Стробоскоп для установки зажигания своими руками из фотовспышки – Стробоскоп для зажигания своими руками схема – Как сделать простой стробоскоп для установки зажигания своими руками — Шины для спецтехники, шины для погрузчика — резина Armour

  • 28.02.2020

Стробоскоп для установки зажигания своими руками

Стробоскопами являются специальные устройства, которые предназначены для того чтобы установить зажигание на двигателе автомобильного средства. Эти приспособления можно купить в специально отведенном магазине, а также сделать самостоятельно из подручных средств. Стоит заметить, что выгоднее всего сделать стробоскоп для установки зажигания своими руками. Потому как это поможет вам сократить расход денежных средств и создать такое приспособление, которое будет подходить именно вашему автомобилю.

Без наличия данного прибора будет сложно отрегулировать должным образом зажигание на двигателе. Однако несмотря на преимущества данного приспособления, далеко не все автолюбителя торопятся в магазины, чтобы его приобрести. Это связано с тем, что цена, за которую продают стробоскоп довольно высокая и бьет по карману водителя. Ведь он содержит дорогую лампу, которая встречается у большого количества моделей, что есть в наличии.

Стоит обратить внимание на то, что замена этой лампы также дорогое удовольствие, ведь стоит она столько же сколько и сам прибор. Благодаря этому устройству процедура настройки существенно облегчается. Это объясняется тем, что оно обладает сигнализаторами, которые оповещают о наличии искры и правильности установленного угла зажигания.

Схема стробоскопа для установки зажигания своими рукамиСхема стробоскопа

Как сделать стробоскоп

Поэтому из подручных средств можно сделать самодельный стробоскоп (для установки зажигания). Таким образом можно сэкономить большую часть материальных средств. Для его изготовления есть несколько подходящих схем. Из светодиодов и светящихся элементов можно создать данное приспособление и в этом случае не требуется приобретать в специальных магазинах дорогостоящие лампы. Ведь общая сумма затрат на самодельный стробоскоп для зажигания будет в три раза меньше заводских изделий.

Стоит отметить, что цены на самые распространенные стробоскопы довольно высокие, однако некоторые владельцы передвижных средств все же решаются на покупку данного прибора в магазине.

Схемы стробоскопа для зажигания своими руками

В наше время существует довольно много легких и простых схем, с помощью которых можно самостоятельно сделать данный прибор и при этом данный процесс не подразумевает большого расхода денежных средств. Большее количество вариантов схем, предложенных в мировой сети понятные и с их помощью можно легко собрать нужное приспособление.

Для самостоятельного изготовления стробоскопа нам нужны такие приспособления как транзистор, фонарик, конденсаторы, тиристор, а также резистор, шнур питания, диод с низкой частотой, зажимы, реле с индексом и медный провод. Все что нужно, можно купить в специальном магазине или на радиорынке. Они доступны и стоят недорого. Также для установления корпуса приспособления вы можете воспользоваться старыми частями от фонарика или камеры.

Далее мы ознакомимся с этапами сборки стробоскопа для установки зажигания своими руками:

сделать разъем в задней стенке коробки для провода питания;

прикрепить специальные прищепки разных цветов, которые означают «+» и «-» на кончики проводов;
разместить датчик на любой из сторон корпуса, затем сделать отверстие для шнура и протянуть его к указанному контакту;
припаять медный провод, который будет служить датчиком к главному шнуру;
провести изоляцию соединений.

Подобное изделие поможет вам не только при установке зажигания, а также помимо этого может служить для настройки регуляторов и проверки свечей. Своими руками, вы сделаете простейший стробоскоп устанавливающий зажигание и в дальнейшем он может приносить пользу в проверке нескольких систем.

Схема стробоскопа для установки зажигания своими руками
Схема светодиодного стробоскопа

Прибор, выставляющий зажигание, из светодиодов

Данное приспособление можно сделать с использованием светодиодов, однако этот стробоскоп содержит в себе определенную микросхему. Запускается он посредствам импульсов, которые содержат минусовую полярность. В структуре данного вида схемы есть определенные сопротивления, они служат ограничителями для того чтобы уменьшить амплитуду входящего сигнала. В данном случае аккумулятор автомобильного средства будет служить источником питания самого прибора.

