusetts General Hospital Utility Multi-Programming System(MUMPS) для использования в системах здравоохранения. Он не получил широкого распространения до 1970-х годов, когда начал использоваться для создания многих клинических программ. И по сей день многие старые системы работаю с ПО на базе MUMPS. Несмотря на свое изначально медицинское направление, MUMPS широко используется и в других отраслях, требующих большого числа одновременных подключений к базе данных (банки, фондовые биржи, туристические агенства).


В 1978 году Джозеф (Тед) О’Нил и Марти Джонсон вместе со своей командой разработали Fileman, используя язык MUMPS. Fileman представлял собой набор обобщенных процедур, специально упрощенных для пользователей не разбирающихся в MUMPS и в программировании в целом. В период с поздних 1970-ых по ранние 80-е на базе Fileman было спроектирована множество утилит. Позднее министерство по делам ветеранов США начало использовать Fileman как свою официальную медицинскую программу.

В 1981 году во Флориде Микки Сингер основал компанию программного обеспечения под названием Personalized Programming Inc., которая стала одной из многих, сформировавших в дальнейшем компанию Medical Manager Inc. Она предоставляла клиникам и частным практикующим врачам программное обеспечение, популярность которого была настолько велика, что уже к 1997 году более 24000 клиник и 110000 практикующих врачей пользовались им. Однако далее следовало лишь падение. Взамен Medical Manager Inc. пришла Open Public Public License (GPL), предоставляющая своим пользователям исходный код программного обеспечения, давая им возможность проводить необходимую кастомизацию.

На данный момент количество компаний, предоставляющих решения для EMR, варьируется от 250 до 500. Некоторые их них сосредоточены на малых системах, вроде выписки рецептов или истории болезни. Другие же предлагают пакетные решения.

Преимущества EMR

Основными пользователями EMR являются врачи и другой мед.персонал. Стандартная EMR дает им доступ к электронной версии медицинской истории пациента, которая ранее, в течении многих лет, хранилась на бумаге. Так зачем менять то, что так долго работало?

  • Ответ прост — ошибки врачей. Одной из основных проблем медицины во все эпохи были яторогенные осложнения состояния пациента, то есть те, что были ненамеренно вызваны действиями мед. персонала. К примеру, назначение не того препарата или же назначение слишком большой или малой его дозы. Электронные медицинские записи в сопряжении с системами поддержки принятия клинических решений способны обеспечить автоматические проверки, предотвращающие подобные ошибки.
  • Другое преимущество уже упоминалось в данной статье — это доступ к базе из любой точки мира. Это позволяет лучше координировать работу различных специалистов, сокращая время на рассмотрение анамнеза и принятие решения. А время, как мы знаем, очень часто является критическим фактором в борьбе за жизнь и здоровье пациента.
  • Для облегчения работы врачей и снижения временных затрат пациента на их посещение необходима также и координация EMR с другими системами, например лабораторными. Ранее пациент приходил к врачу, тот назначал ему определенные тесты / анализы, пациент шел в лабораторию, передавал назначение, делал тесты и результаты опять же записывались на бумагу и должны были быть переданы врачу. Это длительный процесс, в течении которого не редки ошибки и путаница. Начнем с классики — почерк врача может быть неразборчив, могут быть проведены не те тесты, результаты могут быть утеряны или перепутаны. Если же использовать взаимосвязь двух электронных систем, то направление и результаты будут помещены в электронную папку пациента, к которой имеется доступ у врача.


  • Этот злосчастный врачебный почерк несет много проблем и в процесс выписки препаратов. Фармацевт может неправильно прочесть либо название, либо дозировку лекарства, а это, как Вы понимаете, может иметь ужасные последствия. Электронная система выписки рецептов ликвидирует возможность такого «непонимания».
  • Немаловажным является и удобство для пациентов, поскольку им не нужно прозванивать все клиники, которые они посещали, для сбора необходимой медицинской истории. Вся она хранится в диной папке пациента.
  • Электронные записи пациентов можно (и нужно) бэкапировать, т.д. делать резервные копии. С бумажными записями это сложно, и, по правде говоря, никто этого и не делал. К примеру, после урагана Катрина было утеряно тысячи историй пациентов, а их восстановление заняло множество месяцев.
  • Чем распространеннее EMR будет в мире, тем проще будет исследователям. Огромная база данных пациентов, их симптомов и болезней, методов лечения и процесса выздоровления — все это поможет изучать те или иные заболевания, совершенствуя методы борьбы с ними.
  • В долгосрочной перспективе использование EMR это экономически выгодно. Нет необходимости тратиться на канцелярию (это мелочь, но в глобальных масштабах суммы будут велики), уменьшение числа персонала, сокращение временных затрат, а соответственно увеличение эффективности труда.

