Какое напряжение подается на свечи зажигания – Какое напряжение выдаёт на свечи катушка зажигания на старых корбюраторных двигателях (типа Opel Ascona)?
Основными условиями воспламенения смеси являются превышение высокого (вторичного) напряжения над напряжением пробоя и достаточность энергии искрового разряда, выделяемой в искровом промежутке зажигательной свечи. Искровой разряд имеет емкостную и индуктивную фазы. Длительность емкостной фазы невелика и составляет 1—3 мкс. Поэтому энергия, выделяемая в данной фазе искрового разряда, обеспечивает воспламенение лишь однородной и полностью газифицированной рабочей смеси. При пуске холодного двигателя, когда паровой части топлива в смеси недостаточно, а температура ее низка, для воспламенения рабочей смеси кроме емкостной фазы разряда требуется индуктивная. Длительность индуктивной фазы искрового разряда существенно больше, чем емкостной, что способствует улучшению прогрева смеси и ее испарению. Это обеспечивает более качественное воспламенение смеси, находящейся по своему составу у границ воспламеняемости.
У систем зажигания, предназначенных для двигателей с Э > 9, энергия искрового разряда достигает 0,05 Дж, а длительность 2,5 мс. При этом повышение вторичного напряжения над напряжением пробоя, характеризуемого коэффициентом запаса, составляет 1,4-1,5.
Величина напряжения пробоя при пуске двигателя (особенно холодного) всегда больше, чем на его рабочих режимах. Это связано с низкой температурой электрода свечи и рабочей смеси в цилиндре. Напряжение пробоя зависит от давления сжатия в момент пробоя искрового промежутка и расстояния между электродами свечи. На величину напряжения пробоя влияет форма электродов свечи (результат электрической эрозии), при изменении которой оно увеличивается на 3-4 кВ за первые 25 тыс. км пробега автомобиля.
Величина вторичного напряжения, развиваемого системой зажигания, зависит от конструктивных и эксплуатационных факторов.
При пусковых частотах вращения коленчатого вала двигателя время замкнутого состояния контактов прерывателя достаточно велико, и сила тока в первичной электроцепи достигает максимального значения. При малой частоте размыкания контактов и большой силе тока разрыва, индуктируемого в первичной обмотке катушки, возможен пробой искрового воздушного промежутка между контактами, что вызывает ухудшение параметров искрового разряда.
Вторичное напряжение уменьшается при снижении напряжения на зажимах аккумуляторной батареи, которое обусловливается низкой температурой аккумуляторной батареи и степенью ее разряженности. Для компенсации снижения напряжения в первичную электроцепь систем зажигания у отечественных автомобилей вводится дополнительный резистор, замыкаемый накоротко в момент включения стартера.
Необходимо отметить влияние неравномерности электрострартерного прокручивания коленчатого вала на снижение вторичного напряжения систем зажигания. Вторичное напряжение падает при неравномерном прокручивании коленчатого вала на 0,2-1,5 кВ по сравнению с равномерным прокручиванием. Уменьшение вторичного напряжения возможно и при увеличении шунтирующего сопротивления и зазора между электродами зажигательной свечи. Шунтирование свечей при пуске двигателя происходит в результате переобогащения смеси и попадания между электродами влаги и остатков продуктов сгорания. Наибольшее шунтирование свечей наблюдается у роторно-поршневых двигателей (в силу конструктивных особенностей расположения свечи) и у двухтактных двигателей из-за плохой организации процесса смесеобразования и плохой очистки цилиндров от остаточных газов. Увеличить энергию искрового разряда и величину вторичного напряжения у систем зажигания можно только увеличением силы тока разрыва первичной электроцепи катушки зажигания. В классических электромеханических системах такая возможность ограничивается сроком службы контактов прерывателя. Наибольшая эксплуатационная надежность контактов имеет место при силе тока 1 А.
Проблема роста вторичного напряжения и энергии искрового разряда за счет увеличения силы тока разрыва первичной цепи решается с помощью схем контактно-транзисторных и бесконтактных систем зажигания.
Контактно-транзисторные системы зажигания обеспечивают более легкие условия работы контактов прерывателя при одновременном повышении силы тока разрыва первичной цепи.
Вторичное напряжение, развиваемое контактно-транзисторной системой зажигания двигателя ЗИЛ-508.1000400, составляет 25 кВ, что обеспечивает коэффициент запаса 1,7-1,8 (1,35 для классической системы). Сила тока в первичной цепи катушки зажигания составляет около 7 А и разрываемого контактами прерывателя — 0,7-0,9 А. Положительным качеством контактно-транзисторной системы является увеличение по сравнению с классической длительностью и энергии искрового разряда (энергия до 0,024-0,025 Дж и длительность до 2,0-2,3 мс). К недостаткам данных систем относится влияние на их характеристики напряжения в первичной цепи и л, хотя оно несколько меньше, чем у классической системы.
Лучшими системами с точки зрения пуска являются электронные бесконтактные системы с электронными или электромеханическими автоматами опережения зажигания, имеющие бесконтактное управление моментом зажигания с нормированным временем накопления энергии в магнитном поле. В таких системах время накопления энергии почти не зависит от п, что улучшает условия пуска двигателя. Энергия индуктивной фазы на пусковых режимах двигателя для отечественных электронных систем (бесконтактной и микропроцессорной) составляет от 0,03 до 0,05 Дж, а длительность разряда от 2,0 до 1,7 мс.
Широко применяются электронные системы с накоплением энергии в электростатическом поле конденсатора и коммутирующем элементе (тиристоре). Резкий рост вторичного напряжения обеспечивает малую чувствительность к шунтированию свечей зажигания. Такой характер возрастания напряжения тиристорной системы, несмотря на малую длительность индуктивной составляющей, позволяет повысить надежность воспламенения топливомасляных смесей двухтактных и роторно-поршневых двигателей, а также газовоздушных смесей газовых двигателей.
Двухтактные пусковые двигатели оборудуются системами зажигания от магнето, особенностью которых являются более низкие вторичное напряжение и энергия искрового разряда по сравнению с батарейной системой зажигания, особенно в интервале пусковых частот вращения коленчатого вала 200-300 мин-1. Для повышения коэффициента запаса по вторичному напряжению приходится повышать пусковую частоту вращения коленчатого вала, что ухудшает экономические показатели пусковой системы.
Неравномерность вращения коленчатого вала пусковых двигателей при электростартерном пуске (5 достигает 1,85-1,90) приводит к снижению вторичного напряжения на 0,3-4,5 кВ. Это необходимо учитывать при выборе параметров систем зажигания от магнето.
Улучшить пуск пусковых двигателей можно за счет применения электронных систем зажигания, минимальная частота устойчивого искрообразования которых должна составлять не более 100-150 мин
Катушка системы зажигания двигателя — элемент системы зажигания, который служит для преобразования низковольтного напряжения, поступающего от аккумуляторной батареи или генератора, в высоковольтное.
Основная функция катушки зажигания — генерация высоковольтного электрического импульса на свече зажигания.
Содержание
Устройство [ править | править код ]
Катушка зажигания представляет собой высоковольтный импульсный повышающий трансформатор (упрощённая катушка Румкорфа) системы зажигания ДВС, первичная обмотка которого имеет сравнительно небольшое количество витков толстого провода и рассчитана на импульсы низкого напряжения, например 12 вольт (6 вольт на старых автомобилях и мотоциклах), вторичная обмотка выполнена из тонкого провода с большим количеством витков, благодаря чему во вторичной обмотке создаётся высокое импульсное выходное напряжение до 25 000 — 35 000 вольт по формуле: напряжение = индукция в витке × количество витков. Высокое напряжение от катушки зажигания с помощью высоковольтного кабеля подаётся на распределитель (трамблер), от него с помощью высоковольтных кабелей напряжение распределяется по свечам зажигания. Высокое напряжение обеспечивает искру между электродами свечи, тем самым воспламеняя топливо-воздушную смесь.
Раньше катушки зажигания делали с незамкнутым магнитопроводом, в настоящее время появились трансформаторы зажигания с замкнутым магнитопроводом.
Принцип действия [ править | править код ]
Через первичную обмотку катушки зажигания протекает постоянный ток. Когда поршень подходит к верхней мёртвой точке, цепь первичной обмотки разрывается размыканием контактов прерывателя (это происходит или механическим путём, когда контакты размыкаются кулачком на валу, или с помощью электронных (транзисторных или тиристорных) ключей, в которых управляющий импульс формируется электронной схемой (контактной или бесконтактной, положение коленчатого вала определяется с помощью датчика Холла, индуктивного или иного датчика).
Согласно закону электромагнитной индукции, ЭДС, индуцируемая изменением силы тока в соседнем контуре, равна
E = − L 12 d I d t <displaystyle <mathcal >=-L_<12><frac
>> ,
учитывая мгновенное изменение силы тока (одномоментное размыкание), следовательно, большое значение производной, а также взаимную индукцию обмоток L 12 ∝ N 1 N 2 <displaystyle L_<12>propto N_<1>N_<2>> , где N 2 <displaystyle N_<2>> очень большое число (десятки тысяч витков), во вторичной обмотке наводится импульс э.д.с. амплитудой в десятки киловольт. Высокий потенциал от катушки передаётся на свечи с помощью высоковольтных проводов (изначально применённых Г. Хонольдом в системе зажигания с магнето), и обеспечивает пробой зазора между электродами свечи зажигания.
На некоторых образцах мото- и автотехники с двухцилиндровыми двигателями (например, мотоциклы «Днепр», мотоциклы «Урал», автомобили «Ока») применяются двухискровые катушки зажигания (искра проскакивает одновременно на двух свечах). Топливо-воздушная смесь воспламеняется только в одном цилиндре, так как в другом проходит такт выпуска и воспламеняться нечему.
В последнее время получили распространение индивидуальные катушки зажигания на каждую свечу (по числу цилиндров).
Добавочное сопротивление [ править | править код ]
В ряде случаев последовательно первичной обмотке катушки зажигания включается добавочное сопротивление (или дополнительный резистор). На низких оборотах контакты прерывателя оказываются бо́льшую часть времени в замкнутом состоянии и через обмотку протекает ток, более чем достаточный для насыщения магнитопровода. Избыточный ток бесполезно нагревает катушку.
Спираль дополнительного резистора изготавливается из стального сплава, имеющего высокий температурный коэффициент электрического сопротивления. При прохождении избыточного тока сопротивление спирали увеличивается и сила тока уменьшается, таким образом происходит автоматическое регулирование. На высоких оборотах, когда контакты бо́льшую часть времени разомкнуты, нагрев резистора менее значителен (сопротивление спирали невелико). При запуске двигателя добавочное сопротивление шунтируется контактами реле стартера, тем самым повышается энергия электрической искры на свече зажигания.
Некоторые неопытные водители пытаются (бесполезно или с большим трудом) запустить пусковой рукояткой двигатель при «севшем» аккумуляторе, не зная, что нужно принудительно временно шунтировать добавочный резистор (какой-нибудь проволочкой).
Рабочие характеристики [ править | править код ]
К рабочим характеристикам катушки зажигания относят:
Индуктивность первичной обмотки;
Сопротивление первичной и вторичной обмотки;
Коэффициент трансформации;
Энергия искры;
Напряжение пробоя;
Количество образующихся искр в минуту.
Индуктивность [ править | править код ]
Индуктивность характеризует способность катушки накапливать энергию. Измеряется в Гн – генри, единицах измерения, названных в честь американского ученого Дж. Генри. Энергия, которая накапливается в первичной обмотке, пропорциональна индуктивности. Чем выше индуктивность, тем больше энергии может накопить катушка.
Коэффициент трансформации [ править | править код ]
Коэффициент трансформации показывает, во сколько раз катушка зажигания увеличивает первичное напряжение. На первичную катушку подается напряжение от аккумулятора в 12 В. Когда первичная цепь разрывается, ток в цепи изменяется — от 6-20 ампер, до 0. Изменение тока в катушке приводит к возникновению ЭДС индукции и образованию напряжения в первичной катушке в 300-400 В. Коэффициент трансформации катушки показывает, во сколько раз увеличивается именно это напряжение. Определяется отношением числа витков вторичной катушки к числу витков первичной катушки, или отношением пробивного напряжения свечи к разнице максимально допустимого напряжение между коллектором и эмиттером транзистора и напряжения бортовой сети питания, которые известны из производственных характеристик катушки зажигания и автомобиля.
Сопротивление [ править | править код ]
В первичной обмотке – 0,25-0,55 Ом. Во вторичной обмотке – 2-25 кОм. Мощность и энергия искры обратно пропорциональны сопротивлению первичной обмотки катушки: чем оно выше, тем ниже мощность и энергия искры.
Энергия искры [ править | править код ]
Полезная энергия искры расходуется в течение 1,2 мс [1] – время, за которое сгорает воздушно-топливная смесь. Энергия искрового разряда составляет 0,05-0,1 Дж. В свече зажигания искра образуется вследствие явления дугового разряда, когда между двумя электродами, находящимися в газе, происходит электрический пробой. Напряжение на электродах зависит от размера диаметра свечи и его материала, зазора между электродами и от состава воздушно-топливной смеси, давления в камере сгорания и температуры. Во время старта двигателя и разгона автомобиля напряжение на электродах – максимальное, так как свеча не разогрета. При постоянной скорости – напряжение минимально. Чтобы свеча работала эффективно и не давала пропусков, напряжение, генерируемое катушкой, должно быть в 1,5 больше, чем напряжение, необходимое для пробоя зазора.