Подключение стробоскопа, устанавливающего зажигание, производится посредством следующих действий:

  •  нужно прогреть мотора и оставить его включенным;
  •  подключить прибор ручной работы к электричеству;
  •  намотать датчик на провод цилиндра;
  •  направить свет на определенную точку, расположенную в корпусе;
  •  оборачивать корпус зажигания до того момента пока эти метки не сойдутся;
  •  произвести закрепление его в этом состоянии.

Самодельный стробоскоп для настройки зажигания по своим функциям не уступает устройствам, которые сделали на заводе. В этом случае главным фактором является следование всем инструкциям по изготовлению и соблюдение схемы приспособления, сделанного своими руками. Изделия, созданные из подручных и простых материалов, могут потребовать незначительных затрат. Стробоскопы самодельного производства довольно легко починить, если они подверглись износу или поломке.

Прибор для установки зажигания можно найти в любом специализированном магазине, их существует несколько видов и они довольно распространены. Однако стоимость данного приспособления часто отпугивает владельцев транспортных средств, потому как это не дешевое удовольствие.

В случае неисправности или поломки, которые происходят со временем, замена износившейся детали может равняться сумме самого устройства в целом. Именно поэтому автолюбители начали изготовлять стробоскопы собственными руками. Ведь для его создания потребуются детали, которые можно найти в любом магазине.

Стоит заметить, что самодельное приспособление обойдется в несколько раз дешевле заводского устройства. Если же самостоятельно изготовить устройство не получается, то всегда можно найти мастера который выполнит эту работу. Подобные специалисты сегодня работают практически в каждом населенном пункте.

Самостоятельное изготовление стробоскопа позволит вам сэкономить изрядную сумму средств.

Facebook

Twitter

Вконтакте

Google+

Пособие по изготовлению стробоскопа для установки зажигания (УОЗ) своими руками

С необходимостью регулировки угла зажигания (УЗ) сталкиваются многие современные автолюбители. Порой эта процедура может вызвать определенные трудности у автомобилиста, поэтому на рынке в последнее время появляется множество устройств для выполнения этой задачи. К примеру, можно использовать стробоскоп для проведения процедуры установки зажигания своими руками, о чем мы расскажем ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Характеристика стробоскопа

Итак, вы решили произвести настройки зажигания на своем авто, но понятия не имеете, как выставлять и производить регулировку УОЗ. Для того, чтобы выставленный угол не приносил дискомфорта водителю во время езды, можно использовать стробоскоп для зажигания.

Принципиальная схема

Принципиальная схема для разработки стробоскопаПринципиальная схема для разработки стробоскопаПринципиальная схема для разработки стробоскопа

Ниже представлена схема стробоскопа. Если вы не знаете, как сделать стробоскоп своими силами на светодиодах, можете воспользоваться этой схемой. В конечном итоге получится самый простой стробоскоп, однако сделанный девайс позволит в полной мере произвести регулировку всех необходимых параметров.

В схеме устройства необходимо выделить несколько основных частей:

  1. Цепь питания, которая состоит из компонентов — SA1, являющегося выключателем, диода VD1, а также конденсатора С2. Сделанная своими руками схема обязательно должна включать в себя диод, предназначенный для защиты остальных компонентов от ошибочной смены полярности. Конденсатор выполняет функцию блокировки импульсных помех, способствуя предотвращению сбоев в работе триггера. Что касается выключателя, то он может быть заменен тумблером, главное, чтобы компонент могу включать и отключать питание.
  2. Самодельный стробоскоп для установки УЗ должен включать в себя входную цепь, состоящую из контроллера, резисторов R1, R2, а также конденсатора С1. Опцию контроллера в данном случае исполняет зажим типа «крокодила», фиксирующийся на высоковольтном кабеле первого цилиндра. Что касается компонентов С1, R1 и R2, то они образуют простую дифференцирующую цепь.
  3. Еще один немаловажный компонент используемого стробоскопа — это плата триггера, которая собирается с применением двух одновибраторов, предназначенных для формирования на выходе сигнала заданной частоты. Конденсаторы и резисторы в данном случае являются частотозадающими компонентами.
  4. Еще одна составляющая — выходной каскад, который собирается на резисторах R5-R9 и транзисторах VT1-VT3. Сами транзисторы предназначены для усиления выходного тока триггера. Резистор R5 позволяет задавать ток базы первого транзистора. А благодаря резистору R9 вероятность сбоев в работе VT3 исключается.