Недостатки EMR

Несмотря на весьма внушительные преимущества EMR, их скорость распространение не впечатляет. Сейчас мы рассмотрим почему.

  • Многие современные EMR несовместимы. Дело в том, что у каждой клиники имеется своя база, которая никак не работает с базой других клиник. Поскольку облегчать процесс перехода пациента к конкурентам — не выгодно, сами понимаете.
  • Большим вопросом всегда остается конфиденциальность информации. Как сделать так, чтобы лишь нужная информация попадала в руки лишь нужных людей? Как обезопасить EMR от взломов? На эти вопросы многие не хотят отвечать, просто отказываясь от внедрения электронной системы.
  • Для того, чтобы EMR была полноценной, в ней должна быть история пациентов, а не только свежие данные. Соответственно, эту историю необходимо внести в базу, а это много ручной работы, которая требует не только времени, но и финансовых затрат. На это многие клиники не готовы.
  • Сейчас формат в котором хранятся данные один, а что если в будущем он измениться? Можно ли будет получить доступ к данным? Весьма странные вопросы, согласен. Но они отпугивают клиники от внедрения EMR.

Клиническая система поддержки принятия решений (CDSS)

В этом разделе мы обсудим историю систем поддержки принятия клинических решений (CDSS), текущие исследования, коммерческую направленность и потенциально интересные области для будущих исследований.

История CDSS

  • 1960 год — пациент-компьютер

    Возможно, одним из самых ранних применений компьютеров для поддержки врачей была компьютеризированная система опроса пациентов. На создание такой системы натолкнул факт того, что врач, опрашивая пациента, часто задает не те вопросы либо забывает задать нужные. Таким образом анамнез будет неполон, а лечение менее эффективно. Соответственно, куда более результативно будет проводить формализованное анкетирование. В 1960 году этот процесс автоматизировали с использованием компьютера.

  • 1970 год — Экспертная Система

    Экспертная Система» является классическим примером системы поддержки принятия решений. В начале 70-ых исследования в области применения компьютерных технологий в медицине в основном были нацелены на процессе диагностики. Считалось, что компьютер, обладающий большой вычислительной мощностью, сможет сильно упростить процесс диагностирования. Первым таким экспертом стал MYCIN — система, разработанная в Стэнфордском университете, нацеленная на диагностику и лечение заболеваний, передающихся через кровь. MYCIN показал себя как очень точный диагност, допустив гораздо меньше ошибок чем неспециализированные врачи. Однако, применять MYCIN никто не спешил. Возникало много разных вопросов и споров. Врачи не хотели чтобы их заменили. Юристы не понимали кто будет нести ответственность за поставленный компьютером диагноз. К тому же налаживание работы данной системы было очень сложным, долгим и трудоемким процессом. Потому MYCIN остался в истории просто как очень удачный эксперимент.

  • 1980-ые годы — Технология помощи принятия клинических решений в реальном времени

    Одним из самых заметных внедрений компьютерного мира в мир медицины является системы мониторинга работы сердца и мозга пациента. В 80-ые эти системы получили автоматические функции, например выявления аритмии в электрокардиограмме. А в 90-ые данные системы начали заменять на ПК со специальным программным обеспечением.

  • 1995 год — ПК и нетворкинг в области здравоохранения

    Многие клиники начали использовать ПК, соединенные сетью, для хранения и передачи данных, связанных с административными задачами. Это стало важным шагом для формирования современной системы CDSS.