Напряжение пробоя [ править | править код ]
В зазоре между электродами свечи зажигания происходит пробой, когда напряжение на электродах становится равным напряжению пробоя. Значение напряжения пробоя зависит от величины зазора между электродами, давления и температуры воздушно-топливной смеси. При первом запуске двигателя напряжение должно быть выше, чтобы произошел пробой и образовалась искра, так как топливо и воздух в камере сгорания холодные.
Расчет числа искрообразований в системе зажигания [ править | править код ]
Чтобы рассчитать, сколько раз образуется искра в минуту в системе зажигания, нужно знать число оборотов в минуту двигателя и количества цилиндров. N – столько раз образуется искра в минуту. N= (Обороты/мин*число цилиндров) / (количество тактов двигателя 2 или 4). Для 6-цилиндрового двигателя при скорости вращения в 4000 об/мин число искрообразований равно: N=6*4000/4=6 000 раз в минуту.
Свеча зажигания — устройство для поджига топливо-воздушной смеси в бензиновых двигателях внутреннего сгорания. Поджиг производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи.
Свеча зажигания является решающим фактором в определении оптимальной работы и надежного функционирования бензинового двигателя. Задачей свечи зажигания является подача высокого напряжения, генерированного в катушке зажигания, к камере сгорания, и воспламенение топливно-воздушной смеси. Между тем, свеча зажигания является предметом чрезвычайных и часто изменяющихся режимов работы, таких как «прекращение и начало» дорожного движения в городе или вождение по автострадам на полном газу.
Требования к современным свечам зажигания: * надежная работа при высоких напряжениях (до 40,000 вольт), * хорошие изоляционные свойства (при температуре в 1000 °С), * сопротивляемость химическим процессам в камере сгорания и агрессивным отложениям, * сопротивляемость тепловому удару, * изолятор и электроды должны обладать хорошей теплопроводностью.
Мало кто из автолюбителей придает особое значение выбору свечей зажигания. Однако свечи являются важнейшим элементом системы зажигания, ведь от устойчивости и своевременности искрообразования зависит стабильность работы всего двигателя. К основным характеристикам свечи можно отнести: калильное число, способность к самоочищению, величину искрового промежутка, число боковых электродов, срок службы, тепловую характеристику свечи и рабочую температуру свечи. Теперь обо всем этом подробно.
Первое, на что следует обращать внимание при выборе, — это калильное число. Данный параметр является условным и показывает, при каком давлении в цилиндре двигателя возникает калильное зажигание – воспламенение смеси не от искры, а от контакта с нагретыми участками свечи. Калильное число выбранной свечи должно строго соответствовать рекомендованному для вашего двигателя. Допускается непродолжительное использование свечей с несколько большим значением калильного числа, но категорически запрещается использовать свечи с меньшим значением, так как это может привести к самым печальным последствиям, вплоть до пробоя прокладки головки блока цилиндров, прогорания поршней, клапанов и т. д.
Способность к самоочищению
Тоже является условной характеристикой, не поддающейся количественной оценке. В процессе работы двигателя часть продуктов сгорания топливовоздушной смеси осаждается на поверхности камеры сгорания, поршнях и на тепловом конусе свечи.
Практически все производители говорят о том, что их свечи обладают высокой способностью к самоочищению, однако проверить правдивость подобных заявлений можно только на практике. В идеале свеча, прогревшаяся до рабочей температуры, вообще не должна покрываться нагаром, однако в реальных условиях добиться этого невозможно.
Теперь настала пора поговорить о том, чем вреден образовавшийся нагар.
Это расстояние между центральным и боковым электродами. Для каждого типа свечей завод-изготовитель устанавливает определенный зазор, и дальнейшая его регулировка не предусмотрена. Если же вы каким-то образом изменили его величину, то «бюджетный» вариант решения проблемы – восстановление первоначального зазора, разумный — замена свечи.
Число боковых электродовСвечи зажигания (NGK, Denso)
Классическая конструкция свечи предполагает один центральный электрод и один боковой. Однако некоторое время назад производители начали изготавливать двух-, трех- и даже четырехэлектродные модели. Бытует ошибочное мнение, что в процессе их работы образуются две, три и четыре искры соответственно. Это неверно. Просто искрообразование становится устойчивее, обуславливая более стабильную работу двигателя в режиме малых оборотов, улучшается процесс поджига смеси и, наконец, увеличивается срок службы самого изделия.
Недавно в продаже появились свечи вообще без боковых электродов, роль которых выполняют дополнительные, расположенные на изоляторе. Вот при такой конструкции как раз и возникает несколько разрядов, причем не все сразу, а по очереди, образуя тем самым «гуляющую» искру. Подобные конструкции являются весьма перспективными, так как объективно обеспечивают более надежное воспламенение смеси. Однако вследствие усложнения технологии производства они имеют и более высокую цену.
Рабочая температура свечи
Это температура рабочей части свечи при данном режиме двигателя. На всех режимах работы мотора она должна лежать в пределах от 500 до 900 градусов Цельсия. Как бы не различались тепловые потоки, бушующие в камере сгорания при пуске, работе на холостом ходу и режиме полной мощности, температура свечи не должна выходить из указанного поля допуска. Так как понижение температуры приведет к образованию нагара на изоляторе, способного шунтировать («закоротить») межэлектродный зазор и вызвать перебои в искрообразовании. А при повышении возникнет калильное зажигание.
Этот неуправляемый процесс способен полностью нарушить строго согласованный рабочий цикл двигателя и резко снизить его мощность. Помимо этого повышение средней температуры электродов сокращает срок службы самой свечи.
Тепловая характеристика свечи
Это зависимость температуры теплового конуса изолятора и центрального электрода (рабочей температуры свечи) от режима работы двигателя. Для увеличения рабочей температуры теплового конуса увеличивают его длину, однако выше 900 градусов разогревать конус нельзя, так как при этом возникает калильное зажигание.
Исходя из тепловой характеристики все свечи можно условно поделить на «горячие» и «холодные».
«Горячие» свечи предназначены для применения на двигателях, где необходимо достижение температуры самоочищения от нагара при относительно небольших тепловых нагрузках. Свечи, «горячее» положенных для данного двигателя, будут вызывать калильное зажигание.
«Холодные» свечи используются когда предусмотрен нагрев меньше температуры калильного зажигания при максимальной мощности двигателя. Свечи «холодные» для данного двигателя не будут достигать температуры самоочищения от нагара и перестанут работать через короткий промежуток времени.
Технологии «двойного металла»Свечи зажигания
Казалось бы, что еще нового можно привнести в конструкцию свечи? Оказывается – очень многое. На самом деле свеча имеет гораздо более сложное «внутреннее строение», чем принято считать.
В настоящее время многими производителями освоено производство свечей с составными, биметаллическими центральными электродами. По внешнему виду они ничем не отличаются от обычных – центральный электрод вроде бы также выполнен из хромоникелевого сплава. Но внутри — медь, теплопроводность которой заметно выше. Это позволяет улучшить процесс самоочистки от нагара и повысить защиту от перегрева. Диапазон рабочих температур у них значительно расширен, поэтому они получили название «термоэластик».
«Термоэластичные» свечи способны достигать нижнего температурного предела тепловой характеристики при наименьшей эффективной мощности, развиваемой двигателем.
Кроме того, применение биметаллических электродов снижает термонагруженность свечи, благодаря чему значительно увеличивается срок службы. Кстати, биметаллическим может быть не только центральный, но и боковой электрод, что еще больше расширяет температурный диапазон работы свечи.
Появление особо форсированных моторов с турбонаддувом заставило искать материалы с более высокой эрозионной стойкостью, чем хромоникелевые сплавы. В результате появились свечи с центральным электродом из платиновых или иридиевых сплавов. По температурным характеристикам такие модели не имеют преимуществ перед обычными, вот только служить они будут как минимум в 2 раза дольше биметаллических, а цена их в 2—3 раза выше.
Чего ждать от нагара?Свечи зажигания, нагар
По образующемуся нагару происходит утечка энергии на корпус, значительно ослабляющая мощность электрической дуги между центральным и боковым электродами свечи (т.е. искру). Может случиться, что нагар полностью заполнит пространство между электродами, образуя электропроводный мостик, что полностью выведет свечу из строя. В большинстве случаев количество отложений, достаточное для потери свечей работоспособности, возникает при неисправности системы питания и неверно выставленном угле опережения зажигания. Если вы обнаружили, что свечи серьезно «закоптились», не пытайтесь отмачивать их в бензине или ацетоне с тем, чтобы затем очистить щеткой. Дело в том, что на поверхности электродов большинства современных свечей производится напыление благородных металлов. Таким образом, проводя вышеуказанные процедуры, вы буквально обдерете свечу, как липку, что только ухудшит ее характеристики. Кроме того, вы рискуете изменить величину искрового промежутка, чем окончательно нарушите ее работу.
Если уж по каким-то причинам нет возможности приобрести новый комплект свечей (что является самым разумным решением), то просто на время немного прикрутите винт токсичности (совет подходит только для карбюраторных двигателей) в сторону обеднения смеси. После пробега 50—100 километров нагар самоликвидируется, если только причина его возникновения не кроется в нарушении нормальной работы какой-либо из систем двигателя.
О цвете и запахе
Срок службы правильно подобранной свечи во многом зависит не только от ее конструкции, но и от исправности систем питания, зажигания, а также деталей самого двигателя.
Ну а сами свечи зажигания вполне можно отнести к уникальным деталям, по внешнему виду которых можно судить о неисправностях тех или иных систем силового агрегата. Итак, переходим непосредственно к цветам отложений.
Светло-серый или светло-коричневый может быть вызван наличием небольшого количества отложений продуктов сгорания, заметных также на боковых поверхностях электродов. Эрозия практически отсутствует. Значит, двигатель и все его системы работают нормально, и в топливном баке у вас залит качественный бензин.
Черный свидетельствует о том, что на каких-то режимах двигателя система питания переобогащает топливовоздушную смесь. Она не сгорает полностью и образует большое количество копоти.
При загрязнении топливом изолятор и электроды свечи покрыты влажными отложениями черного цвета, а свеча пахнет бензином. Кроме того, причиной подобного явления может стать нестабильная работа системы зажигания, приводящая к сбоям искрообразования, а также использование чрезмерно «холодной» свечи.
Если электроды и изолятор свечи покрыты шлаком, имеющим маслянистый блеск, то можно сделать вывод о загрязнении свечи маслом. При длительной эксплуатации такой свечи, и не устраняя причину, можно получить полностью закоксованые продуктами сгорания масла изолятор и электрод. К этому приводит попадание масла в камеру сгорания, которое может быть вызвано износом маслосъемных колпачков, направляющих втулок клапанов, маслосъемных поршневых колец.
Иные, не так часто встречающиеся, но все же возможные причины — подтекание тормозной жидкости через поврежденную диафрагму вакуумного усилителя и просачивание во впускной коллектор трансмиссионной жидкости через мембрану вакуум-корректора (для машин с автоматической КПП). Чтобы уточнить причину, необходимы дополнительные диагностические методы. Возможна такая картина и на первых километрах пробега при обкатке нового двигателя или после ремонта, когда кольца еще не приработались.
Если в бак вашего автомобиля регулярно попадает этилированный бензин, то неизбежно отложение свинца на поверхности изолятора и электродов. Их поверхность покрывается пористыми отложениями, обладающими резким запахом сероводорода. Цвет этих отложений зависит от видов применяемых в бензине присадок и может изменяться от грязно-белого до темно-коричневого. Как показывает практика, срок службы свечей при использовании этилированного бензина сокращается как минимум вдвое.
Износ и остекленение
В ряде случаев происходит износ свечи. Изолятор имеет нормальный цвет, а кромки бокового и центрального электродов скруглены в результате эрозионного износа. Электродный зазор недопустимо увеличен. Такая свеча гарантирует проблемы при запуске двигателя, особенно в холодное время года, и увеличение расходов на топливо. Причина одна — несвоевременная проверка и замена свечей. Выгоревшие или сильно корродированные электроды, выгоревший «изъязвленный» изолятор — симптомы перегрева свечи. Причина — слишком низкое калильное число, неправильная установка зажигания, низкооктановый бензин. Менее вероятны, но возможны и другие причины — слишком бедная смесь, зависание клапана, плохое охлаждение и перегрев двигателя. Результат в любом случае один — калильное зажигание и сильная детонация. Если вы эксплуатируете автомобиль преимущественно в тяжелых условиях, поставьте более «холодные» свечи.