Принцип работы

Итак, в чем заключается принцип работы. Стробоскоп для установки зажигания своими руками в любом случае питается от батареи АКБ. Когда происходит замыкание выключателя, триггер вступает в работу. В это время на инверсных выводах 2 и 12 в соответствии со схемой образуется высокий потенциал, а на прямых выводах 1 и 13 — низкий. Сами конденсаторы С3 и С4 питаются от резисторов.

Стробоскоп для регулировки угла зажиганияСтробоскоп для регулировки угла зажиганияСтробоскоп для регулировки угла зажигания

Сигнал с контроллера, проходя через дифференцирующую цепь, передается на вход DD1.1, который является одновибратором, что в конечном итоге способствует его переключению. Поле этого начинается переразряд С1, заканчивающийся переключением триггера. В конечном итоге, одновибратор начинает реагировать на сигналы с контроллера, образовывая не первом выводе прямоугольные сигналы.

Что касается второго одновибратора DD1.2, то его принцип работы аналогичный — он позволяет снизить длительность сигнала в десять раз на выходе 13. Данный компонент работает под нагрузкой от усилительного каскада транзисторов, открывающихся на время сигнала. Что касается тока, проходящего через эти элементы, то он ограничивается с помощью резисторов R6-R8, его показатель должен быть не более 0.8 ампер.

Этот показатель не особо большой, поскольку:

  • сам сигнал длится не более одной секунды;
  • как правило, эксплуатация данного прибора для выставления угла зажигания длится не более десяти минут, соответственно, за столь короткое время вряд ли случится перегрев кристаллов;
  • современные диоды характеризуются более оптимальными техническими особенностями по сравнению с теми, которые использовались в конструкциях стробоскопов десять лет назад.

Соответственно, эксплуатация более ярких диодных элементов даст возможность во многом понизить ток нагрузки в результате повышения показателя сопротивления. Это сопротивление увеличивается на компонентах схемы R6-R8.

Печатная плата и детали сборки

Пример печатной платы для сборки устройстваПример печатной платы для сборки устройстваПример печатной платы для сборки устройства

Собрать свой собственный стробоскоп — не проблема. При небольшом бюджете можно использовать недорогие детали, не при необходимости вы можете создать более современное устройство.

  1. На приведенной выше плате в качестве диодного элемента VD1 используется КД2999В, можно применять другой, в этом случае важно, чтобы диод был с небольшим падением прямого напряжения.
  2. Конденсаторные устройства С2-С4 должны быть рассчитаны на 0.068 мкФ, а С1 — это высоковольтный компонент с напряжением 400 вольт.
  3. ТМ2 — это триггер, характеризующийся хорошей устойчивостью к помехам.
  4. Транзисторные компоненты VT1 и VT2 должны обладать высоким коэффициентом усиления.
  5. Диодные детали HL1-HL9 должны обладать наибольшей яркостью, при этом их угол рассеивания должен быть минимальным. Светодиоды необходимо установить на отдельной плате, при этом их должно быть три штуки в одном ряду.

После того, как плата для устройства будет готова, необходимо выбрать место для ее установки. К примеру, это может быть корпус переносного фонаря, но он должен быть оснащен отверстием в корпусе для монтажа регулятора R4. В принципе, можно использовать практически любой корпус, главное, чтобы на него можно было без проблем установить регулятор. Подробнее о том, как выглядит самодельный стробоскоп для настройки зажигания, сделанный на основе лазерной указки, вы можете узнать из видео (автор видео — Максим Соколов).

Особенности настройки устройства

Чтобы пользоваться девайсом, его необходимо отрегулировать. Стробоскоп для настройки должен быть отстроен должным образом, чтобы выдавать наиболее точные параметры. В первую очередь, производится регулировка подстроечного резистора R4, что позволяет выставить необходимый визуальный эффект. При вращении ручки регулятора вы заметите, что снижение сигнала может привести к недостаточному освещению меток, а если сигнал будет увеличен, то это приведет к размытости. Соответственно, в ходе первой настройки угла опережения зажигания своими руками следует правильно настроить наиболее оптимальную длительность световых вспышек.