  • 2000 — наши дни — Справочные базы данных и портативный доступ

    Компьютерные технологии сделали справочную информацию доступной для любого врача или пациента. Сегодня практически каждый человек имеет ПК или карманное устройство (планшет, смартфон, КПК), что дают ему доступ к необходимой медицинской информации.


Неожиданные последствия компьютеризации здравоохранения

Как мы уже поняли, компьютеризация медицинской сферы крайне важна и должна развиваться. Этот процесс сталкивается с множеством трудностей. Не все хотят тратиться на внедрение новых систем, обучение персонала. Кто-то боится юридических последствий, в случае обмена данными между клиниками. Также стоит вопрос и о конфедициальности информации. Все это — факторы, сдерживающие прогресс. Но есть мнения, утверждающие, что это не стоит форсировать, поскольку могут возникнуть непредвиденные последствия.

Деперсонализация

Доктор Гейл Томпсон, практикующий с 60-ых годов, заявил, что компьютеризация приводит к тому, что мы забываем что есть забота о пациенте. Врачи забыли как по зрачкам определить состояние больного, все больше полагаясь на диаграммы и графики на мониторах компьютеров. С этим мнение полностью согласен и Стивен Анджело, врач из Коннектикута. Он рассказал, как однажды в его больнице «легла» система мониторинга пациентов. Врачи были растеряны, не знали что делать.

Конечно, все больше и больше полагаясь на современные технологии, мы забываем о старых добрых методах. Но, если компьютеризация здравоохранения снизит число смертей среди больных, я готов отказаться от персонализации, как таковой.

Ошибки, связанные с препаратами

Некоторые врачи утверждают, что электронные системы, хоть и помогают уменьшить число ошибок, но не избавляют от них полностью. Все потому, что человек, как источник ошибки, управляет этой электронной системой.

Это неоспоримо, но проблема все равно остается в человеческом факторе, а не в системе, как таковой. Для решения данного затруднения необходимо более внимательно отнестись к обучению мед. персонала. Если персонал не умеет пользоваться системой, то, конечно, все ее преимущества теряют свой смысл. Пока в отрасли есть хоть один человек, будут и ошибки.

Неверная информация в Интернете

В сети можно найти множество статей о различных заболеваниях, препаратах и т.д. Многие из нас пользовались подобным контентом для проведения самодиагностики и даже самолечения. Конечно, информация это сила, но только тогда, когда она верна.

Очень много медицинской информации во всемирной паутине содержит ошибки. А это может привести к тому, что пациент начнет неправильное лечение либо просто проигнорирует потенциально опасное заболевание. Эту проблему можно решить лишь внедрением стандартов достоверности информации и методов ее проверки и контроля публикаций.

Поиск нужной информации

Хранение всей истории пациента в одной электронной папке позволяет врачу быстро получить к ней доступ. Но так ли быстро он сможет найти то, что ему нужно в данном конкретном случае? Огромный поток информации, который необходимо не просто просмотреть, но и проанализировать, может задержать формирование анамнеза и установление диагноза.

Вывод

Мир не стоит на месте. Компьютерные технологии все глубже врезаются в другие сферы нашей жизни, привнося много нового, хорошего или плохого, порой сложно сказать. Но прогресс нельзя остановить, опираясь лишь на страх чего-то нового. Это касается и медицины. Многие болезни остались бы неизлечимыми, если бы какие-то смельчаки не решили лечить их по-другом, не так как раньше. Главное помнить, что человек создает технологию, человек ее совершенствует и только он может нести за нее ответственность.

Сегодня множество клиник переходят на удаленное хранение и обработку информации. Мы предлагаем решения и для такого типа клиентов, вплоть до решений с применением новейших NVMe-накопителей, позволяющих «моментально» обрабатывать запросы в больших базах. Дата-центры, в которых размещается оборудование, соответствуют необходимым уровням сертификации в сфере безопасности данных. А географическая распределенность и изолированность модулей даже в пределах одной локации позволяет организовывать наиболее отказоуйстойчивые системы для клиентов такого рода.