Если вы часто допускаете перегазовки и «кик-дауны», то у вас есть все шансы узнать, что такое остекленение свечи. Поверхность изолятора приобретает желтоватый цвет с глянцевым блеском. Образование глазури происходит из-за быстрого повышения температуры в камере сгорания в момент резкого нажатия на педаль газа. При разогреве находящиеся на поверхности изолятора отложения плавятся, образуя электропроводное стекловидное покрытие. В результате возникают сбои искрообразования, особенно на высоких оборотах двигателя. В большинстве случаев восстановлению такие свечи не подлежат.
Причины калильного зажигания и детонации
При перегреве электродов и изолятора возникает калильное зажигание. Следствием перегрева является оплавление электродов. Как правило, причиной перегрева служит неверный выбор типа свечи (более горячей, чем требуется). Если же свеча выбрана правильно, то следует искать неисправность в системе питания. Возможно, смесь переобеднена по причине нарушения регулировок карбюратора или неисправности одного из датчиков (на двигателях с впрыском топлива), как правило — ДМРВ. Также необходимо убедиться в отсутствии подсоса постороннего воздуха во впускной коллектор и проверить регулировку клапанов, так как неверно установленный угол опережения зажигания тоже может служить причиной перегрева свечей.
При использовании низкооктанового бензина, а также при нарушении регулировки зазора между электродами и слишком раннего зажигания может возникать детонация. Как следствие трескается или даже выкрашивается тепловой конус свечи. Гораздо большую опасность детонация имеет для поршневой группы и может послужить причиной прогорания поршней. Определить наличие детонации можно по повышенной вибрации двигателя и регулярному «постреливанию» из выхлопной трубы на холостом ходу (не путать с «вытраиванием» двигателя).
Чуть-чуть о ресурсе
Современные свечи зажигания при эксплуатации на полностью исправных и отрегулированных двигателях должны в соответствии с ОСТ 37. 003 081 бесперебойно работать в течение 30 тыс. км пробега для классической и 20 тыс. км для электронной системы зажигания. По мнению специалистов, фактический ресурс примерно вдвое выше, но труднодостижим из-за необходимости идеальных условий эксплуатации свечей, которые возможны не всегда. Однако с учетом прогресса в области новых технологий ресурс современных свечей, при условии исправности всех систем двигателя, составляет в среднем 50 тыс. км.
Безусловно, выбирая свечи, необходимо руководствоваться не только требуемыми характеристиками, но и здравым смыслом. Ведь если вы являетесь владельцем ВАЗовской «классики», двигатель которой является архаизмом во всех отношениях, то ставить свечи по $10—20 за штуку по меньшей мере неразумно. И наоборот, трудно представить себе владельца Lexus, покупающего дешевые свечи с ресурсом не более 20 тыс. км.
Если двигатель с трудом запускается, работает с перебоями, в первую очередь следует проверить исправность свечей зажигания.
Свеча зажигания сохраняет работоспособность при не изношенных электродах, герметичном корпусе, неповрежденных тепловом конусе и изоляторе, а также исправном добавочном резисторе (если он присутствует в конструкции данного узла).
Существует несколько способов определения работоспособности свечей зажигания: испытания «на искру», внешний осмотр, проверка электроцепи. Первый способ наиболее полно осуществим в условиях СТО (с применением спецоборудования). Автовладельцы могут провести самостоятельную проверку «на искру» только упрощенным способом.
Проверить искрообразование свечей можно с помощью диагностического тестера, стенда с барокамерой или пьезоэлектрического пробника-«пистолета».
Сколько вольт подается на свечи зажигания
Немного теории.
Искра — это электрический разряд между электродами, температура в котором достигает 6000 градусов. Он легко управляем, поэтому и поджигают смесь в цилиндре с ее помощью. Для того, чтобы этот разряд проскочил через зазор 1 мм на воздухе, необходимио подать на электроды напряжение около 1000 вольт. Но, т.к. искра проскакивает в камере сгорания, при повышенном давлении, на свечу подается около 10000-15000 вольт.
Вопрос — откуда на моем мотоцикле берется такое огромное напряжение? Вспоминаем курс физики. Есть такая штуковина — называется трансформатор. Упрощенно — на сердечник из железа наматывается две обмотки. Если на одну из них подать переменное напряжение, в другой обмотке мы зафиксируем тоже переменное напряжение. Причем, какое именно, зависит от отношения количества витков в обмотках. Т.е, если на обмотку с количеством витков 220 подать 220 вольт, то с обмотки с 10-ю витками мы снимем 10 вольт. И наоборот. Подай 10 вольт переменного напряжения на вторую — с первой снимешь 220. (В действительности все немного сложнее, но здесь усложнять смысла не вижу).
Итак, задача. Хочу, чтобы на свечу подалось 10000 вольт! Легко. Берем трансформатор (т.е. катушку зажигания — она, по сути, и есть обычный высоковольтный трансформатор), знаем его характеристики первая обмотка-100 витков, 2-я 20000 витков (количество витков для примера, точно не помню). Подаем на ее первичную обмотку 10 вольт переменного тока и видим на выходе 2000 вольт. Круто! (Так электрошокеры работают). Осталась маленькая проблема — где взять переменный ток? На байке стоит аккумулятор, который отдает 12 вольт постоянного! А на постоянном токе трансформатор не работает. Ток в обмотке должен менятся и собственно трансформация происходит только в момент изменения напряжения на первичной обмотке. Плюс к этому нам же надо один кратковременный импульс-разряд на свече в нужное нам время.
Переменный ток мы сделать не можем, точнее незачем. Зато можем сделать один импульс изменения напряжения на первичной обмотке с нуля (ну нет на ней напряжения) до 12 вольт (есть напряжение аккумулятора.) А больше то нам и не надо. Сделано это так. Кулачок-прерыватель пока замкнут — на катушке, на ее первичной обмотке полные 12 вольт.Высокого напряжения не образуется — так, стоим, разряжаем аккумулятор. Затем выступ на коленвале размыкает этот контакт и на обмотке напряжение падает с 12 вольт до нуля. Вот тебе и кусочек переменного напряжения — возник импульс во вторичной обмотке, на свечу подалось высокое напряжение, произошел поджиг топливо-воздушной смеси в цилиндре, и мотоцикл поехал по своим делам 🙂
Ну и под конец. Я сознательно не упоминал конденсатор, включенный паралельно контакту, но с ним я еще больше полезу в физику процесса искрообразования, чего всячески избегал. Скажу только, что он необходим, т.к. накапливает в себе энергию, увеличивающую импульс и предотвращает обгорание контактов.
Катушка системы зажигания двигателя — элемент системы зажигания, который служит для преобразования низковольтного напряжения, поступающего от аккумуляторной батареи или генератора, в высоковольтное.
Основная функция катушки зажигания — генерация высоковольтного электрического импульса на свече зажигания.
Содержание
Устройство [ править | править код ]
Катушка зажигания представляет собой высоковольтный импульсный повышающий трансформатор (упрощённая катушка Румкорфа) системы зажигания ДВС, первичная обмотка которого имеет сравнительно небольшое количество витков толстого провода и рассчитана на импульсы низкого напряжения, например 12 вольт (6 вольт на старых автомобилях и мотоциклах), вторичная обмотка выполнена из тонкого провода с большим количеством витков, благодаря чему во вторичной обмотке создаётся высокое импульсное выходное напряжение до 25 000 — 35 000 вольт по формуле: напряжение = индукция в витке × количество витков. Высокое напряжение от катушки зажигания с помощью высоковольтного кабеля подаётся на распределитель (трамблер), от него с помощью высоковольтных кабелей напряжение распределяется по свечам зажигания. Высокое напряжение обеспечивает искру между электродами свечи, тем самым воспламеняя топливо-воздушную смесь.
Раньше катушки зажигания делали с незамкнутым магнитопроводом, в настоящее время появились трансформаторы зажигания с замкнутым магнитопроводом.
Принцип действия [ править | править код ]
Через первичную обмотку катушки зажигания протекает постоянный ток. Когда поршень подходит к верхней мёртвой точке, цепь первичной обмотки разрывается размыканием контактов прерывателя (это происходит или механическим путём, когда контакты размыкаются кулачком на валу, или с помощью электронных (транзисторных или тиристорных) ключей, в которых управляющий импульс формируется электронной схемой (контактной или бесконтактной, положение коленчатого вала определяется с помощью датчика Холла, индуктивного или иного датчика).
Согласно закону электромагнитной индукции, ЭДС, индуцируемая изменением силы тока в соседнем контуре, равна
E = − L 12 d I d t <displaystyle <mathcal >=-L_<12><frac
>> ,
учитывая мгновенное изменение силы тока (одномоментное размыкание), следовательно, большое значение производной, а также взаимную индукцию обмоток L 12 ∝ N 1 N 2 <displaystyle L_<12>propto N_<1>N_<2>> , где N 2 <displaystyle N_<2>> очень большое число (десятки тысяч витков), во вторичной обмотке наводится импульс э.д.с. амплитудой в десятки киловольт. Высокий потенциал от катушки передаётся на свечи с помощью высоковольтных проводов (изначально применённых Г. Хонольдом в системе зажигания с магнето), и обеспечивает пробой зазора между электродами свечи зажигания.
На некоторых образцах мото- и автотехники с двухцилиндровыми двигателями (например, мотоциклы «Днепр», мотоциклы «Урал», автомобили «Ока») применяются двухискровые катушки зажигания (искра проскакивает одновременно на двух свечах). Топливо-воздушная смесь воспламеняется только в одном цилиндре, так как в другом проходит такт выпуска и воспламеняться нечему.
В последнее время получили распространение индивидуальные катушки зажигания на каждую свечу (по числу цилиндров).
Добавочное сопротивление [ править | править код ]
В ряде случаев последовательно первичной обмотке катушки зажигания включается добавочное сопротивление (или дополнительный резистор). На низких оборотах контакты прерывателя оказываются бо́льшую часть времени в замкнутом состоянии и через обмотку протекает ток, более чем достаточный для насыщения магнитопровода. Избыточный ток бесполезно нагревает катушку.
Спираль дополнительного резистора изготавливается из стального сплава, имеющего высокий температурный коэффициент электрического сопротивления. При прохождении избыточного тока сопротивление спирали увеличивается и сила тока уменьшается, таким образом происходит автоматическое регулирование. На высоких оборотах, когда контакты бо́льшую часть времени разомкнуты, нагрев резистора менее значителен (сопротивление спирали невелико). При запуске двигателя добавочное сопротивление шунтируется контактами реле стартера, тем самым повышается энергия электрической искры на свече зажигания.
Некоторые неопытные водители пытаются (бесполезно или с большим трудом) запустить пусковой рукояткой двигатель при «севшем» аккумуляторе, не зная, что нужно принудительно временно шунтировать добавочный резистор (какой-нибудь проволочкой).
Рабочие характеристики [ править | править код ]
К рабочим характеристикам катушки зажигания относят:
Индуктивность первичной обмотки;
Сопротивление первичной и вторичной обмотки;
Коэффициент трансформации;
Энергия искры;
Напряжение пробоя;
Количество образующихся искр в минуту.
Индуктивность [ править | править код ]
Индуктивность характеризует способность катушки накапливать энергию. Измеряется в Гн – генри, единицах измерения, названных в честь американского ученого Дж. Генри. Энергия, которая накапливается в первичной обмотке, пропорциональна индуктивности. Чем выше индуктивность, тем больше энергии может накопить катушка.
Коэффициент трансформации [ править | править код ]
Коэффициент трансформации показывает, во сколько раз катушка зажигания увеличивает первичное напряжение. На первичную катушку подается напряжение от аккумулятора в 12 В. Когда первичная цепь разрывается, ток в цепи изменяется — от 6-20 ампер, до 0. Изменение тока в катушке приводит к возникновению ЭДС индукции и образованию напряжения в первичной катушке в 300-400 В. Коэффициент трансформации катушки показывает, во сколько раз увеличивается именно это напряжение. Определяется отношением числа витков вторичной катушки к числу витков первичной катушки, или отношением пробивного напряжения свечи к разнице максимально допустимого напряжение между коллектором и эмиттером транзистора и напряжения бортовой сети питания, которые известны из производственных характеристик катушки зажигания и автомобиля.
Сопротивление [ править | править код ]
В первичной обмотке – 0,25-0,55 Ом. Во вторичной обмотке – 2-25 кОм. Мощность и энергия искры обратно пропорциональны сопротивлению первичной обмотки катушки: чем оно выше, тем ниже мощность и энергия искры.
Энергия искры [ править | править код ]
Полезная энергия искры расходуется в течение 1,2 мс [1] – время, за которое сгорает воздушно-топливная смесь. Энергия искрового разряда составляет 0,05-0,1 Дж. В свече зажигания искра образуется вследствие явления дугового разряда, когда между двумя электродами, находящимися в газе, происходит электрический пробой. Напряжение на электродах зависит от размера диаметра свечи и его материала, зазора между электродами и от состава воздушно-топливной смеси, давления в камере сгорания и температуры. Во время старта двигателя и разгона автомобиля напряжение на электродах – максимальное, так как свеча не разогрета. При постоянной скорости – напряжение минимально. Чтобы свеча работала эффективно и не давала пропусков, напряжение, генерируемое катушкой, должно быть в 1,5 больше, чем напряжение, необходимое для пробоя зазора.