Есть еще один момент, который необходимо учитывать — длина кабеля, который проходит от печатной платы к контроллеру, должна быть не более полуметра. Для контроллера можно использовать 10 см медного проводника, который следует припаять к центральной жиле кабеля. Когда осуществляется подключение, он наматывается на изолированную часть высоковольтника тремя витками.

Чтобы увеличить уровень помехозащищенности, процедура намотки осуществляется как можно ближе к самой свече зажигания. Если меди у вас нет, то можно использовать зажим крокодил — этот компонент припаивается к центральной жиле. При этом зубчики крокодила должны быть немного загнуты, в противном случае это может привести к повреждению изоляции.

Загрузка ...Загрузка ... Загрузка …

Установка УОЗ стробоскопом

Теперь перейдем к вопросу настройки угла зажигания с применением собственного стробоскопа. Процедура установки угла актуальна как для самодельных, так и для купленных устройств. Но перед тем, как мы рассмотрим процедуру выставления УЗ, рекомендуем ознакомиться с сутью функционирования стробоскопического эффекта (автор видео о принципе работы стробоскопа и настройке зажигания с его помощью своими силами — канал Samodelkin).

Когда объект, который передвигается в темноте, вы осветите светом на долю секунды, вы сможете заметить, что он будто застыл на месте. Именно там, где произошла вспышка. К примеру, если на вращающийся диск вы нанесете метку и будете периодически освещать его с помощью вспышек, в сам момент ее появления можно будет заметить место расположения метки. При этом важно, чтобы вспышки совпадали по своей частоте с частотой вращения диска или вала.

Теперь подробнее о том, как установленный стробоскоп позволит произвести регулировку угла зажигания. Перед тем, как произвести настройку, в моторном отсеке необходимо нанести две метки. Подвижная метка будет располагаться на коленвале, в частности, на маховике. Вторая метка — стационарная — устанавливается на корпусе силового агрегата.

После того, как метки будут выставлены, необходимо осуществить подключение контроллера (датчика). Когда контроллер подключен, производится подача питания на собранное своими руками устройство. Далее, запускается мотор, он должен функционировать на холостых оборотах. В том случае, если в момент появления световых вспышек метки совпадают, это свидетельствует о том, что угол зажигания выставлен правильно. Если же эти метки не совпадают, то необходимо будет произвести настройку зажигания. Корректировка системы осуществляется до того момента, пока метки полностью не совпадут.

Видео «Наглядная инструкция по самостоятельной установке УЗ с помощью стробоскопа»

Как правильно произвести корректировку угла зажигания автомобиля с применением такого устройства, как стробоскоп, вы можете узнать из видео ниже (автор видео — Владислав Чиков).

Стробоскоп из фотовспышки

Таймер 555

Фотовспышка практически обязательно входила в комплект фотопринадлежностей достаточно “серьезного” фотолюбителя. Теперь надобность в ней отпала, поскольку все современные фотоаппараты имеют встроенные вспышки. Перебирая свои “накопления», я как-то обнаружил там фотовспышку («СЭФ-1») и придумал ей новое назначение.

Основа фотовспышки — импульсная лампа ИФК-120 и оксидный высоковольтный конденсатор большой емкости. Бестрансформаторный преобразователь напряжения при питании его от сети 220 В позволяет накопить на обкладках конденсатора достаточный заряд для мощного светового импульса, возникающего при замыкании синхроконтактов во время спуска затвора фотоаппарата. Вот эту особенность я и использовал для управления вспышкой. Поскольку в цепи управления тиристором, в цепи анода которого включена обмотка импульсного трансформатора

преобразователя, напряжение не превышает 10 В, к управляющему электроду тиристора я подключил выход мультивибратора на микросхеме КР1006ВИ1, собранного по классической схеме. Теперь остается только задать требуемую частоту импульсов, которые «преобразуются» в соответствующие вспышки лампы ИФК-120.