На правах рекламы.Акция! Только сейчас получите до 4-х месяцев бесплатного пользования VPS (KVM) c выделенными накопителями в Нидерландах и США (конфигурации от VPS (KVM) — E5-2650v4 (6 Cores) / 10GB DDR4 / 240GB SSD или 4TB HDD / 1Gbps 10TB — $29 / месяц и выше, доступны варианты с RAID1 и RAID10), полноценным аналогом выделенных серверов, при заказе на срок 1-12 месяцев, условия акции здесь, cуществующие абоненты могут получить 2 месяца бонусом!

Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

Компьютерная томография — Википедия

Компьютерный томограф

Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения.

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд из фирмы «EMI Ltd.» сконструировал «ЭМИ-сканер» — первый компьютерный рентгеновский томограф, клинические испытания которого прошли в 1971 году, — разработанный только для сканирования головы. Средства на разработку КТ были выделены фирмой EMI, в частности, благодаря высоким доходам, полученным от контракта с группой The Beatles[1].

В 1979 году «за разработку компьютерной томографии» Кормак и Хаунсфилд были удостоены Нобелевской премии по физиологии и медицине.

Предпосылки метода в истории медицины[править | править код]

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии. В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии. Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратного представления в различных анатомических плоскостях (проекциях) однократно полученных «сырых» КТ-данных, а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

В нейрохирургии до внедрения компьютерной томографии применялись предложенные в 1918—1919 годах Уолтером Денди вентрикуло- и пневмоэнцефалография. Пневмоэнцефалография впервые позволила нейрохирургам проводить визуализацию внутричерепных новообразований с помощью рентгеновских лучей. Они проводились путём введения воздуха либо непосредственно в желудочковую систему мозга (вентрикулография) либо через поясничный прокол в субарахноидальное пространство (пневмоэнцефалография). Проведение вентрикулографии, предложенное Денди в 1918 году, имело свои ограничения, так как требовало наложения с диагностической целью фрезевого отверстия и вентрикулопункции. Пневмоэнцефалография, описанная в 1919 году, была менее инвазивным методом и широко использовалась для диагностики внутричерепных образований. Однако, как вентрикуло-, так и пневмоэнцефалография представляли из себя инвазивные методы диагностики, которые сопровождались появлением у больных интенсивных головных болей, рвоты, несли целый ряд рисков. Поэтому с внедрением компьютерной томографии они перестали применяться в клинической практике. Эти методы были заменены более безопасными КТ-вентрикулографией и КТ-цистернографией, применяемыми значительно реже, по строгим показаниям[2], наряду с широко используемой бесконтрастной компьютерной томографией головного мозга.

Для визуальной и количественной оценки плотности визуализируемых методом компьютерной томографии структур используется шкала ослабления рентгеновского излучения, получившая название шкалы Хаунсфилда (её визуальным отражением на мониторе аппарата является чёрно-белый спектр изображения). Диапазон единиц шкалы («денситометрических показателей, англ. Hounsfield units»), соответствующих степени ослабления рентгеновского излучения анатомическими структурами организма, составляет от −1024 до +3071, то есть 4096 чисел ослабления. Средний показатель в шкале Хаунсфилда (0 HU) соответствует плотности воды, отрицательные величины шкалы соответствуют воздуху и жировой ткани, положительные — мягким тканям, костной ткани и более плотным веществам (металл). В практическом применении измеренные показатели ослабления могут несколько отличаться на разных аппаратах.

Следует отметить, что «рентгеновская плотность» — усредненное значение поглощения тканью излучения; при оценке сложной анатомо-гистологической структуры измерение её «рентгеновской плотности» не всегда позволяет с точностью утверждать, какая ткань визуализируется (например, насыщенные жиром мягкие ткани имеют плотность, соответствующую плотности воды).

Изменение окна изображения[править | править код]

Обычный компьютерный монитор способен отображать до 256 оттенков серого цвета, некоторые специализированные медицинские аппараты способны показывать до 1024 оттенков. В связи со значительной шириной шкалы Хаунсфилда и неспособностью существующих мониторов отразить весь её диапазон в черно-белом спектре, используется программный перерасчет серого градиента в зависимости от интересуемого интервала шкалы. Черно-белый спектр изображения можно применять как в широком диапазоне («окне») денситометрических показателей (визуализируются структуры всех плотностей, однако невозможно различить структуры, близкие по плотности), так и в более-менее узком с заданным уровнем его центра и ширины («легочное окно», «мягкотканное окно» и т. д.; в этом случае теряется информация о структурах, плотность которых выходит за пределы диапазона, однако хорошо различимы структуры, близкие по плотности). Проще говоря, изменение центра окна и его ширины можно сравнить с изменением яркости и контрастности изображения соответственно.