Напряжение пробоя [ править | править код ]
В зазоре между электродами свечи зажигания происходит пробой, когда напряжение на электродах становится равным напряжению пробоя. Значение напряжения пробоя зависит от величины зазора между электродами, давления и температуры воздушно-топливной смеси. При первом запуске двигателя напряжение должно быть выше, чтобы произошел пробой и образовалась искра, так как топливо и воздух в камере сгорания холодные.
Расчет числа искрообразований в системе зажигания [ править | править код ]
Чтобы рассчитать, сколько раз образуется искра в минуту в системе зажигания, нужно знать число оборотов в минуту двигателя и количества цилиндров. N – столько раз образуется искра в минуту. N= (Обороты/мин*число цилиндров) / (количество тактов двигателя 2 или 4). Для 6-цилиндрового двигателя при скорости вращения в 4000 об/мин число искрообразований равно: N=6*4000/4=6 000 раз в минуту.
Все не так : Катушка имеет большую индуктивность. Через нее протекает ток, который коммутатор резко обрывает. В момент прекращения тока возникает ЭДС самоиндукции достигающая 300-400 В, а во вторичной обмотке, соотв., несколько киловольт. Для справки — в выходном каскаде коммутатора всегда стоят высоковольтные транзисторы (пробивное напр. до 400-500В). : : Павел
Значение которое ты привел НЕ является напряжением — это мгновенное максимальное амплитудное значение (поэтому и транзисторы такие) — оно и в контактной системе такое же, а напряжение там, все таки, 12 вольт.
Кстати, поскольку количество витков в первичной обмотке зубильной катушки меньше, чем в обычной катушке, то и ЭДС самоиндукции тоже должно быть меньше, поэтому ИМХО там нет 300-400 вольт этой самой ЭДС самоиндукции, которые есть в обычной катушке.
: : Катушка имеет большую индуктивность. Через нее протекает ток, который коммутатор резко обрывает. В момент прекращения тока возникает ЭДС самоиндукции достигающая 300-400 В, а во вторичной обмотке, соотв., несколько киловольт. Для справки — в выходном каскаде коммутатора всегда стоят высоковольтные транзисторы (пробивное напр. до 400-500В). : : : : Павел : : Значение которое ты привел НЕ является напряжением — это мгновенное максимальное амплитудное значение (поэтому и транзисторы такие) — оно и в контактной системе такое же, а напряжение там, все таки, 12 вольт.
*** Когда коммутатор замыкает «-» катушки на корпус , через нее начинает протекать НАРАСТАЮЩИЙ ток от 0 до 7-8 ампер. В момент достижения требуемого значения тока коммутатор размыкает первичную цепь и из-за ЭДС самоиндукции происходит искровой разряд. Время нарастания тока в первичной обмотке где-то 1-2 миллисекунды при нормальном напряжении в бортсети и увеличивавется при пониженном напряжении (холодный пуск). Коммутатор должен «знать» когда придет сигнал от ДХ на размыкание, и подать напряжение на катушку заранее с учетом времени нарастания тока. Возможно в чем-то не прав. Поправьте,pls. Борис
*** Когда коммутатор замыкает «-» катушки на корпус , через нее начинает протекать НАРАСТАЮЩИЙ ток от 0 до 7-8 ампер. В момент достижения требуемого значения тока коммутатор размыкает первичную цепь и из-за ЭДС самоиндукции происходит искровой разряд. Время нарастания тока в первичной обмотке где-то 1-2 миллисекунды при нормальном напряжении в бортсети и увеличивавется при пониженном напряжении (холодный пуск). Коммутатор должен «знать» когда придет сигнал от ДХ на размыкание, и подать напряжение на катушку заранее с учетом времени нарастания тока. Возможно в чем-то не прав. Поправьте,pls. Борис
. Совершенно верно, сгорит.
Но в БСЗ она почему-то не сгорает. Вопрос — почему? Моя версия (ИМХО) — потому что к ней прикладывается напряжение не 12 вольт, а меньше. Мой вопрос — сколько? 4? 6? 8? 10? Я понимаю, что больше 14 (напряжение бортовой сети) быть не может, оно наверняка меньше.
. Потому, что коммутотор выдает нормированные по времени импульсы определенной формы. Длительность и частота их специально подобраны и зависят от оборотов. Прерыватель же, не может этого делать, так как импульсы от него прямоугольные (замкнут — разомкнут). Говорить тут о напряжении опять же не корректно, но амплитуда его 12 вольт, а ЭДС самоиндукции, по большому счету, значения не имеет, так как является следствием изменения тока катушки и сдвинута по времени.
: Кстати, поскольку количество витков в первичной обмотке зубильной катушки меньше, чем в обычной катушке, то и ЭДС самоиндукции тоже должно быть меньше, поэтому ИМХО там нет 300-400 вольт этой самой ЭДС самоиндукции, которые есть в обычной катушке.
Насчет того, больше там витков или меньше не скажу, т. к. имхо, это не принципиально.
Конечно меньше. Коммутатор нормально работает и при 8 вольтах бортовой сети (когда включен стартер, напр.)
А вообще хороший коммутатор заранее знает, когда надо будет выдать искру и открывает выходной транзистор за несколько миллисекунд до этого момента. За это время ток нарастает до максимума. В момент поступления сигнала от датчика ток резко прекращается.
ЭДС самоиндуции зависит не только от индуктивности, но и от скорости уменьшения тока. Современные транзисторы могут оборвать ток настолько быстро, что никаким контактам и не снилось 🙂
PS Все цифры взяты с потолка и отражают только принципы процессов.
: Ну, скажем, нормальная искра возникает при прерывании тока через катушку силой в 5 ампер. Катушка может выдержать этот ток в течении 200 мс. Если, например, двигатель остановится при включенном зажигании и контакты трамблера окажутся замкнутыми, то рабочий ток (т.е. 5A) будет протекать постоянно — через секунду-другую катушка сгорит. Такая ситуация очень вероятна при пуске. : : Павел : : PS Все цифры взяты с потолка и отражают только принципы процессов. :
Какое напряжение на свече зажигания
Свеча зажигания — устройство для поджига топливо-воздушной смеси в бензиновых двигателях внутреннего сгорания. Поджиг производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи.
Свеча зажигания является решающим фактором в определении оптимальной работы и надежного функционирования бензинового двигателя. Задачей свечи зажигания является подача высокого напряжения, генерированного в катушке зажигания, к камере сгорания, и воспламенение топливно-воздушной смеси. Между тем, свеча зажигания является предметом чрезвычайных и часто изменяющихся режимов работы, таких как «прекращение и начало» дорожного движения в городе или вождение по автострадам на полном газу.
Требования к современным свечам зажигания: * надежная работа при высоких напряжениях (до 40,000 вольт), * хорошие изоляционные свойства (при температуре в 1000 °С), * сопротивляемость химическим процессам в камере сгорания и агрессивным отложениям, * сопротивляемость тепловому удару, * изолятор и электроды должны обладать хорошей теплопроводностью.
Мало кто из автолюбителей придает особое значение выбору свечей зажигания. Однако свечи являются важнейшим элементом системы зажигания, ведь от устойчивости и своевременности искрообразования зависит стабильность работы всего двигателя. К основным характеристикам свечи можно отнести: калильное число, способность к самоочищению, величину искрового промежутка, число боковых электродов, срок службы, тепловую характеристику свечи и рабочую температуру свечи. Теперь обо всем этом подробно.
Первое, на что следует обращать внимание при выборе, — это калильное число. Данный параметр является условным и показывает, при каком давлении в цилиндре двигателя возникает калильное зажигание – воспламенение смеси не от искры, а от контакта с нагретыми участками свечи. Калильное число выбранной свечи должно строго соответствовать рекомендованному для вашего двигателя. Допускается непродолжительное использование свечей с несколько большим значением калильного числа, но категорически запрещается использовать свечи с меньшим значением, так как это может привести к самым печальным последствиям, вплоть до пробоя прокладки головки блока цилиндров, прогорания поршней, клапанов и т. д.
Способность к самоочищению
Тоже является условной характеристикой, не поддающейся количественной оценке. В процессе работы двигателя часть продуктов сгорания топливовоздушной смеси осаждается на поверхности камеры сгорания, поршнях и на тепловом конусе свечи.
Практически все производители говорят о том, что их свечи обладают высокой способностью к самоочищению, однако проверить правдивость подобных заявлений можно только на практике. В идеале свеча, прогревшаяся до рабочей температуры, вообще не должна покрываться нагаром, однако в реальных условиях добиться этого невозможно.
Теперь настала пора поговорить о том, чем вреден образовавшийся нагар.
Это расстояние между центральным и боковым электродами. Для каждого типа свечей завод-изготовитель устанавливает определенный зазор, и дальнейшая его регулировка не предусмотрена. Если же вы каким-то образом изменили его величину, то «бюджетный» вариант решения проблемы – восстановление первоначального зазора, разумный — замена свечи.
Число боковых электродовСвечи зажигания (NGK, Denso)
Классическая конструкция свечи предполагает один центральный электрод и один боковой. Однако некоторое время назад производители начали изготавливать двух-, трех- и даже четырехэлектродные модели. Бытует ошибочное мнение, что в процессе их работы образуются две, три и четыре искры соответственно. Это неверно. Просто искрообразование становится устойчивее, обуславливая более стабильную работу двигателя в режиме малых оборотов, улучшается процесс поджига смеси и, наконец, увеличивается срок службы самого изделия.
Недавно в продаже появились свечи вообще без боковых электродов, роль которых выполняют дополнительные, расположенные на изоляторе. Вот при такой конструкции как раз и возникает несколько разрядов, причем не все сразу, а по очереди, образуя тем самым «гуляющую» искру. Подобные конструкции являются весьма перспективными, так как объективно обеспечивают более надежное воспламенение смеси. Однако вследствие усложнения технологии производства они имеют и более высокую цену.
Рабочая температура свечи
Это температура рабочей части свечи при данном режиме двигателя. На всех режимах работы мотора она должна лежать в пределах от 500 до 900 градусов Цельсия. Как бы не различались тепловые потоки, бушующие в камере сгорания при пуске, работе на холостом ходу и режиме полной мощности, температура свечи не должна выходить из указанного поля допуска. Так как понижение температуры приведет к образованию нагара на изоляторе, способного шунтировать («закоротить») межэлектродный зазор и вызвать перебои в искрообразовании. А при повышении возникнет калильное зажигание.
Этот неуправляемый процесс способен полностью нарушить строго согласованный рабочий цикл двигателя и резко снизить его мощность. Помимо этого повышение средней температуры электродов сокращает срок службы самой свечи.
Тепловая характеристика свечи
Это зависимость температуры теплового конуса изолятора и центрального электрода (рабочей температуры свечи) от режима работы двигателя. Для увеличения рабочей температуры теплового конуса увеличивают его длину, однако выше 900 градусов разогревать конус нельзя, так как при этом возникает калильное зажигание.
Исходя из тепловой характеристики все свечи можно условно поделить на «горячие» и «холодные».
«Горячие» свечи предназначены для применения на двигателях, где необходимо достижение температуры самоочищения от нагара при относительно небольших тепловых нагрузках. Свечи, «горячее» положенных для данного двигателя, будут вызывать калильное зажигание.
«Холодные» свечи используются когда предусмотрен нагрев меньше температуры калильного зажигания при максимальной мощности двигателя. Свечи «холодные» для данного двигателя не будут достигать температуры самоочищения от нагара и перестанут работать через короткий промежуток времени.
Технологии «двойного металла»Свечи зажигания
Казалось бы, что еще нового можно привнести в конструкцию свечи? Оказывается – очень многое. На самом деле свеча имеет гораздо более сложное «внутреннее строение», чем принято считать.
В настоящее время многими производителями освоено производство свечей с составными, биметаллическими центральными электродами. По внешнему виду они ничем не отличаются от обычных – центральный электрод вроде бы также выполнен из хромоникелевого сплава. Но внутри — медь, теплопроводность которой заметно выше. Это позволяет улучшить процесс самоочистки от нагара и повысить защиту от перегрева. Диапазон рабочих температур у них значительно расширен, поэтому они получили название «термоэластик».
«Термоэластичные» свечи способны достигать нижнего температурного предела тепловой характеристики при наименьшей эффективной мощности, развиваемой двигателем.
Кроме того, применение биметаллических электродов снижает термонагруженность свечи, благодаря чему значительно увеличивается срок службы. Кстати, биметаллическим может быть не только центральный, но и боковой электрод, что еще больше расширяет температурный диапазон работы свечи.
Появление особо форсированных моторов с турбонаддувом заставило искать материалы с более высокой эрозионной стойкостью, чем хромоникелевые сплавы. В результате появились свечи с центральным электродом из платиновых или иридиевых сплавов. По температурным характеристикам такие модели не имеют преимуществ перед обычными, вот только служить они будут как минимум в 2 раза дольше биметаллических, а цена их в 2—3 раза выше.