В мультивибраторе предусмотрена регулировка параметров выходных импульсов в широких пределах. При подаче питания конденсатор С1 заряжается через резисторы R1 и R2 от источника питания. В первый момент на входах запуска (выводах 2 и 6) DA1 — низкий уровень, а на выходе микросхемы (выводе 3) — высокий. Напряжение на конденсаторе С1 растет, и когда оно достигает 2/3 U

пит, внутренний компаратор переключает триггер микросхемы, который открывает транзистор, коллектором подключенный к выводу 7 внутри DA1. Транзистор быстро разряжает конденсатор С1 и переключает выход в состояние низкого уровня. Таким образом, периодический заряд конденсатора С1 осуществляется через R1-R2, а разряд — через резистор R3. Это позволяет регулировать скважность импульсов, задавая соотношение между сопротивлениями R1 и R2. Резистор R2 регулирует пачки импульсов (чем меньше его сопротивление, тем короче пачки, вплоть до одиночных), R3 задает паузы между импульсами от 0,5 до 30 с. Частота следования импульсов также зависит и от емкости С1, которая может достигать сотен микрофарад.

Конденсатор С3 сглаживает пульсации напряжения питания. Выходной ток микросхемы КР1006ВИ1 достигает 250 мА, что для многих радиолюбительских конструкций вполне достаточно. Подключить выход DA1 можно и напрямую к импульсному трансформатору фотовспышки, но лучше использовать буферный каскад на полевом транзисторе VT1, в цепь стока которого включена обмотка повышающего трансформатора Т1 фотовспышки. Для защиты выходного каскада в схеме с трансформатором от бросков напряжения применен стабилитрон ВСХ55С15 или из серии КС515 с любым буквенным индексом. Его напряжение стабилизации должно быть не менее 3/4 U

пит.

Полевой транзистор в схеме VT1 можно заменить на IRF640, IRF511, IRF720. Постоянные резисторы — типа МЛТ-025, переменные R2, R3 — с линейной характеристикой изменения сопротивления, многооборотные, например, СП5-1ВБ. Оксидный конденсатор С3 — К50-29 или аналогичный, неполярные конденсаторы — типа КМ. Питать схему можно как от батареи “Крона” (типа 6F22), так и от стационарного блока питания со стабилизированным напряжением 6… 15 В.

А.Кашкаров

Читайте также:
Автомобильный стробоскоп на светодиодах
Схемы на таймере 555

 

 


Схема простого стробоскопа. Как сделать световые вспышки своими руками. _v_

 

 

 

Тема: как собрать прибор для излучения ярких световых вспышек на дискотеке.

 

Порой возникает необходимость в устройстве, которое излучает периодические вспышки яркого света. Такой прибор называется стробоскопом — применяют на дискотеках, местных тусовках, рекламных вывесках и т.д. Его можно приобрести в магазинах (торгующими световыми устройствами), через интернет. В зависимости от качества данного устройства зависит и цена. Но достаточно простой и вполне пригодный стробоскоп можно собрать и самому. По цене он обойдется значительно дешевле готового покупного. Ниже приведена его электрическая схема.

 

Схема простого стробоскопа. Как сделать световые вспышки своими руками.

 

 

лампа вспышка ИФК-120 для схемы самодельного стробоскопа, какая лампа нужнаОсновным элементом данной схемы стробоскопа является импульсная лампа вспышка типа ИФК-120. Она рассчитана на излучение кратковременных световых ярких вспышек, энергия выделяемого света которых равна 120 джоулям. Ее мощность около 12 ватт. Имеет три вывода: два из них плюс и минус (основные полюса, создающие световую вспышку) и один вывод поджигающий, на который подается стартовый электрический импульс для основного пробоя газового промежутка в лампе вспышке. Исходя из характеристик данной лампы (ИФК-120) напряжение пробоя для основных выводов (плюса и минуса) составляет около 1000 вольт. Зажигание лампы через поджигающий вывод происходит от напряжения порядка 180 вольт.

 

Итак, схема начинается с выпрямительного диода VD1 (в схеме стоит диод типа Д226Б, у которого обратное напряжение равно 300 вольт, а постоянная сила тока равна 300 миллиампер). Как известно в обычной электрической сети переменное напряжение величиной 220 вольт. Поскольку лампа имеет полярность, то питаться она должна именно от постоянного тока. Диод срезает одну полуволну, делая из переменного тока постоянный, хотя и скачкообразный. Заменить данный диод можно любым другим, у которого обратное напряжение не менее 300 вольт и номинальная сила постоянного тока не менее 300 миллиампер.