Средние денситометрические показатели[править | править код]

КТ-снимок грудной клетки в легочном и мягкотканном окнах (на изображениях указаны параметры центра и ширины окна)
ВеществоHU
Воздух−1000
Жир−120
Вода1
Мягкие ткани+40
Кости+400 и выше

Развитие современного компьютерного томографа[править | править код]

Современный компьютерный томограф фирмы Siemens Medical Solutions

Современный компьютерный томограф представляет собой сложный программно-технический комплекс. Механические узлы и детали выполнены с высочайшей точностью. Для регистрации прошедшего через среду рентгеновского излучения используются сверхчувствительные детекторы. Конструкция и материалы, применяемые при их изготовлении, постоянно совершенствуются. При изготовлении компьютерного томографа предъявляются самые жесткие требования к рентгеновским излучателям. Неотъемлемой частью аппарата является обширный пакет программного обеспечения, позволяющий проводить весь спектр компьютерно-томографических исследований (КТ-исследований) с оптимальными параметрами, проводить последующую обработку и анализ КТ-изображений. Как правило, стандартный пакет программного обеспечения может быть значительно расширен с помощью узкоспециализированных программ, учитывающих особенности сферы применения каждого конкретного аппарата.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений. Так, например, для получения томограммы размером 200×200 пикселей система включает 40 000 уравнений. Для решения подобных систем разработаны специализированные методы, основанные на параллельных вычислениях.

Поколения компьютерных томографов: от первого до четвёртого[править | править код]

Прогресс КТ-томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 году. КТ-аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Каждый слой обрабатывался около 4 минут.

Во 2-м поколении КТ-аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунды. Но существенного различия в качестве изображений с КТ-аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография[править | править код]

Спиральная КТ используется в клинической практике с 1988 года, когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника — рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки относительно оси z — направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5—2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)[править | править код]

Многослойная компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография — МСКТ) была впервые представлена компанией Elscint Co. в 1992 году. Принципиальное отличие МСКТ от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая — объёмная геометрическая форма пучка.

В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ с двумя рядами детекторов, а в 1998 году — четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные МСКТ пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ четвёртого поколения. В 2004—2005 годах были представлены 32-, 64- и 128-срезовые МСКТ, в том числе — с двумя рентгеновскими трубками. В 2007 году Toshiba вывела на рынок 320-срезовые компьютерные томографы, в 2013 году — 512- и 640-срезовые. Они позволяют не только получать изображения, но и дают возможность практически в «реальном» времени наблюдать физиологические процессы, происходящие в головном мозге и в сердце[источник не указан 1542 дня].

Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т. д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями.

Преимущества МСКТ перед обычной спиральной КТ[править | править код]
  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов.
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1—1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСКТ:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.

Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСКТ выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений.

Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба. В этом случае пространственные разрешения в поперечной плоскости x—y и вдоль продольной оси z становятся одинаковыми.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза — до 0,45—0,5 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшению качества исполнения электронных компонентов и плат; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Используются генераторы большей мощности (до 100 кВт). Конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 млн единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ-установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшают фильтрацию спектра рентгеновского излучения и производят оптимизацию массива детекторов. Разработаны алгоритмы, позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа, размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения[править | править код]

В 2005 году компанией «Siemens Medical Solutions» представлен первый аппарат с двумя источниками рентгеновского излучения (Dual Source Computed Tomography). Теоретические предпосылки к его созданию были ещё в 1979 году, но технически его реализация в тот момент была невозможна.

По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов, находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть времени полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для её увеличения, так как при обороте трубки в 0,33 с её вес возрастает в 28 раз (перегрузки 28 g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g.

Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений.

Также такой аппарат имеет ещё одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси крови и йодосодержащего контрастного вещества при неизменности этого параметра у гидроксиапатита (основа кости) или металлов.