Чего ждать от нагара?Свечи зажигания, нагар
По образующемуся нагару происходит утечка энергии на корпус, значительно ослабляющая мощность электрической дуги между центральным и боковым электродами свечи (т.е. искру). Может случиться, что нагар полностью заполнит пространство между электродами, образуя электропроводный мостик, что полностью выведет свечу из строя. В большинстве случаев количество отложений, достаточное для потери свечей работоспособности, возникает при неисправности системы питания и неверно выставленном угле опережения зажигания. Если вы обнаружили, что свечи серьезно «закоптились», не пытайтесь отмачивать их в бензине или ацетоне с тем, чтобы затем очистить щеткой. Дело в том, что на поверхности электродов большинства современных свечей производится напыление благородных металлов. Таким образом, проводя вышеуказанные процедуры, вы буквально обдерете свечу, как липку, что только ухудшит ее характеристики. Кроме того, вы рискуете изменить величину искрового промежутка, чем окончательно нарушите ее работу.
Если уж по каким-то причинам нет возможности приобрести новый комплект свечей (что является самым разумным решением), то просто на время немного прикрутите винт токсичности (совет подходит только для карбюраторных двигателей) в сторону обеднения смеси. После пробега 50—100 километров нагар самоликвидируется, если только причина его возникновения не кроется в нарушении нормальной работы какой-либо из систем двигателя.
О цвете и запахе
Срок службы правильно подобранной свечи во многом зависит не только от ее конструкции, но и от исправности систем питания, зажигания, а также деталей самого двигателя.
Ну а сами свечи зажигания вполне можно отнести к уникальным деталям, по внешнему виду которых можно судить о неисправностях тех или иных систем силового агрегата. Итак, переходим непосредственно к цветам отложений.
Светло-серый или светло-коричневый может быть вызван наличием небольшого количества отложений продуктов сгорания, заметных также на боковых поверхностях электродов. Эрозия практически отсутствует. Значит, двигатель и все его системы работают нормально, и в топливном баке у вас залит качественный бензин.
Черный свидетельствует о том, что на каких-то режимах двигателя система питания переобогащает топливовоздушную смесь. Она не сгорает полностью и образует большое количество копоти.
При загрязнении топливом изолятор и электроды свечи покрыты влажными отложениями черного цвета, а свеча пахнет бензином. Кроме того, причиной подобного явления может стать нестабильная работа системы зажигания, приводящая к сбоям искрообразования, а также использование чрезмерно «холодной» свечи.
Если электроды и изолятор свечи покрыты шлаком, имеющим маслянистый блеск, то можно сделать вывод о загрязнении свечи маслом. При длительной эксплуатации такой свечи, и не устраняя причину, можно получить полностью закоксованые продуктами сгорания масла изолятор и электрод. К этому приводит попадание масла в камеру сгорания, которое может быть вызвано износом маслосъемных колпачков, направляющих втулок клапанов, маслосъемных поршневых колец.
Иные, не так часто встречающиеся, но все же возможные причины — подтекание тормозной жидкости через поврежденную диафрагму вакуумного усилителя и просачивание во впускной коллектор трансмиссионной жидкости через мембрану вакуум-корректора (для машин с автоматической КПП). Чтобы уточнить причину, необходимы дополнительные диагностические методы. Возможна такая картина и на первых километрах пробега при обкатке нового двигателя или после ремонта, когда кольца еще не приработались.
Если в бак вашего автомобиля регулярно попадает этилированный бензин, то неизбежно отложение свинца на поверхности изолятора и электродов. Их поверхность покрывается пористыми отложениями, обладающими резким запахом сероводорода. Цвет этих отложений зависит от видов применяемых в бензине присадок и может изменяться от грязно-белого до темно-коричневого. Как показывает практика, срок службы свечей при использовании этилированного бензина сокращается как минимум вдвое.
Износ и остекленение
В ряде случаев происходит износ свечи. Изолятор имеет нормальный цвет, а кромки бокового и центрального электродов скруглены в результате эрозионного износа. Электродный зазор недопустимо увеличен. Такая свеча гарантирует проблемы при запуске двигателя, особенно в холодное время года, и увеличение расходов на топливо. Причина одна — несвоевременная проверка и замена свечей. Выгоревшие или сильно корродированные электроды, выгоревший «изъязвленный» изолятор — симптомы перегрева свечи. Причина — слишком низкое калильное число, неправильная установка зажигания, низкооктановый бензин. Менее вероятны, но возможны и другие причины — слишком бедная смесь, зависание клапана, плохое охлаждение и перегрев двигателя. Результат в любом случае один — калильное зажигание и сильная детонация. Если вы эксплуатируете автомобиль преимущественно в тяжелых условиях, поставьте более «холодные» свечи.
Если вы часто допускаете перегазовки и «кик-дауны», то у вас есть все шансы узнать, что такое остекленение свечи. Поверхность изолятора приобретает желтоватый цвет с глянцевым блеском. Образование глазури происходит из-за быстрого повышения температуры в камере сгорания в момент резкого нажатия на педаль газа. При разогреве находящиеся на поверхности изолятора отложения плавятся, образуя электропроводное стекловидное покрытие. В результате возникают сбои искрообразования, особенно на высоких оборотах двигателя. В большинстве случаев восстановлению такие свечи не подлежат.
Причины калильного зажигания и детонации
При перегреве электродов и изолятора возникает калильное зажигание. Следствием перегрева является оплавление электродов. Как правило, причиной перегрева служит неверный выбор типа свечи (более горячей, чем требуется). Если же свеча выбрана правильно, то следует искать неисправность в системе питания. Возможно, смесь переобеднена по причине нарушения регулировок карбюратора или неисправности одного из датчиков (на двигателях с впрыском топлива), как правило — ДМРВ. Также необходимо убедиться в отсутствии подсоса постороннего воздуха во впускной коллектор и проверить регулировку клапанов, так как неверно установленный угол опережения зажигания тоже может служить причиной перегрева свечей.
При использовании низкооктанового бензина, а также при нарушении регулировки зазора между электродами и слишком раннего зажигания может возникать детонация. Как следствие трескается или даже выкрашивается тепловой конус свечи. Гораздо большую опасность детонация имеет для поршневой группы и может послужить причиной прогорания поршней. Определить наличие детонации можно по повышенной вибрации двигателя и регулярному «постреливанию» из выхлопной трубы на холостом ходу (не путать с «вытраиванием» двигателя).
Чуть-чуть о ресурсе
Современные свечи зажигания при эксплуатации на полностью исправных и отрегулированных двигателях должны в соответствии с ОСТ 37. 003 081 бесперебойно работать в течение 30 тыс. км пробега для классической и 20 тыс. км для электронной системы зажигания. По мнению специалистов, фактический ресурс примерно вдвое выше, но труднодостижим из-за необходимости идеальных условий эксплуатации свечей, которые возможны не всегда. Однако с учетом прогресса в области новых технологий ресурс современных свечей, при условии исправности всех систем двигателя, составляет в среднем 50 тыс. км.
Безусловно, выбирая свечи, необходимо руководствоваться не только требуемыми характеристиками, но и здравым смыслом. Ведь если вы являетесь владельцем ВАЗовской «классики», двигатель которой является архаизмом во всех отношениях, то ставить свечи по $10—20 за штуку по меньшей мере неразумно. И наоборот, трудно представить себе владельца Lexus, покупающего дешевые свечи с ресурсом не более 20 тыс. км.
Если двигатель с трудом запускается, работает с перебоями, в первую очередь следует проверить исправность свечей зажигания.
Свеча зажигания сохраняет работоспособность при не изношенных электродах, герметичном корпусе, неповрежденных тепловом конусе и изоляторе, а также исправном добавочном резисторе (если он присутствует в конструкции данного узла).
Существует несколько способов определения работоспособности свечей зажигания: испытания «на искру», внешний осмотр, проверка электроцепи. Первый способ наиболее полно осуществим в условиях СТО (с применением спецоборудования). Автовладельцы могут провести самостоятельную проверку «на искру» только упрощенным способом.
Проверить искрообразование свечей можно с помощью диагностического тестера, стенда с барокамерой или пьезоэлектрического пробника-«пистолета».
Катушка системы зажигания двигателя — элемент системы зажигания, который служит для преобразования низковольтного напряжения, поступающего от аккумуляторной батареи или генератора, в высоковольтное.
Основная функция катушки зажигания — генерация высоковольтного электрического импульса на свече зажигания.
Содержание
Устройство [ править | править код ]
Катушка зажигания представляет собой высоковольтный импульсный повышающий трансформатор (упрощённая катушка Румкорфа) системы зажигания ДВС, первичная обмотка которого имеет сравнительно небольшое количество витков толстого провода и рассчитана на импульсы низкого напряжения, например 12 вольт (6 вольт на старых автомобилях и мотоциклах), вторичная обмотка выполнена из тонкого провода с большим количеством витков, благодаря чему во вторичной обмотке создаётся высокое импульсное выходное напряжение до 25 000 — 35 000 вольт по формуле: напряжение = индукция в витке × количество витков. Высокое напряжение от катушки зажигания с помощью высоковольтного кабеля подаётся на распределитель (трамблер), от него с помощью высоковольтных кабелей напряжение распределяется по свечам зажигания. Высокое напряжение обеспечивает искру между электродами свечи, тем самым воспламеняя топливо-воздушную смесь.
Раньше катушки зажигания делали с незамкнутым магнитопроводом, в настоящее время появились трансформаторы зажигания с замкнутым магнитопроводом.
Принцип действия [ править | править код ]
Через первичную обмотку катушки зажигания протекает постоянный ток. Когда поршень подходит к верхней мёртвой точке, цепь первичной обмотки разрывается размыканием контактов прерывателя (это происходит или механическим путём, когда контакты размыкаются кулачком на валу, или с помощью электронных (транзисторных или тиристорных) ключей, в которых управляющий импульс формируется электронной схемой (контактной или бесконтактной, положение коленчатого вала определяется с помощью датчика Холла, индуктивного или иного датчика).
Согласно закону электромагнитной индукции, ЭДС, индуцируемая изменением силы тока в соседнем контуре, равна
E = − L 12 d I d t <displaystyle <mathcal >=-L_<12><frac
>> ,
учитывая мгновенное изменение силы тока (одномоментное размыкание), следовательно, большое значение производной, а также взаимную индукцию обмоток L 12 ∝ N 1 N 2 <displaystyle L_<12>propto N_<1>N_<2>> , где N 2 <displaystyle N_<2>> очень большое число (десятки тысяч витков), во вторичной обмотке наводится импульс э.д.с. амплитудой в десятки киловольт. Высокий потенциал от катушки передаётся на свечи с помощью высоковольтных проводов (изначально применённых Г. Хонольдом в системе зажигания с магнето), и обеспечивает пробой зазора между электродами свечи зажигания.
На некоторых образцах мото- и автотехники с двухцилиндровыми двигателями (например, мотоциклы «Днепр», мотоциклы «Урал», автомобили «Ока») применяются двухискровые катушки зажигания (искра проскакивает одновременно на двух свечах). Топливо-воздушная смесь воспламеняется только в одном цилиндре, так как в другом проходит такт выпуска и воспламеняться нечему.
В последнее время получили распространение индивидуальные катушки зажигания на каждую свечу (по числу цилиндров).
Добавочное сопротивление [ править | править код ]
В ряде случаев последовательно первичной обмотке катушки зажигания включается добавочное сопротивление (или дополнительный резистор). На низких оборотах контакты прерывателя оказываются бо́льшую часть времени в замкнутом состоянии и через обмотку протекает ток, более чем достаточный для насыщения магнитопровода. Избыточный ток бесполезно нагревает катушку.
Спираль дополнительного резистора изготавливается из стального сплава, имеющего высокий температурный коэффициент электрического сопротивления. При прохождении избыточного тока сопротивление спирали увеличивается и сила тока уменьшается, таким образом происходит автоматическое регулирование. На высоких оборотах, когда контакты бо́льшую часть времени разомкнуты, нагрев резистора менее значителен (сопротивление спирали невелико). При запуске двигателя добавочное сопротивление шунтируется контактами реле стартера, тем самым повышается энергия электрической искры на свече зажигания.
Некоторые неопытные водители пытаются (бесполезно или с большим трудом) запустить пусковой рукояткой двигатель при «севшем» аккумуляторе, не зная, что нужно принудительно временно шунтировать добавочный резистор (какой-нибудь проволочкой).
Рабочие характеристики [ править | править код ]
К рабочим характеристикам катушки зажигания относят:
Индуктивность первичной обмотки;
Сопротивление первичной и вторичной обмотки;
Коэффициент трансформации;
Энергия искры;
Напряжение пробоя;
Количество образующихся искр в минуту.
Индуктивность [ править | править код ]
Индуктивность характеризует способность катушки накапливать энергию. Измеряется в Гн – генри, единицах измерения, названных в честь американского ученого Дж. Генри. Энергия, которая накапливается в первичной обмотке, пропорциональна индуктивности. Чем выше индуктивность, тем больше энергии может накопить катушка.