 

 

 

 

После диода в схеме простого стробоскопа стоит резистор R1 (имеющий сопротивление 100 Ом). Его задача заключается в ограничении силы тока для основных электрических цепей — это емкость, накапливаемая заряд для вспышки и сама лампа вспышка. Прежде всего ограничение тока необходимо именно для лампы, так как в момент пробоя без данного ограничителя из сети может через лампу пойти слишком большой ток, что может вывести ее из строя или значительно сократить срок ее службы. Этот резистор, ограничитель тока, должен иметь значительную мощность, поскольку на нем будет выделяться достаточно много тепла, которое нужно рассеивать. В схему лучше поставить резистор типа ПЭВ (мощностью 10 ватт). Хотя можно сделать это сопротивление и самому (берем небольшой радиатор и на него наматываем слой диэлектрика вроде стеклоткани, а затем нихромовую проволоку, сопротивление которой будет примерно равно 100 Ом).

 

как сделать простой самодельный стробоскоп своими руками, схемаЭлектрическая энергия, которая была выпрямлена диодом и ограничена сопротивлением поступает на выводы конденсатора C1. Его напряжение должно быть не менее 300 вольт. Емкость в схеме поставлена 50 микрофарад, хотя можно её увеличить и до 100 микрофарад. Задача данного конденсатора заключается в накоплении электроэнергии, которая будет после зажигания лампы преобразована в световую энергию вспышки. Слишком малая емкость данного конденсатора и слишком высокая частоты вспышек схемы стробоскопа может привести к тому, что снизится общая яркость каждой световой вспышки (просто электрическая энергия не будет накапливаться в емкости в достаточном количестве). Если же поставить слишком большую емкость конденсатора, то это приведет к чрезмерному току разряда в лампе, что сократит ее общий срок службы (лампа будет сильно перегреваться). Так что предлагаемая емкость является как бы наиболее оптимальным вариантом. Учтите, что конденсатор имеет полярность. Если ее нарушить, это может привести даже к повреждению емкости и самой схемы стробоскопа.

 

Параллельно конденсатору C1 подключены основные выводы лампы вспышки. Для пробоя лампы только через основные выводы понадобится постоянное напряжение порядка 1000 вольт. В данной схеме на этих выводах прилаживается всего лишь порядка 250 вольт. На лампе имеется дополнительный поджигающий вывод, который и обеспечивает световую вспышку, получаемую за счет более низкого напряжения, поданного на него (от 180 вольт).

 

 

Далее можно увидеть электрическую цепь, которая задает частоту вспышек и наличие нужного напряжение, подаваемого на поджигающий вывод лампы вспышки. Резисторами R2 и R3 ограничивает ток, идущий на заряд конденсатора C2. Причем R3 является переменным, что позволяет регулировать скорость заряда емкости C2. При достижении порогового напряжения на данном конденсаторе происходит пробой динистора VD2 (порог перехода в открытое состояние у серии КН102И составляет 150 вольт), что создает импульсное протекание постоянного тока через первичную обмотку трансформатора. В следствии этого на вторичной обмотке этого повышающего трансформатора возникает увеличенное напряжение, которое подается на поджигающий контакт световой лампы вспышки, что запускает процесс самой этой вспышки.

 

самодельная катушка на фирритовом стержне для стробоскопа своими рукамиТрансформатор для этой схемы стробоскопа делается самодельным. Его мотают на ферритовом стержне любой марки (обычно это стержень от старых радиоприемников диаметром около 0,8 мм). Первичная обмотка содержит 12 витков (диаметр 0,3-0,5 мм), вторичная 800 витков (диаметр 0,1-0,2 мм). Длина самого трансформатора особо не играет значения. Возьмите стержень длинной примерно 3-6 см, разделите его двумя секциями или намотайте обмотки одну поверх другой с изоляционной прослойкой.

 

 

Видео по этой теме:

 

 

ps smail

P.S. Советую после сборки схемы поставить небольшой вентилятор, который будет обдувать входной резистор R1 и саму лампу вспышку. Именно они в процессе работы будут больше всего греться. Хотя эти схемы самодельного стробоскопа делают и без охлаждения. Ну, сначала соберите схему, а потом уже смотрите по обстоятельствам. Просто чрезмерный перегрев лампы вспышки может сократить ее продолжительность срока службы. Резистору, в принципе, от перегрева особо ничего не будет.

 

alexxlab

E-mail : alexxlab@gmail.com

      Submit A Comment

      Must be fill required * marked fields.

      :*
      :*