В остальном аппараты являются обычными МСКТ-аппаратами и обладают всеми их преимуществами.

Массовое внедрение новых технологий и компьютерных вычислений позволили внедрить в практику такие методы, как виртуальная эндоскопия, в основе которых лежит РКТ и МРТ.

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определённым режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование.

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления — разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4—5 мл/сек сканирование начинается примерно через 20—30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40—60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография[править | править код]

CT-Angiografie-Haende.jpg

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография — одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объёме около 100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия[править | править код]

Метод, позволяющий оценить прохождение крови через ткани организма, в частности:

  • перфузию головного мозга
  • перфузию печени

Показания к компьютерной томографии[править | править код]

Компьютерная томография широко используется в медицине для нескольких целей:

  1. Как скрининговый тест — при следующих состояниях:
    • Головная боль (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Травма головы, не сопровождающаяся потерей сознания (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Обморок
    • Исключение рака легких
    В случае использования компьютерной томографии для скрининга исследование делается в плановом порядке.
  2. Для диагностики по экстренным показаниям — экстренная компьютерная томография
    • Экстренная КТ головного мозга — наиболее часто проводимая экстренная КТ, являющаяся методом выбора при следующих состояниях[3]:
      • Впервые развившийся судорожный синдром
      • Судорожный синдром с судорожным расстройством в анамнезе, в сочетании с хотя бы одним из перечисленного:
      • Травма головы, сопровождающаяся хотя бы одним из перечисленного:
      • Головная боль в сочетании с хотя бы одним из перечисленного:
        • острым, внезапным началом
        • очаговым неврологическим дефицитом
        • стойкими изменениями психического статуса
        • когнитивными нарушениями
        • предполагаемой или доказанной ВИЧ-инфекцией
        • возрастом старше 50 лет и изменением характера головной боли
      • Нарушение психического статуса в сочетании с хотя бы одним из перечисленного:
    • Подозрение на повреждение сосуда (например, расслаивающая аневризма аорты)
    • Подозрение на некоторые другие «острые» поражения полых и паренхиматозных органов (осложнения как основного заболевания, так и в результате проводимого лечения) — по клиническим показаниям, при недостаточной информативности нерадиационных методов.
  3. Компьютерная томография для плановой диагностики
    • Большинство КТ-исследований делается в плановом порядке, по направлению врача, для окончательного подтверждения диагноза. Как правило, перед проведением компьютерной томографии делаются более простые исследования — рентген, УЗИ, анализы и т. д.
  4. Для контроля результатов лечения
  5. Для проведения лечебных и диагностических манипуляций, например пункции под контролем компьютерной томографии и др.
    • Преоперативные изображения, полученные с помощью компьютерной томографии, используются в гибридных операционных во время хирургических операций.

При назначении КТ-исследования, как при назначении любых рентгенологических исследований, необходимо учитывать следующие аспекты[4]:

  • приоритетное использование альтернативных (нерадиационных) методов;
  • проведение рентгенодиагностических исследований только по клиническим показаниям;
  • выбор наиболее щадящих методов рентгенологических исследований;
  • риск отказа от рентгенологического исследования должен заведомо превышать риск от облучения при его проведении.

Окончательное решение о целесообразности, объёме и виде исследования принимает врач-рентгенолог[5].

Некоторые абсолютные и относительные противопоказания[править | править код]

Без контраста:

  • Беременность
  • Масса тела слишком велика для прибора

С контрастом:

Также проведение компьютерной томографии увеличивает частоту возникновения повреждений в ДНК. При проведении компьютерной томографии доза излучения оказалась в 150 раз выше, чем при однократном рентгенологическом исследовании грудной клетки[6].

  • Cormack A. M. Early two-dimensional reconstruction and recent topics stemming from it // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 551—563
  • Hounsfield G. N. Computed Medical Imaging // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 568—586
  • Вайнберг Э. И., Клюев В. В., Курозаев В. П. Промышленная рентгеновская вычислительная томография // Приборы для неразрушающего контроля материалов и изделий: Справочник / под ред. В. В. Клюева. — 2-е изд. — M., 1986. — Т. 1.

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*