Коэффициент трансформации [ править | править код ]
Коэффициент трансформации показывает, во сколько раз катушка зажигания увеличивает первичное напряжение. На первичную катушку подается напряжение от аккумулятора в 12 В. Когда первичная цепь разрывается, ток в цепи изменяется — от 6-20 ампер, до 0. Изменение тока в катушке приводит к возникновению ЭДС индукции и образованию напряжения в первичной катушке в 300-400 В. Коэффициент трансформации катушки показывает, во сколько раз увеличивается именно это напряжение. Определяется отношением числа витков вторичной катушки к числу витков первичной катушки, или отношением пробивного напряжения свечи к разнице максимально допустимого напряжение между коллектором и эмиттером транзистора и напряжения бортовой сети питания, которые известны из производственных характеристик катушки зажигания и автомобиля.
Сопротивление [ править | править код ]
В первичной обмотке – 0,25-0,55 Ом. Во вторичной обмотке – 2-25 кОм. Мощность и энергия искры обратно пропорциональны сопротивлению первичной обмотки катушки: чем оно выше, тем ниже мощность и энергия искры.
Энергия искры [ править | править код ]
Полезная энергия искры расходуется в течение 1,2 мс [1] – время, за которое сгорает воздушно-топливная смесь. Энергия искрового разряда составляет 0,05-0,1 Дж. В свече зажигания искра образуется вследствие явления дугового разряда, когда между двумя электродами, находящимися в газе, происходит электрический пробой. Напряжение на электродах зависит от размера диаметра свечи и его материала, зазора между электродами и от состава воздушно-топливной смеси, давления в камере сгорания и температуры. Во время старта двигателя и разгона автомобиля напряжение на электродах – максимальное, так как свеча не разогрета. При постоянной скорости – напряжение минимально. Чтобы свеча работала эффективно и не давала пропусков, напряжение, генерируемое катушкой, должно быть в 1,5 больше, чем напряжение, необходимое для пробоя зазора.
Напряжение пробоя [ править | править код ]
В зазоре между электродами свечи зажигания происходит пробой, когда напряжение на электродах становится равным напряжению пробоя. Значение напряжения пробоя зависит от величины зазора между электродами, давления и температуры воздушно-топливной смеси. При первом запуске двигателя напряжение должно быть выше, чтобы произошел пробой и образовалась искра, так как топливо и воздух в камере сгорания холодные.
Расчет числа искрообразований в системе зажигания [ править | править код ]
Чтобы рассчитать, сколько раз образуется искра в минуту в системе зажигания, нужно знать число оборотов в минуту двигателя и количества цилиндров. N – столько раз образуется искра в минуту. N= (Обороты/мин*число цилиндров) / (количество тактов двигателя 2 или 4). Для 6-цилиндрового двигателя при скорости вращения в 4000 об/мин число искрообразований равно: N=6*4000/4=6 000 раз в минуту.
Без чего никогда не обойдется бензиновый двигатель, так это без искры, в момент когда нужно поджечь топливную смесь в цилиндре. Для этого создана система зажигания автомобиля. Еще её называют Искровая система зажигания.
Эволюция этой системы происходила от простой контактной системы зажигания, затем с развитием технического прогресса появились бесконтактная, транзисторная. И венцом нашего времени пока является электронная система зажигания. Все эти способы управления искрой мы рассмотрим в статьях.
А пока кратко пробежимся по основным принципам каждой системы.
Контактная система зажигания
Главный узел в этой системе, это прерыватель-распределитель. В этой системе происходит все механическим способом.
Контактная группа (прерыватель), пробегая по выступам кулачкового вала, прерывает контакты. В зависимости от того, какова частота вращения вала, импульсы низкого напряжения подаются на катушку-преобразователь, напряжение преобразуется в высокое и подается на свечи зажигания.
Этот ток распределяется на каждый цилиндр тоже механическим узлом – распределителем. Скомпонован этот узел в один механизм прерыватель-распределитель (трамблер)
Контактно-транзисторная система зажигания
Следующим этапом развития искрообразования явилась транзисторная схема управления высоким напряжением.
Транзистор, пропуская через себя низкое напряжение, идущее от контактной группы, управляет работой преобразователя токов (катушка) и преобразует их в ток до 30 тыс. вольт, для получения мощной искры.
Такая система позволила снизить напряжение на контактах, увеличив срок их службы. Позволила увеличить мощь искры и её стабильность, что соответственно сказалось на надежности и стабильности работы двигателя.
Бесконтактная система зажигания автомобиля
В этой системе зажигания роль прерывателя выполняет специальный коммутатор, который взаимодействуя с датчиком, генерирует импульсы управляющего низкого напряжения.
Затем эти импульсы подаются, как в контактной и контактно-транзисторной системах, на преобразователь напряжения (катушку) и далее через механический распределитель к свечам.
Такая система по сути исключила всякий механический контакт при прерывании тока. Контакты прерывателя, доставлявшие не мало хлопот автомобилистам, оказались не нужны и следовательно отпала необходимость в их обслуживании.
А надежность и стабильность работы двигателя увеличилась в разы. Повысилась мощность и экологичность бензиновых двигателей.
Но прогресс не стоит на месте, и с развитием электроники, появилась система высочайшего уровня – электронная.
Электронная система зажигания
Такая система уже работает вместе с другими системами управления двигателем.
Многочисленные датчики отслеживают все режимы работы двигателя, вплоть до состояния выхлопных газов, фиксируют и выдают информацию блоку управления двигателем.
Электронный блок управления обрабатывает сигналы и посылает управляющее наряжение на управляющий транзистор, который в свою очередь осуществляет в нужное время отсечки в первичной обмотке катушки. Во вторичной обмотке наводится высокое напряжение и образуется искра.
Датчики, следящие за частотой вращения коленчатого вала и датчики положения распредвалов передают информацию ЭБУ, которая перерабатывается и выдается команда на соответствующий угол опережения зажигания.
Так же, если на двигатель увеличивается нагрузка, датчик расхода воздуха посылает команду на ЭБУ, который расчитывает оптимальный угол опережения зажигания на соответствующую нагрузку.
Такая система совершенна во всех отношениях. Она позволяет:
использовать её на любых карбюраторных двигателях;
увеличить в полтора раза напряжение искры, мощность которой будет до 30 киловатт, на любых режимах работы двигателя;
исключить износ прерывателей;
увеличить зазор на контактах свечей до 1,2 мм.;
облегчить заводку в холодное время года;
исключает регулировочные и профилактические работы.
Единственный недостаток такой системы, это удорожание. Хотя оно того стоит!
На этом всё, надеюсь понятно что такое система зажигания автомобиля.
Система зажигания — принцип работы и виды систем зажигания Лада Калина / Lada Kalina (ВАЗ 1118, 117, 1119)
Данная статья описательная и универсальна для всех марок автомобилей
В состав системы зажигания входят узлы и соединительные провода, необходимые для формирования и подачи высокого напряжения на свечи зажигания в заданной последовательности.
ПРИНЦИП РАБОТЫ СИСТЕМЫ ЗАЖИГАНИЯ
В состав системы зажигания входят узлы и провода, необходимые для формирования высокого напряжения (до 40 000 В и выше). Во всех системах зажигания на плюсовой вывод катушки зажигания подается напряжение бортовой сети, а ее минусовой вывод через коммутатор подключается на «массу» автомобиля. Когда минусовой вывод катушки зажигания подключен на «массу», через первичную, низковольтную обмотку катушки зажигания течет ток, возбуждающий магнитное поле. При разрыве цепи магнитное поле исчезает, индуцируя во вторичной (высоковольтной) обмотке катушки зажигания высоковольтный импульс. В системах зажигания классической схемы замыкание и размыкание контакта катушки зажигания на «массу» осуществляется механическим прерывателем. В электронных системах зажигания это делает электронный модуль по сигналу магнитоэлектрического датчика, или триггера.
Катушки зажигания
Катушка зажигания — это «сердце» любой системы зажигания. В этой катушке создается высоковольтный импульс за счет электромагнитной индукции. Многие конструкции катушек зажигания состоят из двух отдельных, но электрически соединенных друг с другом, медных обмоток. Другие представляют собой классические трансформаторы — в них первичная и вторичная обмотки полностью изолированы друг от друга (рис. 5.1).
Сердечник (магнитопровод) катушки зажигания набирается из пластин трансформаторного железа (тонких листов магнитомягкого железа). Сердечник увеличивает индуктивную связь между катушками. На наборном сердечнике намотана обмотка, состоящая приблизительно из 20 ООО витков тонкого провода (калибра, примерно, 42-AWG). Эта обмотка
Рис. 5.1. Конструкция катушки зажигания с масляным охлаждением. Обратите внимание на то, что первичная и вторичная обмотки электрически соединены друг с другом. Полярность выводов катушки определяется направлением ее намотки
называется вторичной (повышающей) обмоткой катушки зажигания. Поверх нее намотана обмотка, состоящая приблизительно из 150 витков толстого провода (калибра, примерно, 21-AWG). Эта обмотка называется первичной обмоткой катушки зажигания. Во многих конструкциях катушек зажигания эти обмотки окружены тонким металлическим экраном, изолированы электроизоляционной бумагой и помещены в металлический корпус. Корпус катушки зажигания обычно заполняется трансформаторным маслом с целью лучшего охлаждения. В HEI-системах зажигания компании GM (high-energy ignition — система зажигания с искрой повышенной мощности) используются так называемые Е-катушки, которые по конструкции представляют собой катушку зажигания, намотанную на наборном железном сердечнике Е-образной формы и залитую эпоксидной смолой. Охлаждение Е-катушки — воздушное (рис. 5.2 и 5.3).
Рис. 5.2. Пример Е-катушки зажигания с эпоксидной заливкой и воздушным охлаждением
Как в катушке зажигания создается напряжение 40 киловольт
Напряжение на плюсовой контакт первичной обмотки катушки зажигания поступает с плюсовой клеммы аккумуляторной батареи через замкнутые контакты замка зажигания. Минусовой контакт первичной обмотки замывается на «массу» через электронный модуль управления зажиганием.
Когда эта цепь замкнута, через первичную обмотку катушки зажигания течет ток величиной, примерно, от 3 А до 8 А. Этот ток создает в катушке зажигания мощное магнитное поле. Когда контакт первичной обмотки катушки зажигания на «массу» разрывается, магнитное поле резко убывает, наводя во вторичной обмотке катушки высоковольтный импульс — напряжением от 20 000 В до 40 000 В и током небольшой (от 20 мА до 80 мА) силы. Этот высоковольтный импульс через контакты распределителя зажигания поступает по высоковольтным проводам на свечи зажигания. Чтобы проскочила искра, катушка зажигания должна «зарядиться» от низковольтной первичной сети и снова разрядиться.
Рис. 5.4. Схема типичной системы зажигания с электронным прерывателем, в которой используется добавочное сопротивление и механический распределитель зажигания. С целью защиты катушки зажигания от перегрева на пониженных оборотах двигателя во многих электронных системах зажигания вместо добавочного сопротивления используются специальные электронные схемы, которые работают в составе электронного модуля управления зажиганием
Схема, управляющая током первичной обмотки катушки зажигания — подключающая ее к источнику питания и отключающая ее от него, называется первичной цепью системы зажигания. Схема, обеспечивающая формирование и распределение высокого напряжения, создаваемого в высоковольтной обмотке катушки зажигания, называется вторичной цепью системы зажигания (рис. 5.4 и 5.5).
Рис. 5.5. Пример типичной катушки зажигания НЕ1-системы зажигания компании General Motors, установленной в крышке распределителя. При замене катушки зажигания и/или распределителя зажигания обязательно проверьте, чтобы клемма массы была переставлена со старой крышки распределителя на новую. Отсутствие надлежащего контакта с массой может привести к повреждению катушки зажигания. В HEI-системах зажигания используются два варианта катушек зажигания. Первый вариант отличается тем, что выводы первичной обмотки имеют изоляцию красного и белого цвета — он показан на фотографии. Во втором варианте катушка включена в обратной полярности, изоляция выводов — красного и желтого цвета
Работа первичной цепи
Для формирования импульса высокого напряжения во вторичной обмотке катушки зажигания необходимо замкнуть и разомкнуть цепь первичной обмотки. Замыкание и размыкание первичной цепи зажигания осуществляется силовым транзистором (электронным прерывателем), установленным в электронном модуле управления зажиганием, управление которым, в свою очередь, осуществляется по сигналам различных датчиков:
• Магнитоэлектрический датчик положения ротора распределителя зажигания (импульсный генератор). Этот датчик, установленный в корпусе распределителя зажигания, создает сигнал переменного напряжения, по которому производится переключение транзисторного прерывателя в модуле управления зажиганием (рис. 5.6 и 5.7).
Рис. 5.6. Принцип работы магнитоэлектрического датчика (генератора импульсов). На приведенном внизу рисунке показана типичная осциллограмма выходного напряжения этого магнитоэлектрического датчика. Импульсный сигнал с выхода датчика поступает в электронный модуль управления зажиганием, который разрывает контакт первичной обмотки на «массу» в тот момент, когда напряжение импульса достигает максимума и начинает снижаться (это происходит в тот момент, когда зубец стального зубчатого диска начинает удаляться от катушки датчика)
Рис. 5.7. Импульсный сигнал, поступающий с выхода магнитоэлектрического датчика, управляет работой электронного модуля, который замыкает вывод первичной обмотки катушки зажигания на «массу» и размыкает его, генерируя высоковольтный импульс во вторичной цепи
• Датчик Холла. Установленные в корпусе распределителя зажигания или рядом с коленчатым валом интегральные датчики Холла формируют прямоугольный импульсный сигнал. Импульсный сигнал с выхода датчика, содержащий информацию о положении поршней и скорости вращения двигателя, поступает в модуль управления зажиганием и бортовой компьютер (рис. 5.8 и 5.9).
Рис. 5.8. В интегральном датчике Холла используются металлические дисковые обтюраторы, шунтирующие силовые линии магнитного поля, экранируя от него датчик Холла, изготовленный по микроэлектронной технологии вместе со схемой усиления. Все интегральные датчики Холла формируют прямоугольные импульсы, обеспечивающие очень точную синхронизацию работы модуля управления зажиганием
Рис. 5.9. Зубец обтюратора на вращающемся роторе проходит в зазоре между интегральным датчиком Холла и постоянным магнитом
• Магнитоэлектрические датчики углового положения коленчатого вала. В этих датчиках сигнал формируется за счет изменения напряженности магнитного поля, окружающего катушку датчика. Этот сигнал, содержащий информацию о положении поршней и скорости вращения двигателя, поступает в модуль управления зажиганием и бортовой компьютер (рис. 5.10).
Рис. 5.10. Датчик переменного магнитного сопротивления (VRS) представляет собой катушку индуктивности, намотанную на постоянном магните. Зубцы магнитного обтюратора, закрепленного на коленчатом валу (или распределительном валу), проходя мимо катушки датчика, вызывают изменение напряженности магнитного поля, окружающего ее. Когда выступ обтюратора приближается к катушке, напряженность магнитного поля возрастает, потому что в металле концентрация силовых линий магнитного поля выше, чем в воздухе
• Оптические датчики. Эти датчики бортовой компьютерной системы управления двигателем изготавливаются на основе светодиода и фототранзистора. Вращающийся диск с прорезями (обтюратор) модулирует поток излучения светодиода, в результате чего на выходе фотоприемника появляется импульсный сигнал. В оптических датчиках (обычно устанавливаемых в корпусе распределителя зажигания), как правило, предусматривается два ряда прорезей, что обеспечивает формирование отдельных сигналов для опознавания цилиндров (сигнал низкого разрешения) и прецизионного измерения угла поворота ротора распределителя зажигания (сигнал высокого разрешения) (рис. 5.11).
Рис. 5.11. Оптический датчик-распределитель на шестицилиндровом V-образном двигателе Nissan объемом 3 литра со снятым оптическим экраном (а). Перед установкой ротора датчик закрывают оптическим экраном (6)
Бесконтактные системы зажигания
В системе зажигания с непосредственным подключением катушки зажигания к свечам зажигания — называемой также бесконтактной системой зажигания (DIS) или просто электронной системой зажигания (IE) — распределитель зажигания отсутствует. В этой системе зажигания оба вывода катушки подключены каждый к своему цилиндру, причем цилиндры выбраны так, что их рабочие циклы находятся в про-тивофазе друг с другом (рис. 5.12). Это означает, что искра возникает одновременно в обеих свечах зажигания! Когда в одном из цилиндров (например, №6) идет такт сжатия, в другом цилиндре (№3) — в то же самое время — идет такт выпуска отработанных газов.
Рис. 5.12. В бесконтактной системе зажигания искра возникает одновременно в двух цилиндрах — рабочем, в котором идет такт сжатия, и парном, или оппозитном, в котором в это же самое время идет такт выпуска отработанных газов. В типичном двигателе для возникновения холостой искры в цилиндре, в котором идет такт выпуска, обычно достаточно напряжения от 2 до 3 кВ. Остальная энергия, накопленная катушкой зажигания, расходуется в том цилиндре, в котором идет такт сжатия (типичное напряжение составляет от 8 до 12 кВ)
Оптический датчик-распределитель не любит внешней засветки
Принцип работы оптического датчика-распределителя системы зажигания заключается в импульсном освещении фототранзистора датчика излучением, создаваемом свето-диодом. В конструкции оптического датчика-распределителя зажигания, как правило, между ротором распределителя зажигания и кольцевым оптическим обтюратором, модулирующим поток излучения светодиода, устанавливается оптический экран. Искра, проскакивающая между контактом ротора и контактами высоковольтных проводов в крышке распределителя зажигания в процессе работы распределителя, создает паразитную засветку. Оптический экран защищает оптический датчик от внешней засветки, создаваемой искрением контактов распределителя зажигания.
Если выполняя техническое обслуживание, вы забудете установить оптический экран на место, оптический сигнал датчика из-за внешней засветки будет ослаблен, что может привести к нарушению нормальной работы двигателя. Такую неисправность трудно выявить из-за отсутствия внешних признаков. Не забывайте, что в оптическом датчике-распре-делителе между кольцевым оптическим обтюратором и ротором обязательно должен стоять оптический экран.
Искра, возникающая в такте выпуска, называется холостой искрой, потому что она не выполняет полезной работы, а обеспечивает только замыкание на «массу» вывода вторичной обмотки катушки зажигания. Напряжение, необходимое для пробоя разрядного промежутка свечи зажигания цилиндра №3 (в такте выпуска), находится в пределах всего лишь от 2 кВ до 3 кВ и обеспечивает соединение на землю вторичной цепи зажигания. Остальная энергия, накопленная катушкой зажигания, расходуется в том цилиндре, в котором идет такт сжатия. В каждой паре свечей зажигания одна свеча включена в прямой полярности, а другая — в обратной полярности. Обратная полярность включения не сильно отражается на ресурсе свечи. Но выход из строя одного из высоковольтных проводов или одной из свеч зажигания может привести к неработоспособности сразу двух цилиндров.
ПРИМЕЧАНИЕ
В системе зажигания с механическим распределителем зажигания существуют два разрыва во вторичной цепи зажигания: первый — между контактами ротора и клеммами, установленными в крышке распределителя (находится под атмосферным давлением), и второй — разрядный промежуток между электродами свечи зажигания (находится под повышенным давлением в такте сжатия). В бесконтактной системе зажигания во вторичной цепи также имеются два промежутка: один — разрядный промежуток между электродами свечи зажигания цилиндра, в котором идет такт сжатия, и второй — разрядный промежуток между электродами свечи зажигания цилиндра, в котором идет такт выпуска.
Для управления работой бесконтактной системы зажигания необходим датчик (обычно датчик углового положения коленчатого вала), по сигналу которого осуществляется синхронизация электронного коммутатора высоковольтного напряжения (рис. 5.13).
Рис. 5.13. Функциональная схема типичной бесконтактной (EDIS) системы зажигания четырехцилиндрового двигателя, которой оснащаются автомобили компании Ford. Датчик угла поворота коленчатого вала, называемый датчиком переменного магнитного сопротивления (VRS), передает информацию об угловом положении коленчатого вала и скорости его вращения в модуль управления зажиганием (EDIS). В бортовой компьютер передается преобразованный сигнал — сигнал PIP, по которому осуществляется слежение за синхронизацией системы зажигания. По сигналу PIP компьютер рассчитывает временные параметры синхронизации системы зажигания и передает в модуль управления зажиганием EDIS команду о том, когда подавать высокое напряжение на свечу зажигания. Этот сигнал управления называется командой установки угла опережения зажигания — сигнал SAW
Скорректировать угол опережения зажигания путем перемещения датчика углового положения коленчатого вала невозможно, поскольку он делается нерегулируемым.
СИСТЕМА ЗАЖИГАНИЯ ТИПА «КАТУШКА НА СВЕЧЕ»
В системе зажигания типа «катушка на свече» для каждой свечи зажигания предусмотрена отдельная катушка зажигания (рис. 5.14). В системе зажигания с отдельными для каждой свечи катушками зажигания отсутствуют высоковольтные провода, которые часто являются источниками электромагнитных помех, нарушающих работу бортовой компьютерной системы управления. Бортовой компьютер замыкает минусовой вывод каждой катушки в надлежащий момент.
Рис. 5.14. Система зажигания типа «катушка на свече»
8. Получение высокого напряжения для свечей зажигания
В
первые 20 лет прошлого века двигатели
автомобилей для целей зажигания обычно
оснащались магнето, т.е. генератором
высокого напряжения, который приводится
от двигателя и не требует наличия
аккумулятора.
Однако
для работы световых приборов автомобиля
все равно требовался аккумулятор,
поэтому старая система зажигания была
постепенно вытеснена более прогрессивной
– катушечной, которая была впервые
запатентована в 1908 г. К. Ф. Кеттерингом
из «Dayton Engeneering Laboratories Company» (DELCO) и не
претерпела существенных изменений за
прошедшие 90 лет.
Развитие
электроники положило конец монополии
Кеттеринга, и за последние
20 лет в конструкцию систем зажигания
было внесено изменений больше, чем за
все предыдущие годы.
Тем
не менее, батарейно-катушечная система
зажигания все еще применяется на многих
автомобилях, и понимание принципов ее
работы имеет большое значение, хотя
теперь она является лишь частью большой
группы разнообразных систем.
По способу накопления
энергии различаются системы с накоплением
энергии в индуктивности и в емкости
(рис. 1).
В обоих случаях для получения импульса
высокого напряжения используется
катушка зажигания, представляющая собой
высоковольтный трансформатор, содержащий
две обмотки: первичную с малым числом
витков и омическим сопротивлением
в доли и единицы Ом, и вторичную с большим
числом витков и омическим сопротивлением
в единицы и десятки кОм.
Коэффициент трансформации катушки
лежит в пределах 50‑150. Значительное
количество энергии, которое требуется
для воспламенения рабочей смеси, накопить
в конденсаторе (емкости) приемлемых
размеров при достаточно низком напряжении
бортовой сети невозможно, и поэтому
система, представленная на рис. 1б,
оборудована высоковольтным преобразователем
напряжения. Такое усложнение не дает
существенных преимуществ, поэтому
системы с накоплением энергии в емкости
на автомобилях практически не применяются.
Принцип работы схемы, изображенной на
рис. 1а, характерен для всех систем
зажигания, устанавливаемых на автомобилях.
Выключатель зажигания S1включает систему в сеть питания. При
вращении вала двигателя происходит
замыкание контактов прерывательного
механизмаS2, и токI1начинает
нарастать в первичной цепи катушки
зажигания по экспоненте (рис. 2а).
В момент, необходимый для подачи искрового
импульса на зажигание (напряжение U2),
прерывательS2разрывает
свои контакты, после чего возникает
колебательный процесс, связанный с
обменом энергией между магнитным полем
катушки и электрическим полем в емкостяхС1иС2. Амплитуда колебаний
напряжения, приложенного к электродам
свечиU2, убывает по экспоненте
(штриховая линия на рис. 2б).
Однако интерес представляет лишь первая
полуволна напряжения, так как, если
ее максимальное значение U2mпревышает напряжение пробоя искрового
промежуткаUn,
то возникает необходимая для зажигания
искра.
Величина U2mзависит от коэффициента трансформации
катушки зажиганияКт = W2/W1(W1иW2соответственно число
витков первичной и вторичной обмоток
катушки), тока первичной обмотки в момент
разрываIр,
а также индуктивностиL1и емкостиС1первичной иС2вторичной цепей:
.
Коэффициент КПучитывает потерю энергии в активных
сопротивлениях первичнойR1и
вторичнойR2цепей, в сопротивлении
нагараRш, шунтирующего искровой
промежуток, а также в сердечнике катушки
при его перемагничивании. ОбычноКПлежит в пределах 0,7‑0,8. Влияние нагара
на свечах на искрообразование значительно
снижается с увеличением скорости
нарастания вторичного напряжения. В
современных системах эта скорость лежит
в пределах (200 – 700) В/мкс.
После пробоя искрового промежутка
вторичное напряжение резко уменьшается
(рис. 2б). При этом в искровом промежутке
сначала искра имеет емкостную фазу,
связанную с разрядом емкостей на
промежуток, а затем индуктивную, во
время которой в искре выделяется энергия,
накопленная в магнитном поле катушки.
Емкостная составляющая искры обычно
кратковременна, очень ярка, имеет
голубоватое свечение. Сила тока в искре
велика даже при малом количестве
протекающего в ней электричества.
Индуктивная составляющая отличается
значительной продолжительностью,
небольшой силой тока, большим количеством
электричества и неярким красноватым
свечением. Осциллограмма вторичного
напряжения, соответствующая рис. 2б,
является признаком нормальной работы
системы зажигания. О нормальной работе
свидетельствует и вид искры между
электродами свечи. В исправной системе
она имеет яркое ядро, окруженное пламенем
красноватого цвета.
Распределение зажигания по цилиндрам
может производиться как на высоковольтной,
так и на низковольтной стороне.
При низковольтном распределении каждая
катушка зажигания обслуживает два либо
четыре цилиндра. В первом случае катушка
имеет два высоковольтных вывода
(двухвыводная катушка), во втором четыре
(четырехвыводная). Импульсы напряжения
на обоих выводах двухвыводной катушки
появляются одновременно, но один из
них подается в цилиндр в такте сжатия
и производит воспламенение рабочей
смеси, а в другом цилиндре в это время
избыточное давление отсутствует,
и выделенная в искре энергия
расходуется вхолостую. Четырехвыводная
катушка снабжена первичной обмоткой,
состоящей из двух секций, работающих
попеременно. Высоковольтные диоды
обеспечивают разделение цепей, так как
высоковольтные импульсы такой системы
разнополярны. Это является недостатком
системы с четырехвыводной катушкой,
поскольку в зависимости от полярности
импульса, напряжение пробоя на свече
может отличаться на 1,5‑2 кВ. Катушка
может обслуживать и один цилиндр,
в этом случае она обычно располагается
непосредственно на свече.
В настоящее время наиболее распространено
высоковольтное распределение зажигания,
однако, развитие электроники позволяет
перейти, вернее, вернуться к низковольтному
распределению, какое было, например, на
первых автомобилях фирмы «Форд», где
имелись 4 прерывателя и 4 катушки
зажигания.
Контрольные
вопросы
В
каком году была запатентована катушечная
система зажигания, и из чего она состоит?
В
чем состоит разница между системами с
накоплением энергии в емкости и в
конденсаторе, какая из них получила
наибольшее распространение и почему?
В
какой момент времени резко повышается
напряжение во вторичной обмотке катушки
зажигания и почему?
Какое
основное требование предъявляется к
напряжению вторичной обмотки катушки
зажигания?
Какая
составляющая напряжения во вторичной
обмотке больше по амплитуде, а какая —
продолжительнее во времени?
Система зажигания автомобиля | Система зажигания
Основными условиями воспламенения смеси являются превышение высокого (вторичного) напряжения над напряжением пробоя и достаточность энергии искрового разряда, выделяемой в искровом промежутке зажигательной свечи. Искровой разряд имеет емкостную и индуктивную фазы. Длительность емкостной фазы невелика и составляет 1—3 мкс. Поэтому энергия, выделяемая в данной фазе искрового разряда, обеспечивает воспламенение лишь однородной и полностью газифицированной рабочей смеси. При пуске холодного двигателя, когда паровой части топлива в смеси недостаточно, а температура ее низка, для воспламенения рабочей смеси кроме емкостной фазы разряда требуется индуктивная. Длительность индуктивной фазы искрового разряда существенно больше, чем емкостной, что способствует улучшению прогрева смеси и ее испарению. Это обеспечивает более качественное воспламенение смеси, находящейся по своему составу у границ воспламеняемости.
У систем зажигания, предназначенных для двигателей с Э > 9, энергия искрового разряда достигает 0,05 Дж, а длительность 2,5 мс. При этом повышение вторичного напряжения над напряжением пробоя, характеризуемого коэффициентом запаса, составляет 1,4-1,5.
Величина напряжения пробоя при пуске двигателя (особенно холодного) всегда больше, чем на его рабочих режимах. Это связано с низкой температурой электрода свечи и рабочей смеси в цилиндре. Напряжение пробоя зависит от давления сжатия в момент пробоя искрового промежутка и расстояния между электродами свечи. На величину напряжения пробоя влияет форма электродов свечи (результат электрической эрозии), при изменении которой оно увеличивается на 3-4 кВ за первые 25 тыс. км пробега автомобиля.
Величина вторичного напряжения, развиваемого системой зажигания, зависит от конструктивных и эксплуатационных факторов.
При пусковых частотах вращения коленчатого вала двигателя время замкнутого состояния контактов прерывателя достаточно велико, и сила тока в первичной электроцепи достигает максимального значения. При малой частоте размыкания контактов и большой силе тока разрыва, индуктируемого в первичной обмотке катушки, возможен пробой искрового воздушного промежутка между контактами, что вызывает ухудшение параметров искрового разряда.
Вторичное напряжение уменьшается при снижении напряжения на зажимах аккумуляторной батареи, которое обусловливается низкой температурой аккумуляторной батареи и степенью ее разряженности. Для компенсации снижения напряжения в первичную электроцепь систем зажигания у отечественных автомобилей вводится дополнительный резистор, замыкаемый накоротко в момент включения стартера.
Необходимо отметить влияние неравномерности электрострартерного прокручивания коленчатого вала на снижение вторичного напряжения систем зажигания. Вторичное напряжение падает при неравномерном прокручивании коленчатого вала на 0,2-1,5 кВ по сравнению с равномерным прокручиванием. Уменьшение вторичного напряжения возможно и при увеличении шунтирующего сопротивления и зазора между электродами зажигательной свечи. Шунтирование свечей при пуске двигателя происходит в результате переобогащения смеси и попадания между электродами влаги и остатков продуктов сгорания. Наибольшее шунтирование свечей наблюдается у роторно-поршневых двигателей (в силу конструктивных особенностей расположения свечи) и у двухтактных двигателей из-за плохой организации процесса смесеобразования и плохой очистки цилиндров от остаточных газов. Увеличить энергию искрового разряда и величину вторичного напряжения у систем зажигания можно только увеличением силы тока разрыва первичной электроцепи катушки зажигания. В классических электромеханических системах такая возможность ограничивается сроком службы контактов прерывателя. Наибольшая эксплуатационная надежность контактов имеет место при силе тока 1 А.
Проблема роста вторичного напряжения и энергии искрового разряда за счет увеличения силы тока разрыва первичной цепи решается с помощью схем контактно-транзисторных и бесконтактных систем зажигания.
Контактно-транзисторные системы зажигания обеспечивают более легкие условия работы контактов прерывателя при одновременном повышении силы тока разрыва первичной цепи.
Вторичное напряжение, развиваемое контактно-транзисторной системой зажигания двигателя ЗИЛ-508.1000400, составляет 25 кВ, что обеспечивает коэффициент запаса 1,7-1,8 (1,35 для классической системы). Сила тока в первичной цепи катушки зажигания составляет около 7 А и разрываемого контактами прерывателя — 0,7-0,9 А. Положительным качеством контактно-транзисторной системы является увеличение по сравнению с классической длительностью и энергии искрового разряда (энергия до 0,024-0,025 Дж и длительность до 2,0-2,3 мс). К недостаткам данных систем относится влияние на их характеристики напряжения в первичной цепи и л, хотя оно несколько меньше, чем у классической системы.
Лучшими системами с точки зрения пуска являются электронные бесконтактные системы с электронными или электромеханическими автоматами опережения зажигания, имеющие бесконтактное управление моментом зажигания с нормированным временем накопления энергии в магнитном поле. В таких системах время накопления энергии почти не зависит от п, что улучшает условия пуска двигателя. Энергия индуктивной фазы на пусковых режимах двигателя для отечественных электронных систем (бесконтактной и микропроцессорной) составляет от 0,03 до 0,05 Дж, а длительность разряда от 2,0 до 1,7 мс.
Широко применяются электронные системы с накоплением энергии в электростатическом поле конденсатора и коммутирующем элементе (тиристоре). Резкий рост вторичного напряжения обеспечивает малую чувствительность к шунтированию свечей зажигания. Такой характер возрастания напряжения тиристорной системы, несмотря на малую длительность индуктивной составляющей, позволяет повысить надежность воспламенения топливомасляных смесей двухтактных и роторно-поршневых двигателей, а также газовоздушных смесей газовых двигателей.
Двухтактные пусковые двигатели оборудуются системами зажигания от магнето, особенностью которых являются более низкие вторичное напряжение и энергия искрового разряда по сравнению с батарейной системой зажигания, особенно в интервале пусковых частот вращения коленчатого вала 200-300 мин-1. Для повышения коэффициента запаса по вторичному напряжению приходится повышать пусковую частоту вращения коленчатого вала, что ухудшает экономические показатели пусковой системы.
Неравномерность вращения коленчатого вала пусковых двигателей при электростартерном пуске (5 достигает 1,85-1,90) приводит к снижению вторичного напряжения на 0,3-4,5 кВ. Это необходимо учитывать при выборе параметров систем зажигания от магнето.
Улучшить пуск пусковых двигателей можно за счет применения электронных систем зажигания, минимальная частота устойчивого искрообразования которых должна составлять не более 100-150 мин
Основная задача системы зажигания современного бензинового двигателя – формирование импульсов высокого напряжения, необходимых для воспламенения топливно-воздушной смеси. Первоначальное воспламенение смеси происходит от энергии, выделяющейся в шнуре пробоя. В объеме шнура электрическая искра вызывает практически мгновенный термический нагрев молекул смеси, их ионизацию и химическую реакцию между ними. Если выделившейся при этом энергии достаточно для начала реакции горения смеси в оставшемся объеме камеры сгорания, то воспламенение смеси произойдет, и цилиндр отработает нормально. В противном случае возможен пропуск воспламенения. Поэтому система зажигания играет одну из ключевых ролей в обеспечении надежного воспламенения топливно-воздушной смеси.
Проверка элементов системы зажигания – обязательная операция при проведении диагностических работ. Она включает в себя достаточно обширный перечень действий с применением разнообразных методик. К числу последних относится анализ осциллограммы высоковольтного пробоя и горения искры, полученный с помощью мотортестера.
Вкратце напомним характерные моменты этой осциллограммы:
Время накопления – это время, в течение которого происходит накопление энергии в магнитном поле катушки. Оно определяется блоком управления в соответствии с заложенной в него программой либо коммутатором зажигания. Когда-то давно время накопления зависело от угла замкнутого состояния контактов, но подобные системы уже безнадежно устарели, и рассматриваться нами не будут. Время горения – это время существования тока между электродами свечи. Зависит от очень многих факторов и составляет 1…2 мс.
В момент размыкания первичной цепи системы зажигания во вторичной катушке генерируется высоковольтный импульс. Значение напряжения, при котором происходит пробой искрового промежутка, называется напряжением пробоя. При анализе осциллограммы это значение необходимо измерить и оценить. Поговорим о том, каким образом это можно сделать, от чего оно будет зависеть.
Самый важный тезис, который обязательно необходимо озвучить, прежде чем продолжить разговор, заключается в следующем: система зажигания современного двигателя является частью системы управления двигателем, исполнительным механизмом этой системы.
В чём коренное отличие современной системы от системы с центробежным и вакуумным регуляторами, известной по автомобилям ВАЗ классической компоновки? Отличие заключается в самом главном. Если ранее в перечень задач системы зажигания входило формирование времени накопления энергии в катушке и регулировка угла опережения зажигания в зависимости от оборотов коленчатого вала и нагрузки на двигатель, то функция современной системы зажигания заключается только в генерации высоковольтных импульсов и распределении их по цилиндрам двигателя. Задача расчёта оптимального УОЗ и времени накопления возложена на электронный блок управления двигателем. Для грамотного анализа осциллограмм необходимо четко представлять, как функционирует система управления двигателем в части управления системой зажигания.
Для правильного понимания методик диагностики нужно знать принцип работы того или иного элемента, видеть причинно-следственные связи, и прежде всего совершенно необходимо иметь представление о том, как происходит пробой искрового промежутка.
Рассмотрим в упрощенном виде механизм формирования шнура пробоя. В общем случае газы и их смеси являются идеальными изоляторами. Но в результате действия ионизирующего космического излучения в воздухе всегда присутствуют свободные электроны и соответственно, положительно заряженные ионы – остатки молекул. Поэтому, если газ разместить между двумя электродами и подать на них напряжение, между электродами возникнет электрический ток. Однако величина этого тока очень незначительна вследствие малого количества электронов и ионов.
Рассматриваемый вариант является идеальным. Между плоскими электродами, находящимися на малом расстоянии друг от друга, формируется однородное электрическое поле. Однородным называют поле, напряжённость которого в любой точке остаётся неизменной. Внутри искрового промежутка электроны движутся к положительно заряженному электроду, получая ускорение вследствие действия на них электрического поля. При определенном значении напряжения на электродах приобретенной электроном кинетической энергии становится достаточно для ударной ионизации молекул.
Сказанное поясняют рисунки:
Рис.3
Рис.4
Свободный электрон 1 (рис.3) при соударении с нейтральной молекулой расщепляет ее на электрон 2 и положительный ион. Электроны 1 и 2 при дальнейшем соударении с нейтральными молекулами снова расщепляют их на электроны 3 и 4 и положительные ионы, и т. д. Аналогичное явление происходит и при движении положительно заряженных ионов (рис.4). Возникает лавинообразное размножение положительных ионов и электронов при соударении положительных ионов с нейтральными молекулами.
Таким образом, процесс идет по нарастающей, и ионизация в газе быстро достигает очень большой величины. Это явление вполне аналогично снежной лавине в горах, для зарождения которой бывает достаточно ничтожного комка снега. Поэтому и описанный процесс был назван ионной лавиной. В результате между электродами возникает значительный электрический ток, который создает сильно нагретый и ионизированный канал. Температура в канале достигает 10 000К. Напряжение, при котором возникает ионная лавина, и есть ранее рассмотренное напряжением пробоя. Оно обозначается Uпр. После пробоя сопротивление канала стремится к нулю, сила тока достигает десятков ампер, а напряжение падает. Первоначально процесс протекает в очень узкой зоне, но вследствие быстрого роста температуры канал пробоя расширяется со сверхзвуковой скоростью. При этом образуется ударная волна, воспринимаемая на слух как характерный треск.